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We introduce a new two-step iterative scheme for two asymptotically nonexpansive nonself-
mappings in a uniformly convex Banach space. Weak and strong convergence theorems are
established for this iterative scheme in a uniformly convex Banach space. The results presented
extend and improve the corresponding results of Chidume et al. (2003), Wang (2006), Shahzad
(2005), and Thianwan (2008).

1. Introduction

Let E be a real normed space and K be a nonempty subset of E. A mapping T : K → K is
called nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ K. A mapping T : K → K is called
asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1,∞) with kn → 1 such that
‖Tnx − Tny‖ ≤ kn‖x − y‖ for all x, y ∈ K and n ≥ 1. T is called uniformly L-Lipschitzian if
there exists a real number L > 0 such that ‖Tnx− Tny‖ ≤ L‖x−y‖ for all x, y ∈ K and n ≥ 1. It
is easy to see that if T is an asymptotically nonexpansive, then it is uniformly L-Lipschitzian
with the uniform Lipschitz constant L = sup{kn : n ≥ 1}.

Iterative techniques for nonexpansive and asymptotically nonexpansive mappings in
Banach spaces including Mann type and Ishikawa type iteration processes have been studied
extensively by various authors; see [1–8]. However, if the domain of T , D(T), is a proper
subset of E (and this is the case in several applications), and T maps D(T) into E, then the
iteration processes of Mann type and Ishikawa type studied by the authors mentioned above,
and their modifications introduced may fail to be well defined.

A subset K of E is said to be a retract of E if there exists a continuous map P : E → K
such that Px = x, for all x ∈ K. Every closed convex subset of a uniformly convex Banach



2 Discrete Dynamics in Nature and Society

space is a retract. A map P : E → K is said to be a retraction if P 2 = P . It follows that if a map
P is a retraction, then Py = y for all y ∈ R(P), the range of P .

The concept of asymptotically nonexpansive nonself-mappings was firstly introduced
by Chidume et al. [4] as the generalization of asymptotically nonexpansive self-mappings.
The asymptotically nonexpansive nonself-mapping is defined as follows.

Definition 1.1 (see [4]). Let K be a nonempty subset of real normed linear space E. Let P :
E → K be the nonexpansive retraction of E onto K. A nonself mapping T : K → E is called
asymptotically nonexpansive if there exists sequence {kn} ⊂ [1,∞), kn → 1 (n → ∞) such
that

∥
∥
∥T(PT)n−1x − T(PT)n−1y

∥
∥
∥ ≤ kn

∥
∥x − y

∥
∥ (1.1)

for all x, y ∈ K and n ≥ 1. T is said to be uniformly L-Lipschitzian if there exists a constant
L > 0 such that

∥
∥
∥T(PT)n−1x − T(PT)n−1y

∥
∥
∥ ≤ L

∥
∥x − y

∥
∥ (1.2)

for all x, y ∈ K and n ≥ 1.

In [4], they study the following iterative sequence:

xn+1 = P
(

(1 − αn)xn + αnT(PT)n−1xn

)

, x1 ∈ K, n ≥ 1 (1.3)

to approximate some fixed point of T under suitable conditions. In [9], Wang generalized the
iteration process (1.3) as follows:

xn+1 = P
(

(1 − αn)xn + αnT1(PT1)n−1yn

)

,

yn = P
((

1 − α′
n

)

xn + α′
nT2(PT2)

n−1xn

)

, x1 ∈ K, n ≥ 1,
(1.4)

where T1, T2 : K → E are asymptotically nonexpansive nonself-mappings and {αn}, {α′
n} are

sequences in [0, 1]. He studied the strong and weak convergence of the iterative scheme (1.4)
under proper conditions. Meanwhile, the results of [9] generalized the results of [4].

In [10], Shahzad studied the following iterative sequence:

xn+1 = P
(

(1 − αn)xn + αnTP
[(

1 − βn
)

xn + βnTxn

])

, x1 ∈ K, n ≥ 1, (1.5)

where T : K → E is a nonexpansive nonself-mapping and K is a nonempty closed convex
nonexpansive retract of a real uniformly convex Banach space E with P, nonexpansive
retraction.
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Recently, Thianwan [11] generalized the iteration process (1.5) as follows:

xn+1 = P
((

1 − αn − γn
)

xn + αnTP
((

1 − βn
)

yn + βnTyn

)

+ γnun

)

,

yn = P
((

1 − α′
n − γ ′n

)

xn + α′
nTP

((

1 − β′n
)

xn + β′nTxn

)

+ γ ′nvn

)

, x1 ∈ K, n ≥ 1,
(1.6)

where {αn}, {βn}, {γn},{α′
n}, {β′n}, {γ ′n} are appropriate sequences in [0, 1] and {un}, {vn}

are bounded sequences in K. He proved weak and strong convergence theorems for
nonexpansive nonself-mappings in uniformly convex Banach spaces.

The purpose of this paper, motivated by the Wang [9], Thianwan [11] and some
others, is to construct an iterative scheme for approximating a fixed point of asymptotically
nonexpansive nonself-mappings (provided that such a fixed point exists) and to prove some
strong and weak convergence theorems for such maps.

Let E be a normed space, K a nonempty convex subset of E, P : E → K the
nonexpansive retraction of E onto K, and T1, T2 : K → E be two asymptotically
nonexpansive nonself-mappings. Then, for given x1 ∈ K and n ≥ 1, we define the sequence
{xn} by the iterative scheme:

xn+1 = P
((

1 − αn − γn
)

xn + αnT1(PT1)n−1P
((

1 − βn
)

yn + βnT1(PT1)n−1yn

)

+ γnun

)

,

yn = P
((

1 − α′
n − γ ′n

)

xn + α′
nT2(PT2)

n−1P
((

1 − β′n
)

xn + β′nT2(PT2)
n−1xn

)

+ γ ′nvn

)

,

(1.7)

where {αn}, {βn}, {γn}, {α′
n}, {β′n}, {γ ′n} are appropriate sequences in [0, 1] satisfying αn+βn+

γn = 1 = α′
n + β′n + γ ′n and {un}, {vn} are bounded sequences inK. Clearly, the iterative scheme

(1.7) is generalized by the iterative schemes (1.4) and (1.6).
Now, we recall the well-known concepts and results.
Let E be a Banach space with dimension E ≥ 2. The modulus of E is the function

δE : (0, 2] → [0, 1] defined by

δE(ε) = inf
{

1 −
∥
∥
∥
∥

1
2
(

x + y
)
∥
∥
∥
∥
: ‖x‖ =

∥
∥y

∥
∥ = 1, ε =

∥
∥x − y

∥
∥

}

. (1.8)

A Banach space E is uniformly convex if and only if δE(ε) > 0 for all ε ∈ (0, 2].
A Banach space E is said to satisfy Opial’s condition [12] if for any sequence {xn} in

E, xn ⇀ x implies that

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

∥
∥xn − y

∥
∥ (1.9)

for all y ∈ E with y /=x, where xn ⇀ x denotes that {xn}converges weakly to x.
The mapping T : K → E with F(T)/= ∅ is said to satisfy condition (A) [13] if there is a

nondecreasing function f : [0,∞) → [0,∞)with f(0) = 0, f(t) > 0 for all t ∈ (0,∞) such that

‖x − Tx‖ ≥ f(d(x, F(T))) (1.10)

for all x ∈ K, where d(x, F(T)) = inf{‖x − p‖ : p ∈ F(T)}; (see [13, page 337]) for an example
of nonexpansive mappings satisfying condition (A).
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Two mappings T1, T2 : K → E are said to satisfy condition (A′) [14] if there is a
nondecreasing function f : [0,∞) → [0,∞)with f(0) = 0, f(t) > 0 for all t ∈ (0,∞) such that

1
2
(‖x − T1x‖ + ‖x − T2x‖) ≥ f(d(x, F(T))) (1.11)

for all x ∈ K, where d(x, F(T)) = inf{‖x − p‖ : p ∈ F(T) = F(T1) ∩ F(T2)}.
Note that condition (A′) reduces to condition (A) when T1 = T2 and hence is more

general than the demicompactness of T1 and T2 [13]. A mapping T : K → K is called:
(1) demicompact if any bounded sequence {xn} in K such that {xn − Txn} converges has a
convergent subsequence, (2) semicompact (or hemicompact) if any bounded sequence {xn}
inK such that {xn−Txn} → 0 as n → ∞ has a convergent subsequence. Every demicompact
mapping is semicompact but the converse is not true in general.

Senter and Dotson [13] have approximated fixed points of a nonexpansive mapping
T by Mann iterates, whereas Maiti and Ghosh [14] and Tan and Xu [5] have approximated
the fixed points using Ishikawa iterates under the condition (A) of Senter and Dotson [13].
Tan and Xu [5] pointed out that condition (A) is weaker than the compactness of K. Khan
and Takahashi [6] have studied the two mappings case for asymptotically nonexpansive
mappings under the assumption that the domain of the mappings is compact. We shall use
condition (A′) instead of compactness of K to study the strong convergence of {xn} defined
in (1.7).

In the sequel, we need the following usefull known lemmas to prove our main results.

Lemma 1.2 (see [5]). Let {an}, {bn}, and {δn} be sequences of nonnegative real numbers satisfying
the inequality

an+1 ≤ (1 + δn)an + bn, n ≥ 1. (1.12)

If
∑∞

n=1 bn < ∞ and
∑∞

n=1 δn < ∞, then

(i) limn→∞an exists;

(ii) In particular, if {an} has a subsequence which converges strongly to zero, then limn→∞an =
0.

Lemma 1.3 (see [2]). Suppose that E is a uniformly convex Banach space and 0 < p ≤ tn ≤ q < 1
for all n ≥ 1. Suppose further that {xn} and {yn} are sequences of E such that

lim sup
n→∞

‖xn‖ ≤ r, lim sup
n→∞

∥
∥yn

∥
∥ ≤ r, lim

n→∞
∥
∥tnxn + (1 − tn)yn

∥
∥ = r (1.13)

hold for some r ≥ 0. Then limn→∞‖xn − yn‖ = 0.

Lemma 1.4 (see [4]). Let E be a uniformly convex Banach space,K a nonempty closed convex subset
of E, and T : K → E be a nonexpansive mapping. Then, (I−T) is demiclosed at zero, that is, if xn ⇀ x
weakly and xn − Txn → 0 strongly, then x ∈ F(T), where F(T) is the set fixed point of T .
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2. Main Results

We shall make use of the following lemmas.

Lemma 2.1. Let E be a normed space and let K be a nonempty closed convex subset of E which is
also a nonexpansive retract of E. Let T1, T2 : K → E be two asymptotically nonexpansive nonself-
mappings of E with sequences {kn}, {ln} ⊂ [1,∞) such that

∑∞
n=1(kn − 1) < ∞,

∑∞
n=1(ln − 1) < ∞,

respectively and F(T1)∩F(T2) := {x ∈ K : T1x = T2x = x}/= ∅. Suppose that {un}, {vn} are bounded
sequences in K such that

∑∞
n=1 γn < ∞,

∑∞
n=1 γ

′
n < ∞. Starting from an arbitrary x1 ∈ K, define the

sequence {xn} by the recursion (1.7). Then, limn→∞‖xn − p‖ exists for all p ∈ F(T1) ∩ F(T2).

Proof. Let p ∈ F(T1) ∩ F(T2). Since {un} and {vn} are bounded sequences in K, we have

r = max

{

sup
n≥1

∥
∥un − p

∥
∥, sup

n≥1

∥
∥vn − p

∥
∥

}

. (2.1)

Set σn = (1− βn)yn + βnT1(PT1)
n−1yn and δn= (1− β′n)xn + β′nT2(PT2)

n−1xn. Firstly, we note that

∥
∥σn − p

∥
∥ =

∥
∥
∥

(

1 − βn
)

yn + βnT1(PT1)n−1yn − p
∥
∥
∥

≤ βn
∥
∥
∥T1(PT1)n−1yn − p

∥
∥
∥ +

(

1 − βn
)∥
∥yn − p

∥
∥

≤ βnkn
∥
∥yn − p

∥
∥ +

(

1 − βn
)∥
∥yn − p

∥
∥

≤ kn
∥
∥yn − p

∥
∥,

(2.2)

∥
∥δn − p

∥
∥ =

∥
∥
∥

(

1 − β′n
)

xn + β′nT2(PT2)
n−1xn − p

∥
∥
∥

≤ β′n
∥
∥
∥T2(PT2)n−1xn − p

∥
∥
∥ +

(

1 − β′n
)∥
∥xn − p

∥
∥

≤ β′nln
∥
∥xn − p

∥
∥ +

(

1 − β′n
)∥
∥xn − p

∥
∥

≤ ln
∥
∥xn − p

∥
∥.

(2.3)

From (1.7) and (2.3), we have

∥
∥yn − p

∥
∥ =

∥
∥
∥P

((

1 − α′
n − γ ′n

)

xn + α′
nT2(PT2)

n−1Pδn + γ ′nvn

)

− p
∥
∥
∥

≤
∥
∥
∥

(

1 − α′
n − γ ′n

)

xn + α′
nT2(PT2)

n−1Pδn + γ ′nvn − p
∥
∥
∥

≤ α′
n

∥
∥
∥T2(PT2)n−1Pδn − p

∥
∥
∥ +

(

1 − α′
n − γ ′n

)∥
∥xn − p

∥
∥ + γ ′n

∥
∥vn − p

∥
∥

≤ α′
nln

∥
∥δn − p

∥
∥ +

(

1 − α′
n − γ ′n

)∥
∥xn − p

∥
∥ + γ ′n

∥
∥vn − p

∥
∥

≤ α′
nl

2
n

∥
∥xn − p

∥
∥ +

(

1 − α′
n − γ ′n

)∥
∥xn − p

∥
∥ + γ ′nr

≤ l2n
∥
∥xn − p

∥
∥ + γ ′nr.

(2.4)



6 Discrete Dynamics in Nature and Society

Substituting (2.4) into (2.2), we obtain

∥
∥σn − p

∥
∥ ≤ kn

∥
∥yn − p

∥
∥ ≤ knl

2
n

∥
∥xn − p

∥
∥ + knγ

′
nr. (2.5)

It follows from (1.7) and (2.5) that

∥
∥xn+1 − p

∥
∥ =

∥
∥
∥P

((

1 − αn − γn
)

xn + αnT1(PT1)n−1Pσn + γnun

)

− p
∥
∥
∥

≤
∥
∥
∥

(

1 − αn − γn
)

xn + αnT1(PT1)n−1Pσn + γnun − p
∥
∥
∥

≤ αn

∥
∥
∥T1(PT1)n−1Pσn − p

∥
∥
∥ +

(

1 − αn − γn
)∥
∥xn − p

∥
∥ + γn

∥
∥un − p

∥
∥

≤ αnkn
∥
∥σn − p

∥
∥ +

(

1 − αn − γn
)∥
∥xn − p

∥
∥ + γn

∥
∥un − p

∥
∥

≤ αn

(

k2
nl

2
n

∥
∥xn − p

∥
∥ + k2

nγ
′
nr
)

+
(

1 − αn − γn
)∥
∥xn − p

∥
∥ + γnr

≤ k2
nl

2
n

∥
∥xn − p

∥
∥ + k2

nγ
′
nr + γnr

=
(

1 +
(

l2n − 1
)(

k2
n − 1

)

+
(

l2n − 1
)

+
(

k2
n − 1

))∥
∥xn − p

∥
∥ +

(

k2
nγ

′
n + γn

)

r.

(2.6)

Note that
∑∞

n=1 kn − 1 < ∞ and
∑∞

n=1 ln − 1 < ∞ are equivalent to
∑∞

n=1 k
2
n − 1 < ∞ and

∑∞
n=1 l

2
n − 1 < ∞, respectively. Since

∑∞
n=1 γn < ∞ and

∑∞
n=1 γ

′
n < ∞, we have

∑∞
n=1(k

2
nγ

′
n + γn)r <

∞. We obtained from (2.6) and Lemma 1.2 that limn→∞‖xn − p‖ exists for all p ∈ F(T). This
completes the proof.

Lemma 2.2. LetE be a normed space and letK be a nonempty closed convex subset ofEwhich is also a
nonexpansive retract of E. Let T1, T2 : K → E be nonself uniformly L1-Lipschitzian, L2-Lipschitzian,
respectively. Suppose that {un}, {vn} are bounded sequences inK such that

∑∞
n=1 γn < ∞,

∑∞
n=1 γ

′
n <

∞. Starting from an arbitrary x1 ∈ K, define the sequence {xn} by the recursion (1.7) and set Cn =
‖xn − T1(PT1)

n−1xn‖, C′
n = ‖xn − T2(PT2)

n−1xn‖ for all n ≥ 1. If limn→∞Cn = limn→∞C
′
n = 0, then

lim
n→∞

‖xn − T1xn‖ = lim
n→∞

‖xn − T2xn‖ = 0. (2.7)

Proof. Since {un}, {vn} are bounded, it follows from Lemma 2.1 that {un − xn} and {vn − xn}
are all bounded. We set

r1 = sup{‖un − xn‖ : n ≥ 1}, r2 = sup{‖vn − xn‖ : n ≥ 1},
r3 = sup{‖un−1 − xn−1‖ : n ≥ 1}, r = max{ri : i = 1, 2, 3}.

(2.8)
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Let σn = (1 − βn)yn + βnT1(PT1)
n−1yn and δn = (1 − β′n)xn + β′nT2(PT2)

n−1xn. Then, we have

‖σn − xn‖ =
∥
∥
∥

(

1 − βn
)

yn + βnT1(PT1)n−1yn − xn

∥
∥
∥

≤ βn
∥
∥
∥T1(PT1)n−1yn − T1(PT1)n−1xn

∥
∥
∥

+ βn
∥
∥
∥T1(PT1)n−1xn − xn

∥
∥
∥ +

(

1 − βn
)∥
∥yn − xn

∥
∥

≤ (L1 + 1)
∥
∥yn − xn

∥
∥ + Cn,

(2.9)

‖δn − xn‖ =
∥
∥
∥

(

1 − β′n
)

xn + β′nT2(PT2)
n−1xn − xn

∥
∥
∥

≤ β′n
∥
∥
∥T2(PT2)n−1xn − xn

∥
∥
∥

≤ C′
n.

(2.10)

We find the following from (1.7) and (2.10):

∥
∥yn − xn

∥
∥ =

∥
∥
∥P

((

1 − α′
n − γ ′n

)

xn + α′
nT2(PT2)

n−1Pδn + γ ′nvn

)

− xn

∥
∥
∥

≤
∥
∥
∥

(

1 − α′
n − γ ′n

)

xn + α′
nT2(PT2)

n−1Pδn + γ ′nvn − xn

∥
∥
∥

≤ α′
n

∥
∥
∥T2(PT2)n−1Pδn − T2(PT2)n−1xn

∥
∥
∥

+ α′
n

∥
∥
∥T2(PT2)n−1xn − xn

∥
∥
∥ + γ ′n‖vn − xn‖

≤ L2‖δn − xn‖ + C′
n + γ ′nr

≤ L2C
′
n + C′

n + γ ′nr

= (L2 + 1)C′
n + γ ′nr.

(2.11)

Substituting (2.11) into (2.9), we get

‖σn − xn‖ ≤ (L1 + 1)(L2 + 1)C′
n + (L1 + 1)γ ′nr + Cn. (2.12)
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It follows from (1.7) and (2.12) that

‖xn+1 − xn‖ ≤
∥
∥
∥P

((

1 − αn − γn
)

xn + αnT1(PT1)n−1Pσn + γnun

)

− xn

∥
∥
∥

≤
∥
∥
∥T1(PT1)n−1Pσn − xn

∥
∥
∥ + γn‖un − xn‖

≤
∥
∥
∥T1(PT1)n−1Pσn − T1(PT1)n−1xn

∥
∥
∥ +

∥
∥
∥T1(PT1)n−1xn − xn

∥
∥
∥ + γnr

≤ L1‖σn − xn‖ + Cn + γnr

≤ L1
(

(L1 + 1)(L2 + 1)C′
n + (L1 + 1)γ ′nr + Cn

)

+ Cn + γnr

= (L1 + 1)Cn + L1(L1 + 1)(L2 + 1)C′
n + L1(L1 + 1)γ ′nr + γnr.

(2.13)

Using (2.11) and (2.13), we obtain

‖σn−1 − xn‖ =
∥
∥
∥

(

1 − βn−1
)

yn−1 + βn−1T1(PT1)n−2yn−1 − xn

∥
∥
∥

≤ βn−1
∥
∥
∥T1(PT1)n−2yn−1 − T1(PT1)n−2xn−1

∥
∥
∥ + βn−1

∥
∥
∥T1(PT1)n−2xn−1 − xn−1

∥
∥
∥

+ βn−1‖xn − xn−1‖ +
(

1 − βn−1
)∥
∥yn−1 − xn

∥
∥

≤ L1
∥
∥yn−1 − xn−1

∥
∥ + Cn−1 + ‖xn − xn−1‖

+
∥
∥yn−1 − xn−1

∥
∥ + ‖xn − xn−1‖

≤ (L1 + 1)
[

(L2 + 1)C′
n−1 + γ ′n−1r

]

+ 2

⎡

⎢
⎣

(L1 + 1)Cn−1 + L1(L1 + 1)(L2 + 1)C′
n−1

+L1(L1 + 1)γ ′n−1r + γn−1r

⎤

⎥
⎦ + Cn−1

= (2L1 + 3)Cn−1 + (2L1 + 1)(L1 + 1)(L2 + 1)C′
n−1

+ (2L1 + 1)(L1 + 1)γ ′n−1r + 2γn−1r.

(2.14)
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Combine (2.13)with (2.14) yields that

∥
∥
∥xn − (PT1)n−1xn

∥
∥
∥ =

∥
∥
∥xn − T1(PT1)n−2xn

∥
∥
∥

≤
∥
∥
∥

(

1 − αn−1 − γn−1
)

xn−1 + αn−1T1(PT1)n−2Pσn−1 + γn−1un−1 − T1(PT1)n−2xn

∥
∥
∥

≤ αn−1
∥
∥
∥T1(PT1)n−2Pσn−1 − T1(PT1)n−2xn

∥
∥
∥

+ (1 − αn−1)
∥
∥
∥xn−1 − T1(PT1)n−2xn

∥
∥
∥ + γn−1‖un−1 − xn−1‖

≤
∥
∥
∥T1(PT1)n−2Pσn−1 − T1(PT1)n−2xn

∥
∥
∥

+
∥
∥
∥xn−1 − T1(PT1)n−2xn

∥
∥
∥ + γn−1r

≤ L1‖σn−1 − xn‖ +
∥
∥
∥xn−1 − T1(PT1)n−2xn−1

∥
∥
∥

+
∥
∥
∥T1(PT1)n−2xn − T1(PT1)n−2xn−1

∥
∥
∥ + γn−1r

≤ L1

[

(2L1 + 3)Cn−1 + (2L1 + 1)(L1 + 1)(L2 + 1)C′
n−1

+(2L1 + 1)(L1 + 1)γ ′n−1r + 2γn−1r

]

+ Cn−1 + (L1 + 1)Cn−1 + L1(L1 + 1)(L2 + 1)C′
n−1

+ L1(L1 + 1)γ ′n−1r + 2γn−1r

= 2(L1 + 1)2Cn−1 + 2L1(L1 + 1)2(L2 + 1)C′
n−1

+ 2L1(L1 + 1)2γ ′n−1r + 2(L1 + 1)γn−1r,
(2.15)

from which it follows that

‖xn − T1xn‖ =
∥
∥
∥xn − T1(PT1)n−1xn + T1(PT1)n−1xn − T1xn

∥
∥
∥

≤
∥
∥
∥xn − T1(PT1)n−1xn

∥
∥
∥ +

∥
∥
∥T1(PT1)n−1xn − T1xn

∥
∥
∥

≤ Cn + L1

∥
∥
∥(PT1)n−1xn − xn

∥
∥
∥

≤ Cn + 2L1(L1 + 1)2Cn−1 + 2L2
1(L1 + 1)2(L2 + 1)C′

n−1

+ 2L2
1(L1 + 1)2γ ′n−1r + 2L1(L1 + 1)γn−1r.

(2.16)
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It follows from limn→∞Cn = limn→∞C′
n = 0 that limn→∞‖xn − T1xn‖ = 0. Similarly, we can

show that limn→∞‖xn − T2xn‖ = 0. This completes the proof.

Lemma 2.3. Let E be a real uniformly convex Banach space and let K be a nonempty closed convex
subset of E which is also a nonexpansive retract of E. Let T1, T2 : K → E be two asymptotically
nonexpansive nonself-mappings of Ewith sequences {kn}, {ln} ⊂ [1,∞) such that

∑∞
n=1(kn−1) < ∞,

∑∞
n=1(ln−1) < ∞, respectively, and F(T1)∩F(T2)/= ∅. Suppose that {αn}, {βn}, {γn}, {α′

n}, {β′n}, {γ ′n}
are appropriate sequences in [0, 1] satisfying αn+βn+γn = 1 = α′

n+β
′
n+γ

′
n, and {un}, {vn} are bounded

sequences in K such that
∑∞

n=1 γn < ∞,
∑∞

n=1 γ
′
n < ∞. Moreover, 0 < a ≤ αn, α

′
n, βn, β

′
n ≤ b < 1 for

all n ≥ 1 and some a, b ∈ (0, 1). Starting from an arbitrary x1 ∈ K, define the sequence {xn} by the
recursion (1.7). Then,

lim
n→∞

‖xn − T1xn‖ = lim
n→∞

‖xn − T2xn‖ = 0. (2.17)

Proof. Let σn = (1−βn)yn+βnT1(PT1)
n−1yn and δn = (1−β′n)xn+β′nT2(PT2)

n−1xn. By Lemma 2.1,
we see that limn→∞‖xn − p‖ exists. Assume that limn→∞‖xn − p‖ = c. If c = 0, then by the
continuity of T1 and T2 the conclusion follows. Now, suppose c > 0. Taking lim sup on both
sides in the inequalities (2.2), (2.3), and (2.4), we have

lim sup
n→∞

∥
∥σn − p

∥
∥ ≤ c, lim sup

n→∞

∥
∥δn − p

∥
∥ ≤ c, lim sup

n→∞

∥
∥yn − p

∥
∥ ≤ c, (2.18)

respectively. Next, we consider

∥
∥
∥T1(PT1)n−1Pσn − p + γn(un − xn)

∥
∥
∥ ≤

∥
∥
∥T1(PT1)n−1Pσn − p

∥
∥
∥ + γn‖un − xn‖

≤ kn
∥
∥σn − p

∥
∥ + γnr.

(2.19)

Taking lim sup on both sides in the above inequality and using (2.18), we get

lim sup
n→∞

∥
∥
∥T1(PT1)n−1Pσn − p + γn(un − xn)

∥
∥
∥ ≤ c. (2.20)

Observe that

∥
∥xn − p + γn(un − xn)

∥
∥ ≤ ∥

∥xn − p
∥
∥ + γn‖un − xn‖ ≤ ∥

∥xn − p
∥
∥ + γnr, (2.21)

which implies that

lim sup
n→∞

∥
∥xn − p + γn(un − xn)

∥
∥ ≤ c. (2.22)

lim supn→∞‖xn+1 − p‖ = c means that

lim inf
n→∞

∥
∥
∥αn

(

T1(PT1)n−1Pσn − p + γn(un − xn)
)

+ (1 − αn)
(

xn − p + γn(un − xn)
)
∥
∥
∥ ≥ c. (2.23)
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On the other hand, by using (2.23) and (2.5), we have

∥
∥
∥αn

(

T1(PT1)n−1Pσn − p + γn(un − xn)
)

+ (1 − αn)
(

xn − p + γn(un − xn)
)
∥
∥
∥

≤ αn

∥
∥
∥T1(PT1)n−1Pσn − p

∥
∥
∥ + (1 − αn)

∥
∥xn − p

∥
∥ + γn‖un − xn‖

≤ αnkn
∥
∥σn − p

∥
∥ + (1 − αn)

∥
∥xn − p

∥
∥ + γn‖un − xn‖

≤ αnkn
(

knl
2
n

∥
∥xn − p

∥
∥ + knγ

′
nr
)

+ (1 − αn)
∥
∥xn − p

∥
∥ + γnr

≤ k2
nl

2
n

∥
∥xn − p

∥
∥ + k2

nγ
′
nr + γnr.

(2.24)

Therefore, we have

lim sup
n→∞

∥
∥
∥αn

(

T1(PT1)n−1Pσn − p + γn(un − xn)
)

+ (1 − αn)
(

xn − p + γn(un − xn)
)
∥
∥
∥ ≤ c. (2.25)

Combining (2.23) with (2.25), we obtain

lim
n→∞

∥
∥
∥αn

(

T1(PT1)n−1Pσn − p + γn(un − xn)
)

+ (1 − αn)
(

xn − p + γn(un − xn)
)
∥
∥
∥ = c. (2.26)

Hence, applying Lemma 1.3, we find

lim
n→∞

∥
∥
∥T1(PT1)n−1Pσn − xn

∥
∥
∥ = 0. (2.27)

Note that

∥
∥xn − p

∥
∥ ≤

∥
∥
∥T1(PT1)n−1Pσn − p

∥
∥
∥ +

∥
∥
∥T1(PT1)n−1Pσn − xn

∥
∥
∥ ≤ kn

∥
∥σn − p

∥
∥ (2.28)

which yields that

c ≤ lim inf
n→∞

∥
∥σn − p

∥
∥ ≤ lim sup

n→∞

∥
∥σn − p

∥
∥ ≤ c. (2.29)

That is, limn→∞‖σn − p‖ = c. This implies that

lim inf
n→∞

∥
∥
∥βn

(

T1(PT1)n−1yn − p
)

+
(

1 − βn
)(

yn − p
)
∥
∥
∥ ≥ c. (2.30)
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Similarly, we have

∥
∥
∥βn

(

T1(PT1)n−1yn − p
)

+
(

1 − βn
)(

yn − p
)
∥
∥
∥

≤ βn
∥
∥
∥T1(PT1)n−1yn − p

∥
∥
∥ +

(

1 − βn
)∥
∥
(

yn − p
)∥
∥ ≤ kn

∥
∥yn − p

∥
∥,

(2.31)

lim sup
n→∞

∥
∥
∥βn

(

T1(PT1)n−1yn − p
)

+
(

1 − βn
)(

yn − p
)
∥
∥
∥ ≤ c. (2.32)

Combining (2.30) with (2.32), we obtain

lim
n→∞

∥
∥
∥βn

(

T1(PT1)n−1yn − p
)

+
(

1 − βn
)(

yn − p
)
∥
∥
∥ = c. (2.33)

On the other hand, we have

∥
∥
∥T1(PT1)n−1yn − p

∥
∥
∥ ≤ kn

∥
∥yn − p

∥
∥, (2.34)

lim sup
n→∞

∥
∥
∥T1(PT1)n−1yn − p

∥
∥
∥ ≤ c. (2.35)

Hence, using (2.32), (2.33), (2.35), and Lemma 1.3, we find

lim
n→∞

∥
∥
∥T1(PT1)n−1yn − yn

∥
∥
∥ = 0. (2.36)

Note that from (2.36), we have

∥
∥σn − p

∥
∥ =

∥
∥
∥

(

1 − βn
)

yn + βnT1(PT1)n−1yn − p
∥
∥
∥

≤ (

1 − βn
)∥
∥yn − p

∥
∥ + βn

∥
∥
∥T1(PT1)n−1yn − p

∥
∥
∥

≤ (

1 − βn
)∥
∥yn − p

∥
∥ + βn

∥
∥
∥T1(PT1)n−1yn − yn

∥
∥
∥ + βn

∥
∥yn − p

∥
∥

=
∥
∥yn − p

∥
∥

(2.37)

which yields that

c ≤ lim inf
n→∞

∥
∥yn − p

∥
∥ ≤ lim sup

n→∞

∥
∥yn − p

∥
∥ ≤ c. (2.38)

That is, limn→∞‖yn − p‖ = c.
Again, limn→∞‖yn − p‖ = c means that

lim inf
n→∞

∥
∥
∥α′

n

(

T2(PT2)n−1Pδn − p + γ ′n(vn − xn)
)

+
(

1 − α′
n

)(

xn − p + γ ′n(vn − xn)
)
∥
∥
∥ ≥ c. (2.39)



Discrete Dynamics in Nature and Society 13

By using (2.39) and (2.3), we obtain

∥
∥
∥α′

n

(

T2(PT2)n−1Pδn − p + γ ′n(vn − xn)
)

+
(

1 − α′
n

)(

xn − p + γ ′n(vn − xn)
)
∥
∥
∥

≤ α′
n

∥
∥
∥T2(PT2)n−1Pδn − p

∥
∥
∥ +

(

1 − α′
n

)∥
∥xn − p

∥
∥ + γ ′n‖(vn − xn)‖

≤ α′
nln

∥
∥δn − p

∥
∥ +

(

1 − α′
n

)∥
∥xn − p

∥
∥ + γ ′n‖(vn − xn)‖

≤ α′
nl

2
n

∥
∥xn − p

∥
∥ +

(

1 − α′
n

)∥
∥xn − p

∥
∥ + γ ′nr

≤ l2n
∥
∥xn − p

∥
∥ + γ ′nr.

(2.40)

Therefore, we have

lim sup
n→∞

∥
∥
∥α′

n

(

T2(PT2)n−1Pδn − p + γ ′n(vn − xn)
)

+
(

1 − α′
n

)(

xn − p + γ ′n(vn − xn)
)
∥
∥
∥ ≤ c. (2.41)

Combining (2.39) with (2.41), we obtain

lim
n→∞

∥
∥
∥α′

n

(

T2(PT2)n−1Pδn − p + γ ′n(vn − xn)
)

+
(

1 − α′
n

)(

xn − p + γ ′n(vn − xn)
)
∥
∥
∥ = c. (2.42)

On the other hand, we have

∥
∥
∥T2(PT2)n−1Pδn − p + γ ′n(vn − xn)

∥
∥
∥ ≤

∥
∥
∥T2(PT2)n−1Pδn − p

∥
∥
∥ + γ ′n‖vn − xn‖

≤ ln
∥
∥δn − p

∥
∥ + γ ′nr

(2.43)

which implies that

lim sup
n→∞

∥
∥
∥T2(PT2)n−1Pδn − p + γ ′n(vn − xn)

∥
∥
∥ ≤ c. (2.44)

Notice that

∥
∥xn − p + γ ′n(vn − xn)

∥
∥ ≤ ∥

∥xn − p
∥
∥ + γ ′n‖vn − xn‖ ≤ ∥

∥xn − p
∥
∥ + γ ′nr, (2.45)

which implies that

lim sup
n→∞

∥
∥xn − p + γ ′n(vn − xn)

∥
∥ ≤ c. (2.46)

Using (2.42), (2.44), (2.46), and Lemma 1.3, we find

lim
n→∞

∥
∥
∥T2(PT2)n−1Pδn − xn

∥
∥
∥ = 0. (2.47)
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Observe that

∥
∥xn − p

∥
∥ ≤

∥
∥
∥T2(PT2)n−1Pδn − xn

∥
∥
∥ +

∥
∥
∥T2(PT2)n−1Pδn − p

∥
∥
∥ ≤ ln

∥
∥δn − p

∥
∥ (2.48)

which yields that

c ≤ lim inf
n→∞

∥
∥δn − p

∥
∥ ≤ lim sup

n→∞

∥
∥δn − p

∥
∥ ≤ c. (2.49)

That is, limn→∞‖δn − p‖ = c. This implies that

lim inf
n→∞

∥
∥
∥β′n

(

T2(PT2)n−1xn − p
)

+
(

1 − β′n
)(

xn − p
)
∥
∥
∥ ≥ c. (2.50)

Similarly, we have

∥
∥
∥β′n

(

T2(PT2)n−1xn − p
)

+
(

1 − β′n
)(

xn − p
)
∥
∥
∥

≤ β′n
∥
∥
∥T2(PT2)n−1xn − p

∥
∥
∥ +

(

1 − β′n
)∥
∥xn − p

∥
∥ ≤ ln

∥
∥xn − p

∥
∥,

(2.51)

lim sup
n→∞

∥
∥
∥β′n

(

T2(PT2)n−1xn − p
)

+
(

1 − β′n
)(

xn − p
)
∥
∥
∥ ≤ c. (2.52)

Combining (2.50) with (2.52), we obtain

lim
n→∞

∥
∥
∥β′n

(

T2(PT2)n−1xn − p
)

+
(

1 − β′n
)(

xn − p
)
∥
∥
∥ = c. (2.53)

On the other hand, we have

∥
∥
∥T2(PT2)n−1xn − p

∥
∥
∥ ≤ ln

∥
∥xn − p

∥
∥,

lim sup
n→∞

∥
∥
∥T2(PT2)n−1xn − p

∥
∥
∥ ≤ c,

(2.54)

lim sup
n→∞

∥
∥xn − p

∥
∥ ≤ c. (2.55)

Hence, using (2.53), (2.54), (2.55), and Lemma 1.3, we find

lim
n→∞

∥
∥
∥T2(PT2)n−1xn − xn

∥
∥
∥ = 0. (2.56)
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In addition, from yn = P((1 − α′
n − γ ′n)xn + α′

nT2(PT2)
n−1Pδn + γ ′nvn) and (2.47), we have

∥
∥yn − xn

∥
∥ =

∥
∥
∥P

((

1 − α′
n − γ ′n

)

xn + α′
nT2(PT2)

n−1Pδn + γ ′nvn

)

− xn

∥
∥
∥

≤ α′
n

∥
∥
∥T2(PT2)n−1Pδn − xn

∥
∥
∥ + γ ′n‖vn − xn‖

≤
∥
∥
∥T2(PT2)n−1Pδn − xn

∥
∥
∥ + γ ′nr.

−→ 0, (as n −→ ∞).

(2.57)

Hence, from (2.36) and (2.57), we find

∥
∥
∥T1(PT1)n−1xn − xn

∥
∥
∥ ≤

∥
∥
∥T1(PT1)n−1xn − T1(PT1)n−1yn

∥
∥
∥

+
∥
∥
∥T1(PT1)n−1yn − yn

∥
∥
∥ +

∥
∥yn − xn

∥
∥

≤ kn
∥
∥yn − xn

∥
∥ +

∥
∥
∥T1(PT1)n−1yn − yn

∥
∥
∥ +

∥
∥yn − xn

∥
∥

−→ 0, (as n −→ ∞).

(2.58)

That is,

lim
n→∞

∥
∥
∥T1(PT1)n−1xn − xn

∥
∥
∥ = 0. (2.59)

Since T1 and T2 are uniformly L1-Lipschitzian and uniformly L2-Lipschitzian, respectively, for
some L1, L2 ≥ 0, it follows from (2.56), (2.59), and Lemma 2.2 that

lim
n→∞

‖xn − T1xn‖ = lim
n→∞

‖xn − T2xn‖ = 0. (2.60)

This completes the proof.

Theorem 2.4. Let E be a real uniformly convex Banach space and letK be a nonempty closed convex
subset of E which is also a nonexpansive retract of E. Let T1, T2 : K → E be two asymptotically
nonexpansive nonself -mappings of E with sequences {kn}, {ln} ⊂ [1,∞) such that

∑∞
n=1(kn−1) < ∞,

∑∞
n=1(ln−1) < ∞, respectively, and F(T1)∩F(T2)/= ∅. Suppose that {αn}, {βn}, {γn}, {α′

n}, {β′n}, {γ ′n}
are appropriate sequences in [0, 1] satisfying αn+βn+γn = 1 = α′

n+β
′
n+γ

′
n, and {un}, {vn} are bounded

sequences in K such that
∑∞

n=1 γn < ∞,
∑∞

n=1 γ
′
n < ∞. Moreover, 0 < a ≤ αn, α

′
n, βn, β

′
n ≤ b < 1 for

all n ≥ 1 and some a, b ∈ (0, 1). If one of T1 and T2 is completely continuous, then the sequence {xn}
defined by the recursion (1.7) converges strongly to some common fixed point of T1 and T2.

Proof. By Lemma 2.1, {xn} is bounded. In addition, by Lemma 2.3; limn→∞‖xn − T1xn‖ =
limn→∞‖xn − T2xn‖ = 0; then {T1xn} and {T2xn} are also bounded. If T1 is completely
continuous, there exists subsequence {T1xnj} of {T1xn} such that T1xnj → p as j → ∞.
It follows from Lemma 2.3 that limj→∞‖xnj − T1xnj‖ = limj→∞‖xnj − T2xnj‖ = 0. So by
the continuity of T1 and Lemma 1.4, we have limj→∞‖xnj − p‖ = 0 and p ∈ F(T1) ∩ F(T2).
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Furthermore, by Lemma 2.1, we get that limn→∞‖xn − p‖ exists. Thus limn→∞‖xn − p‖ = 0.
The proof is completed.

The following result gives a strong convergence theorem for two asymptotically
nonexpansive nonself-mappings in a uniformly convex Banach space satisfying condition
(A′).

Theorem 2.5. Let E be a real uniformly convex Banach space and letK be a nonempty closed convex
subset of E which is also a nonexpansive retract of E. Let T1, T2 : K → E be two asymptotically
nonexpansive nonself-mappings of E with sequences {kn}, {ln} ⊂ [1,∞) such that

∑∞
n=1(kn−1) < ∞,

∑∞
n=1(ln−1) < ∞, respectively, and F(T1)∩F(T2)/= ∅. Suppose that {αn}, {βn}, {γn}, {α′

n}, {β′n}, {γ ′n}
are appropriate sequences in [0, 1] satisfying αn+βn+γn = 1 = α′

n+β
′
n+γ

′
n, and {un}, {vn} are bounded

sequences inK such that
∑∞

n=1 γn < ∞,
∑∞

n=1 γ
′
n < ∞. Moreover, 0 < a ≤ αn, α

′
n, βn, β

′
n ≤ b < 1 for all

n ≥ 1 and some a, b ∈ (0, 1). Suppose that T1 and T2 satisfy condition (A′). Then, the sequence {xn}
defined by the recursion (1.7) converges strongly to some common fixed point of T1 and T2.

Proof. By Lemma 2.1, we readily see that limn→∞‖xn −p‖ and so, limn→∞d(xn, F(T1)∩F(T2))
exists for all p ∈ F(T1)∩F(T2). Also, by Lemma 2.3, limn→∞‖T1xn−xn‖ = limn→∞‖T2xn−xn‖ =
0. It follows from condition (A′) that

lim
n→∞

f(d(xn, F(T1) ∩ F(T2))) ≤ lim
n→∞

(
1
2
(‖xn − T1xn‖ + ‖xn − T2xn‖)

)

= 0. (2.61)

That is,

lim
n→∞

f(d(xn, F(T1) ∩ F(T2))) = 0. (2.62)

Since f : [0,∞) → [0,∞) is a nondecreasing function satisfying f(0) = 0, f(t) > 0 for all
t ∈ (0,∞), therefore, we have

lim
n→∞

d(xn, F(T1) ∩ F(T2)) = 0. (2.63)

Nowwe can take a subsequence {xnj} of {xn} and sequence {yj} ⊂ F such that ‖xnj −yj‖ < 2−j

for all integers j ≥ 1. Using the proof method of Tan and Xu [5], we have

∥
∥
∥xnj+1 − yj

∥
∥
∥ ≤

∥
∥
∥xnj − yj

∥
∥
∥ < 2−j , (2.64)

and hence

∥
∥yj+1 − yj

∥
∥ ≤

∥
∥
∥yj+1 − xnj+1

∥
∥
∥ +

∥
∥
∥xnj+1 − yj

∥
∥
∥ ≤ 2−(j+1) + 2−j < 2−j+1. (2.65)

We get that {yj} is a Cauchy sequence in F and so it converges. Let yj → y. Since F is closed,
therefore, y ∈ F and then xnj → y. As limn→∞‖xn − p‖ exists, xn → y ∈ F(T1) ∩ F(T2).
Thereby completing the proof.
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Remark 2.6. If γn = γ ′n = βn = β′n = 0, then the iterative scheme (1.7) reduces to the iterative
scheme (1.4) of [9]. Moreover, the condition (A′) is weaker than both the compactness of
K and the semicompactness of the asymptotically nonexpansive nonself-mappings T1, T2 :
K → E. Also, the condition 0 < a ≤ αn, α

′
n ≤ b < 1 for all n ≥ 1 is weaker than the condition

0 < ε ≤ αn, α
′
n,≤ 1−ε, for all n ≥ 1 and some ε ∈ [0, 1). Hence, Theorems 2.4 and 2.5 generalize

Theorems 3.3 and 3.4 in [9], respectively.

In the next result, we prove the weak convergence of the iterative scheme (1.7) for
two asymptotically nonexpansive nonself-mappings in a uniformly convex Banach space
satisfying Opial’s condition.

Theorem 2.7. Let E be a real uniformly convex Banach space and letK be a nonempty closed convex
subset of E which is also a nonexpansive retract of E. Let T1, T2 : K → E be two asymptotically
nonexpansive nonself-mappings of E with sequences {kn}, {ln} ⊂ [1,∞) such that

∑∞
n=1(kn−1) < ∞,

∑∞
n=1(ln−1) < ∞, respectively, and F(T1)∩F(T2)/= ∅. Suppose that {αn}, {βn}, {γn}, {α′

n}, {β′n}, {γ ′n}
are appropriate sequences in [0, 1] satisfying αn+βn+γn = 1 = α′

n+β
′
n+γ

′
n,and {un}, {vn} are bounded

sequences in K such that
∑∞

n=1 γn < ∞,
∑∞

n=1 γ
′
n < ∞. Moreover, 0 < a ≤ αn, α

′
n, βn, β

′
n ≤ b < 1 for

all n ≥ 1 and some a, b ∈ (0, 1). Suppose that T1 and T2 satisfy Opial’s condition. Then, the sequence
{xn} defined by the recursion (1.7) converges weakly to some common fixed point of T and T2.

Proof. Let p ∈ F(T1) ∩ F(T2). By Lemma 2.1, we see that limn→∞‖xn − p‖ exists and {xn}
bounded. Now we prove that {xn} has a unique weak subsequential limit in F(T1) ∩ F(T2).
Firstly, suppose that subsequences {xnk} and {xnj} of {xn} converge weakly to p1 and p2,
respectively. By Lemma 2.3, we have limn→∞‖xnk − T1xnk‖ = 0. And Lemma 1.4 guarantees
that (I − T1)p1 = 0, that is., T1p1 = p1. Similarly, T2p1 = p1. Again in the same way, we can
prove that p2 ∈ F(T1) ∩ F(T2).

Secondly, assume p1 /= p2, then by Opial’s condition, we have

lim
n→∞

∥
∥xn − p1

∥
∥ = lim

k→∞

∥
∥xnk − p1

∥
∥ < lim

k→∞

∥
∥xnk − p2

∥
∥

= lim
j→∞

∥
∥
∥xnj − p2

∥
∥
∥ < lim

k→∞

∥
∥xnk − p1

∥
∥

= lim
n→∞

∥
∥xn − p1

∥
∥,

(2.66)

which is a contradiction, hence, p1 = p2. Then, {xn} converges weakly to a common fixed
point of T1 and T2. This completes the proof.

Remark 2.8. The above Theorem generalizes Theorem 3.5 of Wang [9].

3. Case of Two Nonself-Nonexpansive Mappings

Let T1, T2 : K → E be two nonexpansive nonself-mappings. Then, the iterative scheme (1.7)
is written as follows:

xn+1 = P
((

1 − αn − γn
)

xn + αnT1P
(

1 − βn
)

yn + βnT1yn + γnun

)

,

yn = P
((

1 − α′
n − γ ′n

)

xn + α′
nT2P

((

1 − β′n
)

xn + β′nT2xn

)

+ γ ′nvn

)

, x1 ∈ K,n ≥ 1.
(3.1)
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Nothing prevents one from proving the results of the previous section for nonexpan-
sive nonself-mappings case. Thus, one can easily prove the following.

Theorem 3.1. Let E be a real uniformly convex Banach space and letK be a nonempty closed convex
subset of Ewhich is also a nonexpansive retract of E. Let T1, T2 : K → E be two nonexpansive nonself-
mappings of E with sequences {kn}, {ln} ⊂ [1,∞) such that

∑∞
n=1(kn − 1) < ∞,

∑∞
n=1(ln − 1) < ∞,

respectively, and F(T1) ∩ F(T2)/= ∅. Suppose that {αn}, {βn}, {γn}, {α′
n}, {β′n}, {γ ′n} are appropriate

sequences in [0, 1] satisfying αn + βn + γn = 1 = α′
n + β′n + γ ′n, and {un}, {vn} are bounded sequences

inK such that
∑∞

n=1 γn < ∞,
∑∞

n=1 γ
′
n < ∞. Moreover, 0 < a ≤ αn, α

′
n, βn, β

′
n ≤ b < 1 for all n ≥ 1 and

some a, b ∈ (0, 1). Suppose that T1 and T2 satisfy condition (A′). Then, the sequence {xn} defined by
the recursion (3.1) converges strongly to some common fixed point of T1 and T2.

Theorem 3.2. Let E be a real uniformly convex Banach space and letK be a nonempty closed convex
subset of Ewhich is also a nonexpansive retract of E. Let T1, T2 : K → E be two nonexpansive nonself-
mappings of E with sequences {kn}, {ln} ⊂ [1,∞) such that

∑∞
n=1(kn − 1) < ∞,

∑∞
n=1(ln − 1) < ∞,

respectively, and F(T1) ∩ F(T2)/= ∅. Suppose that {αn}, {βn}, {γn}, {α′
n}, {β′n}, {γ ′n} are appropriate

sequences in [0, 1] satisfying αn+βn+γn = 1 = α′
n+β

′
n+γ

′
n, and {un}, {vn} are bounded sequences in

K such that
∑∞

n=1 γn < ∞,
∑∞

n=1 γ
′
n < ∞. Moreover, 0 < a ≤ αn, α

′
n, βn, β

′
n ≤ b < 1 for all n ≥ 1 and

some a, b ∈ (0, 1). Suppose that T1 and T2 satisfy Opial’s condition. Then, the sequence {xn} defined
by the recursion (3.1) converges weakly to some common fixed point of T and T2.

Remark 3.3. If T1 = T2 = T and T is a nonexpansive nonself-mapping, then the iterative
scheme (3.1) reduces to the iterative scheme (1.6) of Thianwan [11]. Then, Theorems 3.1-3.2
generalize Theorems 2.4 and 2.6 in [11], respectively.
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