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We introduce a new two-step iterative scheme for two asymptotically nonexpansive nonself-
mappings in a uniformly convex Banach space. Weak and strong convergence theorems are
established for this iterative scheme in a uniformly convex Banach space. The results presented
extend and improve the corresponding results of Chidume et al. (2003), Wang (2006), Shahzad
(2005), and Thianwan (2008).

1. Introduction

Let E be a real normed space and K be a nonempty subset of E. A mapping T : K — K is
called nonexpansive if |[Tx — Ty| < |x — y|| for all x,y € K. A mapping T : K — K is called
asymptotically nonexpansive if there exists a sequence {k,} C [1,00) with k, — 1 such that
IT"x — T"y|| < ku|lx — y|| for all x,y € K and n > 1. T is called uniformly L-Lipschitzian if
there exists a real number L > 0 such that ||T"x -T"y|| < L||x - y|| forall x,y € Kand n > 1. It
is easy to see that if T is an asymptotically nonexpansive, then it is uniformly L-Lipschitzian
with the uniform Lipschitz constant L = sup{k, : n > 1}.

Iterative techniques for nonexpansive and asymptotically nonexpansive mappings in
Banach spaces including Mann type and Ishikawa type iteration processes have been studied
extensively by various authors; see [1-8]. However, if the domain of T, D(T), is a proper
subset of E (and this is the case in several applications), and T maps D(T) into E, then the
iteration processes of Mann type and Ishikawa type studied by the authors mentioned above,
and their modifications introduced may fail to be well defined.

A subset K of E is said to be a retract of E if there exists a continuous map P: E — K
such that Px = x, for all x € K. Every closed convex subset of a uniformly convex Banach
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space is a retract. Amap P : E — K is said to be a retraction if P? = P. It follows that if a map
P is a retraction, then Py = y for all y € R(P), the range of P.

The concept of asymptotically nonexpansive nonself-mappings was firstly introduced
by Chidume et al. [4] as the generalization of asymptotically nonexpansive self-mappings.
The asymptotically nonexpansive nonself-mapping is defined as follows.

Definition 1.1 (see [4]). Let K be a nonempty subset of real normed linear space E. Let P :
E — K be the nonexpansive retraction of E onto K. A nonself mapping T : K — E is called
asymptotically nonexpansive if there exists sequence {k,} C [1,0), k, — 1 (n — oo) such
that

”T(PT)"‘lx - T(PT)”‘lyn <ka|lx -y (1.1)

for all x,y € K and n > 1. T is said to be uniformly L-Lipschitzian if there exists a constant
L > 0 such that

TPyt - TPy || < Lijx - | (1.2)

forallx,y € Kandn > 1.

In [4], they study the following iterative sequence:
X1 = P<(1 X)X + a,,T(PT)”*lxn), x eK, n>1 (1.3)

to approximate some fixed point of T under suitable conditions. In [9], Wang generalized the
iteration process (1.3) as follows:

Xpil = P((l — )X, + anTl(PTl)"_lyn>,
(1.4)
Yn = P((l —a,)x, + a;Tz(PTz)"_lxn>, x1 €K, n>1,

where Ty, T, : K — E are asymptotically nonexpansive nonself-mappings and {a,}, {a;} are
sequences in [0, 1]. He studied the strong and weak convergence of the iterative scheme (1.4)
under proper conditions. Meanwhile, the results of [9] generalized the results of [4].

In [10], Shahzad studied the following iterative sequence:

X1 = P((1 = an)xn + a0, TP[(1 = Bu)xn + BuTxn] ), x1 € K, n>1, (1.5)

where T : K — E is a nonexpansive nonself-mapping and K is a nonempty closed convex
nonexpansive retract of a real uniformly convex Banach space E with P, nonexpansive
retraction.
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Recently, Thianwan [11] generalized the iteration process (1.5) as follows:

Xps1 = P((L = atn = yn) Xn + @ TP((1 = Pu)Yn + PuTYn) + Yuthn),

1.6

Yn=P((1—a, —y,)xn +a,TP((1 = B,)xn + B, Txn) +Y,0n), x1€K, n>1, (10

where {a,}, {Ba}, {yn} , 1B}, {y,} are appropriate sequences in [0,1] and {u,}, {v,}

are bounded sequences in K He proved weak and strong convergence theorems for
nonexpansive nonself-mappings in uniformly convex Banach spaces.

The purpose of this paper, motivated by the Wang [9], Thianwan [11] and some
others, is to construct an iterative scheme for approximating a fixed point of asymptotically
nonexpansive nonself-mappings (provided that such a fixed point exists) and to prove some
strong and weak convergence theorems for such maps.

Let E be a normed space, K a nonempty convex subset of E, P : E — K the
nonexpansive retraction of E onto K, and T3,T, : K — E be two asymptotically
nonexpansive nonself-mappings. Then, for given x; € K and n > 1, we define the sequence
{x,} by the iterative scheme:

Xn+l = P((l —Qp — Yn)xn + anTl (PTl)n_1P<(1 - ﬁn)yn + ,ﬁnTl (PTl)n_lyn> + Ynun>/
(1.7)

Yn = P((l — = Y)Xn + a'nTz(PTz)’HP((l =B)xn + ﬂ;TQ(PTz)"_lx,J + y,'zv,,>,

where {a,}, {Bn}, {¥n) AP}, Ly} are appropriate sequences in [0, 1] satisfying a,, + f,, +
Yo=1=a,+ ﬁn + yn and {un} {vn} are bounded sequences in K. Clearly, the iterative scheme
(1.7) is generalized by the iterative schemes (1.4) and (1.6).

Now, we recall the well-known concepts and results.

Let E be a Banach space with dimension E > 2. The modulus of E is the function
6c: (0,2] — [0,1] defined by

e(e) = inf{1- |3 e )| el = ol =1, e = - wil . (18)

A Banach space E is uniformly convex if and only if 6g(¢) > 0 for all € € (0,2].
A Banach space E is said to satisfy Opial’s condition [12] if for any sequence {x,} in
E, x, — x implies that

lim supl|x, — x|| < limsup||x, - y|| (1.9)

for all y € E with y # x, where x,, — x denotes that {x,}converges weakly to x.
The mapping T : K — E with F(T) # is said to satisfy condition (A) [13] if there is a
nondecreasing function f : [0,00) — [0, 00) with f(0) =0, f(t) > 0 for all ¢ € (0, o) such that

[l = Tx|| > f(d(x, F(T))) (1.10)

for all x € K, where d(x, F(T)) = inf{|[x — p|| : p € F(T)}, (see [13, page 337]) for an example
of nonexpansive mappings satisfying condition (A).
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Two mappings T;,T, : K — E are said to satisfy condition (A’) [14] if there is a
nondecreasing function f : [0,00) — [0, 00) with f(0) =0, f(t) > 0 for all t € (0, o0) such that

%(le—TNCII + |lx = Tax[]) > f(d(x, F(T))) (1.11)

for all x € K, where d(x, F(T)) = inf{||[x —pl|| : p € F(T) = F(Th) N F(T»)}.

Note that condition (A’) reduces to condition (A) when T; = T, and hence is more
general than the demicompactness of T; and T> [13]. A mapping T : K — K is called:
(1) demicompact if any bounded sequence {x,} in K such that {x, — Tx,} converges has a
convergent subsequence, (2) semicompact (or hemicompact) if any bounded sequence {x;}
in K such that {x,-Tx,} — 0Oasn — oo has a convergent subsequence. Every demicompact
mapping is semicompact but the converse is not true in general.

Senter and Dotson [13] have approximated fixed points of a nonexpansive mapping
T by Mann iterates, whereas Maiti and Ghosh [14] and Tan and Xu [5] have approximated
the fixed points using Ishikawa iterates under the condition (A) of Senter and Dotson [13].
Tan and Xu [5] pointed out that condition (A) is weaker than the compactness of K. Khan
and Takahashi [6] have studied the two mappings case for asymptotically nonexpansive
mappings under the assumption that the domain of the mappings is compact. We shall use
condition (A’) instead of compactness of K to study the strong convergence of {x,} defined
in (1.7).

In the sequel, we need the following usefull known lemmas to prove our main results.

Lemma 1.2 (see [5]). Let {a,}, {b,}, and {6,} be sequences of nonnegative real numbers satisfying

the inequality

an1 <(1+6y)a,+b,, n>1 (1.12)

If ¥ by <ooand 37 6, < oo, then

(i) lim,, _ ay, exists;

(ii) In particular, if {a,} has a subsequence which converges strongly to zero, then limy, _, ,,a, =
0.

Lemma 1.3 (see [2]). Suppose that E is a uniformly convex Banach space and 0 < p <t, < g <1

forall n > 1. Suppose further that {x,} and {y,} are sequences of E such that

limsup||x,|| <7, limsup||y.|| <7, lim |[tpx, + (1 - t)ya| =7 (1.13)

n— oo n— oo

hold for some r > 0. Then lim,, _, »»||x, — Y| = 0.

Lemma 1.4 (see [4]). Let E be a uniformly convex Banach space, K a nonempty closed convex subset
of E,and T : K — E be a nonexpansive mapping. Then, (I-T) is demiclosed at zero, that is, if x, — x
weakly and x, — Tx,, — 0 strongly, then x € F(T), where F(T) is the set fixed point of T.
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2. Main Results
We shall make use of the following lemmas.

Lemma 2.1. Let E be a normed space and let K be a nonempty closed convex subset of E which is
also a nonexpansive retract of E. Let T1, T, : K — E be two asymptotically nonexpansive nonself-
mappings of E with sequences {k,}, {I,} C [1,00) such that > (k, —1) < o0, >orq(l, — 1) < oo,
respectively and F(T1)NF(T,) := {x € K : Tix = Tox = x} #0. Suppose that {u,}, {v, } are bounded
sequences in K such that 35> 1 Yn < 00, Doeq Y < 00. Starting from an arbitrary x, € K, define the
sequence {xy} by the recursion (1.7). Then, limy, _, o,||x, — p|| exists for all p € F(T1) N F(Ty).

Proof. Let p € F(I1) N F(Ty). Since {u,} and {v,} are bounded sequences in K, we have
r=max{sup”un—p”,sup”vn—p||}. (2.1)
n>1 n>1

Set 0, = (1= )y + BuT1 (PTY)" 'y, and 6,= (1 - ) x, + B, T2(PT2)" " x,,. Firstly, we note that

llow=pll = [| (1 = By + BT (PT)" = p |

Sﬁn Tl(PTl)nilyn_P” +(1_ﬁ”)”yn_p” (2 2)
< Buknllyn = pll + (1= Ba) [ly» - pll
< kullyn = pll

16, = pll = || (1= Bh)ea + L T2(PT2)" s = p |
< BT (PT) xw = p | + (1= ) = .
< Pulallxn =pll + (1= £ [|xn =
<l =pll-

From (1.7) and (2.3), we have
— ! / ! n-1 !
”yn - p” - ||P<(1 -0, - Yn)x" + anTZ(PTZ) P61’l + ann> _p”
< ” (1-al, —y,)xn + &, To(PT2)" ' P6, + Y05 — p”
<, | TP Py = pl| + (1= =) len =Pl + villon =PIl 4

<@ Lf|6n = pll + (1= @ = o) [lxn = pl| +¥allon - pll
Sabflxn=pll + (- @, =y | —pll + v

<Ll —pll +var.
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Substituting (2.4) into (2.2), we obtain
llow =pll < Kallyn =PIl < Kali [l = p|| + kn¥r- (2.5)
It follows from (1.7) and (2.5) that

s = pll = [|P((1 = @0 = 1) + @ Ty (PT)"" Po, + ) = p |
< ” (1-an—yn)xn + a, T, (PT))" ' Po, + Yolkn — p”

<ay

T1(PT)" Poy = p| + (1= aw = ya) [0 = p | + val | = |
< tukn|ow = pl| + (1= atn = ) |0 = | + ¥l |2 = | (2.6)
< e (2Bl -l K2rr) + (== 1) =l +

< kalallen = pll + kayor +yar

= (1 + (lﬁ - 1> <kfl —1> + <lft - 1) + (kft - 1>>||xn -p| + <k,21y,’1 +yn>r.

Note that 32k, —1 < oo and 32,1, - 1 < o are equivalent to 372, k2 - 1 < oo and
>0 2 -1 < oo, respectively. Since 350, 1, < o and 372, 15, < oo, we have 300 (K2y), + )7 <
0. We obtained from (2.6) and Lemma 1.2 that lim, . ||x, — p|| exists for all p € F(T). This

completes the proof. O

Lemma 2.2. Let E be a normed space and let K be a nonempty closed convex subset of E which is also a
nonexpansive retract of E. Let T, T, : K — E be nonself uniformly Li-Lipschitzian, L,-Lipschitzian,
respectively. Suppose that {u,}, {v,} are bounded sequences in K such that 3,71 Yn < 00, D1 Yo <
oo. Starting from an arbitrary x1 € K, define the sequence {x,} by the recursion (1.7) and set C,, =
1, = TL (PTY)" ' x4l C,y = 1% = To(PT2)" 2, || for all m > 1. If limy,, _, ,C,, = lim,, _,,C,, = 0, then

Hm o, = Toxg|| = lim [|2c, = Toxu|| = 0. (2.7)

Proof. Since {u,}, {v,} are bounded, it follows from Lemma 2.1 that {u, - x,} and {v, — x,}
are all bounded. We set

r =sup{||u, — x,|| : n>1}, ry =sup{||v, — x| :n > 1}, 28)
r3 = sup{||up-1 — xp-1|| : 1 > 1}, r=max{r;:i=1,2,3}. .
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Let 0, = (1= Bn)yn + BuTi (PT))" 'y, and 6, = (1 - B)x, + B, T2(PT2)" 'x,,. Then, we have

low =l = || (1= B)yn + BuT1 (PT))" = s

< Bu||To(PT)" yn = To(PT1)" 'y
(2.9)
+ Pn||Th (PTl)n_lxn - Xp|| + (1 - ﬂn) ”yn - xn”
< (Ll + 1)”]/71 - xn” +Cn,
160 =l = || (1 = 1) % + By T2(PT2)" s = X
< B T2(PT2) " x, - x,, (2.10)
<C,.
We find the following from (1.7) and (2.10):
lyn — xul| = ”P((l — = Yp)Xn + a T,(PT,)" ' P, + y;lvn> - X,
< H (1-a),—y,)xn+ &, T,(PT,)" ' P6,, + y,v, — x,
< a,|To(PT,)" ' PS, - To(PT2)" 'x,
+ a0, | To(PT2)"™ x5 = x| + i ll0n = (2.11)

< L6y — x| + Cly + v

< L,C+Cp+y,r

= (La+1)C,, + 1,1

Substituting (2.11) into (2.9), we get

0w = xall < (L1 + 1)(Ly + 1)Cl, + (Ly + D)ylr + Cy. (2.12)
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It follows from (1.7) and (2.12) that

|41 — 24| < HP<(1 —a, — yn)xn + zanl(PTl)"_lPon + ynun> - Xy

< |muery Po, - x,

+ Yalltn — 2l

< nTl(PTl)"‘lPon - T1(PT)" ' xy

+ | meny - x,

+ YnT
" (2.13)
< Lilloy — xu]| + Cp + YanT

SLi((Li +1)(Ly + 1)Cy, + (L1 + D)y + Cp) + Cyp + yur

= (L1 + 1)Cn + L1(L1 + 1)(]_,2 + 1)C,n + L1 (L1 + 1)}”;11" + Yt
Using (2.11) and (2.13), we obtain

lon-1— xull = || (1= Bu-1)Yn-1 + Bua T1(PT1) Yy — X

|71 (PT)" 2y = T2 (PT1)" 2,0

|+ o | T (PTD)" 201 = 20

< P
+ Prealln = Xnall + (1= ) [[yn1 = x|

< Li||yn-1 = Xno1]| + Coot + |20 — X |
+ || yno1 = xnca || + ll2n = x| (2.14)

<(Li+ 1) [(Ly+1)C,, +7. 7]

(L1 + 1)Cn,1 + L1 (L1 + 1)(L2 + 1)C,n—1
+2 + Cp1
+L1 (L1 + 1)}’;1717‘ + Yn-17
= (2L1 + S)Cn_l + (2L1 + 1)(L1 + 1)(L2 + 1)C;_1

+ (2L + 1)(Ly + 1)y, _y7 + 2yt
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Combine (2.13) with (2.14) yields that

xu — (PT)" 'x,, xn — Ty (PTY)" % x,

< ” (1= -1 = Yn1) Xn-1 + @na Ty (PT1)" 2P0yt + Ynttino1 — To(PT1)" 2,

<ty 1|1 (PT2) " 2P0,y 1 - T2 (PTy) "2,

+ (1= ap) || %01 = To(PTy)" 25 || + Yoot [0t — Xt |

< ||T1(PT1)"*2PG,1,1 ~ Ty (PT)" ?x,

+ (| Xn-1 — Tl (PTl)n_zxn

+ Yn-17

Xp1 = T1(PT1)" X

+ | P2 = TUPT) P | + ey

< Lil[on-1 — xul| +

<L (2L1 + 3)Cn_1 + (2L1 + 1)(L1 + 1)(L2 + 1)Cln_l
= +(2Ly +1)(Ly + 1)y, 7+ 2t
+ Cn_1 + (L1 + 1)Cn_1 + L (L1 + 1)(L2 + 1)C;171
+ L (L1 + 1)}’_:1717' + 2Yn—1r
=2(Ly +1)*Cpeg + 2Ly (Ly + 1)*(Ly + 1)C,_,
+ 2Ly (Ly + 1)%y, 7 +2(Ly + 1)ynorr,
(2.15)

from which it follows that

| = Trta|l = |20 = To(PT1)" 2 + To(PT1)" 2 = Tiy

< ||xn = T1 (PT1)" ' x,,

+ ”Tl(PTl)n_lxn -Tixy,

< Gy + L[ (PT)" ", - x, (2.16)

< Cp+ 2Ly (Ly +1)*Cpg +2L2(Ly + 1)* (Lo + 1)C.,

+202(Ly + 1)%y, 7+ 2Ly (L1 + 1)y a7
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It follows from lim, _,,C, = lim, _,,C;, = 0 that lim,,_, ||x, — T1x,|| = 0. Similarly, we can
show that lim,, _, ;||x, — Tox,|| = 0. This completes the proof. O

Lemma 2.3. Let E be a real uniformly convex Banach space and let K be a nonempty closed convex
subset of E which is also a nonexpansive retract of E. Let T1,T, : K — E be two asymptotically
nonexpansive nonself-mappings of E with sequences {k, }, {l,} C [1, o0) such that > ;7 (k,—1) < o,
>0 (In=1) < oo, respectively, and F(T1)NF(Ty) # 0. Suppose that {a,}, {Bn}, {va}, {2}, {80}, (v}
are appropriate sequences in [0, 1] satisfying a,+Pn+y, = 1 = aj,+p,+y,, and {u,}, {v,} are bounded
sequences in K such that 3771 yn < 00, Dq Y < 0. Moreover, 0 < a < ay, a, fn, P, < b < 1 for
all n > 1 and some a,b € (0,1). Starting from an arbitrary x; € K, define the sequence {x,} by the
recursion (1.7). Then,

lim [l2c, = Tixa|| = lim [|x, = Toxa|| = 0. (2.17)

Proof. Let o, = (1=Bp) yn+BuTi (PT)" 'y, and 6, = (1-,)x,+B,T2(PT2)" ' x,,. By Lemma 2.1,
we see that lim, _, -||x, — p|| exists. Assume that lim,_,»||x, — p|| = c. If ¢ = 0, then by the
continuity of T1 and T, the conclusion follows. Now, suppose ¢ > 0. Taking lim sup on both
sides in the inequalities (2.2), (2.3), and (2.4), we have

limsupllo, —p[| <, limsup|[8,—p[| <c,  limsup|ly. -p| <c, (2.18)

n—oo

respectively. Next, we consider

||T1(PT1)""1Pon R (T,

< |7 (PT2)"™ Pos, = p| + yallttn =

(2.19)
< knllow = pll + var-
Taking lim sup on both sides in the above inequality and using (2.18), we get
lir;:s;}p”Tl(PTl)"’lpon —p + Yu(un — x) || < c. (2.20)
Observe that
[ =+ yinCan = 200 | < [l = pl| + Funllien = 2ll < [l = | + v, (221)
which implies that
1115;}19”% =P+t —x) || < . (2.22)

limsup, _, _ [|xn+1 = pll = c means that

h,frli;‘f| a, <T1(PT1)"_1PO',L —p+ Yn(ty — xn)> + (1= an) (X =P+ Yu(ttn — x4)) ” >c. (2.23)
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On the other hand, by using (2.23) and (2.5), we have

@ (Ty(PT1)" POy = p + Yol = X)) + (1= ) (X = P + Y1t = x0)) |

<ay

Tl(PTl)n_lpon _P” +(1- “n)”xn —P” + Yn”un — Xl
< “nkn”(fn —P” + (1 - “n)”xn - P” + Yn“un - xn“
< aukn (Knl2 || = pll + kuyyr) + (1= @) |0 = pl| + yur

< alallxn =Pl + ayar +yar-

Therefore, we have

lim sup || &, (Tl(PTl)"_lPO'n —p+ Yn(ttn — x,,)) + (1= an)(xn —p + yn(un — x4)) ” <c.

n—oo

Combining (2.23) with (2.25), we obtain

lim
n— oo

@ (Ty(PT)" Poy = p+ (it = 1) ) + (1= ) (0 = p + Yo (1t = 2) || = c.
Hence, applying Lemma 1.3, we find

lim ||T1 (PT})" ' Po, — x| = 0.

n— oo

Note that

[|lxn = p|| < ||T1(PT1)"‘1P0n —p” + ||T1(PTl)n_1PGn — X || < kullow - p||

which yields that

c< liﬂg}f”‘jn -p|| <limsup|lo, —p|| <ec.

n—oo

That is, lim, _, o ||0, — p|| = ¢. This implies that

Bu(Tu(PT)" g = p) + (1= ) (v - p)|| 2 .

lim inf
n—oo

11

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)
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Similarly, we have

Pu(T(PT)" Yy =p) + (1= Bu) (yu 1) |

< Bu|| T (PT1)" i - P” + (L= Ba) | (vn =PI < Kallyn = pll,
lim sup || B, (Tl(PTl)"’lyn - p) +(1=PBn)(yn—p) ” <c.

Combining (2.30) with (2.32), we obtain

P <T1(PT1)"’1yn - P> +(1=Bn)(yn—p) H =c.

lim
n— oo

On the other hand, we have

7

||T1(PT1)n71yn —P“ < kn”yn -p

lim sup”Tl (PTl)"_lyn - p” <c.

n— oo

Hence, using (2.32), (2.33), (2.35), and Lemma 1.3, we find

lim (|73 (P yn = yu| = 0.

n— oo

Note that from (2.36), we have

llow=pll = | (1= Bu)yn + BuT2 (P - |
< (=) llyn —pll + B
< (1 =Ba) lyn —pll + Bn

= ly. - pll

T (PT1)" 'y, —p”

T1(PT1)" ' Y — Y

+ Bullyn - Pl

which yields that

¢ <liminf{|y, - p[| <limsup||y, -p|| <c.

That is, lim, . o |ly. — pll = c.
Again, lim,, _, ||y — p|| = ¢ means that

lim inf

n—

al, (TZ(PTZ)"_lPén —p+71,(vn - xn)> +(1-a,)(xn—p+7y,(Vn— x4)) “ >c.

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)
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By using (2.39) and (2.3), we obtain

&, (To(PT2) " PG, = p + 1 (0w = x0) ) + (1= ) (= p + 1 (00 = )|

<a,

To(PT)""' PS, = p|| + (1= &) %0 = pll + 1l @ = )
<@ lullBn = pll + (1= ) [l = pll + 12l @0 = 20 240)
<aylaflxn—pll + (1= @) [lxn = pl| + var

< Bl pll + i
Therefore, we have

limsup

n— oo

a, (Tz(prz)"*lpan =P+ Yn(n - xn)) + (1= @) (xn = p + (00 = x0)) || S¢ o (241)

Combining (2.39) with (2.41), we obtain

a, <T2(PT2)"_1P6,1 —p+y,(vy— xn)> +(1-a,)(xn—p+7y,(vn—x4)) ” =c. (242)

lim
On the other hand, we have

”TZ(PTZ)"_lP(Sn —p+ 7,0y — xp)

< || (PP, || + vallow = xal

(2.43)
< n|[6n = pl| +vor
which implies that
liflrls;p”Tz(PTz)”_lPﬁn —p+Ya(vn—xa)|[ < c (2.44)
Notice that
1260 = p + v (@0 = x)|| < |20 =PIl + ¥allow = xall < |20 = p|| + 127, (2.45)
which implies that
limsup [, —p + ¥, (20 —xn) || < e (2.46)
Using (2.42), (2.44), (2.46), and Lemma 1.3, we find
lim || To(PT2)" " P5, - x, | = 0. (2.47)
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Observe that

”xn _p” < ||T2(PT2)n_1P6n —Xn

which yields that

c< ligninf||6n - P” < limsup||6n —P" <c.

n—oo

That is, lim, . ., ||6, — p|| = c. This implies that

lim inf

n—oo

B (Ta(PT)" s = p) + (1= B,) (xu = p) || 2 .

Similarly, we have

B (T(PTo)" "2, = p) + (1= B,) (= p)

< B TP -]+ (1B - <l -1,
lim sup||B,, (TZ(PTz)”_lxn - p) +(1-6,)(xn—p) n <c.

Combining (2.50) with (2.52), we obtain

pu(T2(PTo) = p) + (1= ) (= p) || = .

lim
On the other hand, we have

HT2(PT2)”‘1xn - p” <Lul|xn—p

7

lim sup”Tz(PTz)"_lxn - p” <gc,

n—oo

limsup||x, —p|| <c.

n— oo

Hence, using (2.53), (2.54), (2.55), and Lemma 1.3, we find

lim ||T2(PT2)"—1xn — x| =0.
n—oo

+|| (P12 P, — p|| < |60 - p

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)
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In addition, from v, = P((1 - a;, — y,,) X, + a, T, (PT,)" ' Pé, + ¥, vn) and (2.47), we have

lyn —xa|| = ”P((l — ) —y)) Xy + a,To(PT,)" ' PS5, + y,’lvn> - Xy

< &) || To(PT2)" " P6, — x| + Villvn — xall
(2.57)
< “Tz(PTz)’HP(Sn — x| + 1.
— 0, (asn— o0).
Hence, from (2.36) and (2.57), we find
||T1 (PTl)"’lxn — Xy < ||T1 (PTl)nilxn - Tl (PTl)nilyn
+ ||T1(PT1)n_1yn —Yn|| * ”yn - xn”
(2.58)
< Folly = 5all + [T PT =y + =2
— 0, (asn— o0).
That is,
lim ”Tl(PTl)""lxn — x| = 0. (2.59)

Since T1 and T, are uniformly L;-Lipschitzian and uniformly L,-Lipschitzian, respectively, for
some L, L, > 0, it follows from (2.56), (2.59), and Lemma 2.2 that

nli_{fc}oﬂxn = Tix| = nh_{rgollxn = Txy| = 0. (2.60)

This completes the proof. O

Theorem 2.4. Let E be a real uniformly convex Banach space and let K be a nonempty closed convex
subset of E which is also a nonexpansive retract of E. Let T1,T, : K — E be two asymptotically
nonexpansive nonself -mappings of E with sequences {ky}, {I,} C [1, 00) such that 3 ;> (k,—1) < oo,
S (In=1) < oo, respectively, and F(T1)NF (Ty) # 0. Suppose that {a, }, {Bn}, {yu}, (), B0}, {1}
are appropriate sequences in [0, 1] satisfying ay+Pn+yn = 1 = aj,+p,+y;,, and {u,}, {v,} are bounded
sequences in K such that 3,771 v, < 00, Doy Yo < 0. Moreover, 0 < a < ay, al, Bu, B, < b <1 for
alln > 1 and some a,b € (0,1). If one of Ty and T, is completely continuous, then the sequence {x,}
defined by the recursion (1.7) converges strongly to some common fixed point of Ty and T.

Proof. By Lemma 2.1, {x,} is bounded. In addition, by Lemma 2.3; lim,,_, - ||x,, — Tix,|| =
limy, . ||x, — Toxnl| = 0; then {Tix,} and {T>x,} are also bounded. If T; is completely
continuous, there exists subsequence {Tlxn].} of {Tix,} such that Tix,, — pasj — oo
It follows from Lemma 2.3 that lim;_. o[[xnj — Tixpjll = limj_ |lxsj — Toxyjll = 0. So by
the continuity of T; and Lemma 1.4, we have lim; . |lx,; — pll = 0 and p € F(T1) N F(T3).
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Furthermore, by Lemma 2.1, we get that lim,_, ||x, — p|| exists. Thus lim, _, o ||x, — p|| = 0.
The proof is completed. O

The following result gives a strong convergence theorem for two asymptotically
nonexpansive nonself-mappings in a uniformly convex Banach space satisfying condition
(A).

Theorem 2.5. Let E be a real uniformly convex Banach space and let K be a nonempty closed convex
subset of E which is also a nonexpansive retract of E. Let T1,T, : K — E be two asymptotically
nonexpansive nonself~-mappings of E with sequences {k,}, {1,} C [1, oo) such that Z‘X’ 1(k -1) < oo,
> (In=1) < oo, respectively, and F(T1)NF (T2) # 0. Suppose that {a,}, {Bn}, {yn} APt v
are appropriate sequences in [0, 1] satisfying an+Pn+yn = 1 = a,+p,+7;,, and {un} {vn} are bounded
sequences in K such that 3>,77 1 ¥, < 00, X021 ¥r < 00. Moreover, 0 < a < ay,, &), B, i, < b < 1 forall
n > 1 and some a,b € (0,1). Suppose that Ty and T, satisfy condition (A’). Then, the sequence {x,}
defined by the recursion (1.7) converges strongly to some common fixed point of Ty and T».

Proof. By Lemma 2.1, we readily see that lim,, _, .- ||x,, —p|| and so, limy, —, .»d (x,,, F(T1) N F(T3))
exists for all p € F(T1)NF(T,). Also, by Lemma 2.3, limy, —, oo || T1 x5 — Xy | = limy, — o || T2xn —x5|| =
0. It follows from condition (A’) that

lim f(d(x,, F(T;) N F(T7))) < lim (%(Hxn = Thxp|| + ||xn — szn||)> =0. (2.61)

That is,
lim f(d(xn, F(T1) N F(T2))) = 0. (2.62)
Since f : [0,00) — [0, 0) is a nondecreasing function satisfying f(0) = 0, f(¢) > 0 for all

t € (0, 00), therefore, we have

lim d(x,, F(T1) N F(T)) = 0. (2.63)

Now we can take a subsequence {xy, } of {x,} and sequence {y;} C F such that ||x,, —y;|| < 277
for all integers j > 1. Using the proof method of Tan and Xu [5], we have

Xnjy —yj” < | Xy, —y,-” <27, (2.64)

and hence

+

lyjs = yill < ||yi+1 = Xng ||+ [| X — ]/j” <270 4 27 < 7, (2.65)

We get that {y;} is a Cauchy sequence in F and so it converges. Let y; — y. Since F is closed,
therefore, y € F and then x,, — y. As lim,_, | x, — pll exists, x, — y € F(T1) N F(T2).
Thereby completing the proof. O
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Remark 2.6. If y,, = y,, = Bn = P, = 0, then the iterative scheme (1.7) reduces to the iterative
scheme (1.4) of [9]. Moreover, the condition (A’) is weaker than both the compactness of
K and the semicompactness of the asymptotically nonexpansive nonself-mappings T7,T> :
K — E. Also, the condition 0 < a < ay, &), < b < 1 for all n > 1 is weaker than the condition
O<e<ana,,<l-gforalln >1andsomee € [0,1). Hence, Theorems 2.4 and 2.5 generalize
Theorems 3.3 and 3.4 in [9], respectively.

In the next result, we prove the weak convergence of the iterative scheme (1.7) for
two asymptotically nonexpansive nonself-mappings in a uniformly convex Banach space
satisfying Opial’s condition.

Theorem 2.7. Let E be a real uniformly convex Banach space and let K be a nonempty closed convex
subset of E which is also a nonexpansive retract of E. Let T1,T, : K — E be two asymptotically
nonexpansive nonself-mappings of E with sequences {k,}, {l,} C [1, o0) such that >,;7;(k,—1) < oo,
S (In=1) < oo, respectively, and F(T1)NF (Ty) #0. Suppose that {a,}, {Bu}, {yu}, ()}, B0}, {vi}
are appropriate sequences in [0, 1] satisfying an+Pn+yn = 1 = ay,+p,+y,.and {u,}, {v,} are bounded
sequences in K such that 3,771 v, < 00, Doy Yo < 0. Moreover, 0 < a < ay, al, Bu, B, < b <1 for
alln > 1 and some a, b € (0,1). Suppose that Ty and T, satisfy Opial’s condition. Then, the sequence
{x} defined by the recursion (1.7) converges weakly to some common fixed point of T and T.

Proof. Let p € F(T1) N F(T>). By Lemma 2.1, we see that lim,,_, »||x,, — p|| exists and {x,}
bounded. Now we prove that {x,} has a unique weak subsequential limit in F(T;) N F(T>).
Firstly, suppose that subsequences {x,,} and {x,} of {x,} converge weakly to p; and p»,
respectively. By Lemma 2.3, we have lim,,_, o ||x,, — T1xp,|| = 0. And Lemma 1.4 guarantees
that (I - T1)p1 = 0, that is.,, Typ1 = pi1. Similarly, Top1 = p1. Again in the same way, we can
prove that p, € F(T1) N F(T3).

Secondly, assume p; # p,, then by Opial’s condition, we have

i [l — ]| = lim [, ] < Jim |13, ~ po]

= lim

]

3, = pa| < lim [|xn, =1 (2.66)

7

- Jimy o
which is a contradiction, hence, p1 = p». Then, {x,} converges weakly to a common fixed
point of T; and T,. This completes the proof. O

Remark 2.8. The above Theorem generalizes Theorem 3.5 of Wang [9].

3. Case of Two Nonself-Nonexpansive Mappings

LetT;, T, : K — E be two nonexpansive nonself-mappings. Then, the iterative scheme (1.7)
is written as follows:

Xn+l = P((]- -y — Yn)xn + anTlp(l - ,Bn)]/n + ,ﬁnlen + Ynun)r (3 1)
Yn=P((1—ay, —y,)xn +a,ToP((1 - B;,)xn + B, Toxn) + y,vn), x1€K,n>1. .
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Nothing prevents one from proving the results of the previous section for nonexpan-
sive nonself-mappings case. Thus, one can easily prove the following.

Theorem 3.1. Let E be a real uniformly convex Banach space and let K be a nonempty closed convex
subset of E which is also a nonexpansive retract of E. Let T, T, : K — E be two nonexpansive nonself-
mappings of E with sequences {ky}, {I,} C [1, o) such that Zfl(k - 1) < oo, Z;’fl(l -1) < oo,
respectively, and F(T1) N F(T>) # 0. Suppose that {a,}, {Bu}, {¥n}, ABLY, Ay} are appropriate
sequences in [0,1] satisfying a, + Pn +yn =1 =a), + B, + v, and {un }, {vn} are bounded sequences
in K such that 3571 Yn < 00, Dipeq Yo < 0. Moreover, 0 < a < ay, &)y, Py, B, <b < 1foralln > 1and
some a,b € (0,1). Suppose that T, and T, satisfy condition (A’'). Then, the sequence {x,} defined by
the recursion (3.1) converges strongly to some common fixed point of Ty and T.

Theorem 3.2. Let E be a real uniformly convex Banach space and let K be a nonempty closed convex
subset of E which is also a nonexpansive retract of E. Let T, T, : K — E be two nonexpansive nonself-
mappings of E with sequences {k,}, {l,} C [1,00) such that ;"1 (k, —1) < 00, > pri(l, — 1) < oo,
respectively, and F(T1) N F(Ty) #@. Suppose that {a,}, (B}, {yn}, L}, (B}, {1} are appropriate
sequences in [0, 1] satisfying an + P +yn = 1 = ), + B, +7,,, and {u,}, {v,} are bounded sequences in
K such that 3771 Yn < 00, Dq Y < 00. Moreover, 0 < a < ay, ), Pu, B, <b <1 foralln >1and
some a,b € (0,1). Suppose that Ty and T, satisfy Opial’s condition. Then, the sequence {x,} defined
by the recursion (3.1) converges weakly to some common fixed point of T and T,.

Remark 3.3. If ) = T, = T and T is a nonexpansive nonself-mapping, then the iterative
scheme (3.1) reduces to the iterative scheme (1.6) of Thianwan [11]. Then, Theorems 3.1-3.2
generalize Theorems 2.4 and 2.6 in [11], respectively.
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