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We give very short and elegant proofs of the main results in the work of Yalcinkaya et al. (2008).

1. Introduction and a Proof of Some Resent Results

Motivated by our paper [1], the authors of [2] studied the following two systems of difference
equations:
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, i = 1, . . . , k, n ∈ N0, (1.1)
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, i = 1, . . . , k, n ∈ N0, (1.2)

where we regard that 0 (mod k) = k (mod k) = k.
Following line by line the proofs of the main results in [1] they proved the following

result (see Theorems 2.1 and 2.4 in [2])

Theorem A. Assume k ∈ N, then the following statements are true.

(a) If k = 0 (mod 2), then every (well-defined) solution of systems (1.1) and (1.2) is periodic
with period k.

(b) If k = 1 (mod 2), then every (well-defined) solution of systems (1.1) and (1.2) is periodic
with period 2k.
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Here we give a very short and elegant proof of Theorem A.

Proof of Theorem A. By using the change y(i)
n = x

(i)
n − 1, i = 1, . . . , k, system (1.1) becomes
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while system (1.2) becomes
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From (1.3) and (1.4), for each i ∈ {1, . . . , k}, and n ≥ k, we obtain correspondingly that
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From (1.5), with k = 0 (mod 2), it follows that
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n−k, i = 1, . . . , k, (1.6)

from which the statement in (a) easily follows.
If k = 1(mod 2), we have that
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, i = 1, . . . , k, (1.7)

from which it follows that

y
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n ≥ 2k, implying the statement in (b), as desired.

2. An Extension on Theorem A

Herewe extend TheoremA in a natural way. Let gcd(k, l) denote the greatest common divisor
of the integers k and l, lcm(k, l) the least common multiple of k and l, and for r ∈ N let
f [r](x) = f(f [r−1](x)),where f [1](x) = f(x).

Theorem 2.1. Assume that f is a real function such that f [r](x) ≡ x on its domain of definition, for
some r ∈ N, then all well-defined solutions of the system of difference equations
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are periodic with period T = lcm(k, r).
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Proof. We use our method of “prolongation” described in [1]. Note that for each s ∈ N, system
(2.1) is equivalent to a system of ks difference equations of the same form, where

x
(i)
n = x

(jk+i)
n , (2.2)

for every n ∈ N0, i ∈ {1, . . . , k} and j = 1, . . . , s.
From (2.1) and since f [r](x) ≡ x, for n ≥ r − 1 we have
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for each i ∈ {1, 2, . . . , k}, and every n ≥ r − 1.
It is clear that

T = k · r1 = k1 · r, (2.4)

where r1, k1 ∈ N are such that gcd(k, r1) = 1 and gcd(k1, r) = 1.
From (2.3) we have
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for each i = 0, 1, . . . , k − 1, and n ≥ T − 1, from which the result follows.

The following result is proved similarly. Hence we omit its proof.

Theorem 2.2. Assume that f is a real function such that f [r](x) ≡ x on its domain of definition, for
some r ∈ N, then all well-defined solutions of the system of difference equations
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are periodic with period T = lcm(k, r).

Remark 2.3. The proof of Theorem A follows from Theorems 2.1 and 2.2. Indeed, note that the
function f(x) = x/(x − 1) satisfies the condition f [2](x) ≡ x on its domain of definition. By
Theorems 2.1 and 2.2 we know that all well-defined solutions of systems (1.1) and (1.2) are
periodic with period T = lcm(k, 2), from which the result follows.

Remark 2.4. We also have to say that the main result in [3] is a trivial consequence of a result
in [1] (see Remark 5 therein). Just note that the simple change of variables x

(i)
n = ay

(i)
n , i ∈

{1, . . . , k}, transforms their system (1.3) satisfying conditions a1 = a2 = · · · = ak = a and
b1 = b2 = · · · = bk = b = a2, into system (4) in [1].
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