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We obtain the complete convergence for weighted sums of ρ∗-mixing random variables. Our result
extends the result of Peligrad and Gut (1999) on unweighted average to a weighted average under
a mild condition of weights. Our result also generalizes and sharpens the result of An and Yuan
(2008).

1. Introduction

In many stochastic models, the assumption that random variables are independent is not
plausible. So it is of interest to extend the concept of independence to dependence cases. One
of these dependence structures is ρ∗-mixing.

Let {Xn, n ≥ 1} be a sequence of random variables defined on a probability
space (Ω,F, P), and let Fm

n denote the σ-algebra generated by the random variables
Xn,Xn+1, . . . , Xm. For any S ⊂ N, define FS = σ(Xi, i ∈ S). Given two σ-algebras A,B in
F, put

ρ(A,B) = sup{corr(X,Y );X ∈ L2(A), Y ∈ L2(B)}, (1.1)

where corr(X,Y ) = (EXY − EXEY )/
√
var(X)var(Y ). Define the ρ∗-mixing coefficients by

ρ∗n = sup
{
ρ(FS,FT );S, T ⊂ N with dist(S, T) ≥ n

}
. (1.2)
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Obviously, 0 ≤ ρ∗n+1 ≤ ρ∗n ≤ ρ∗0 = 1. The sequence {Xn, n ≥ 1} is called ρ∗-mixing (or ρ̃-mixing)
if there exists k ∈ N such that ρ∗

k
< 1. Note that if {Xn, n ≥ 1} is a sequence of independent

random variables, then ρ∗n = 0 for all n ≥ 1.
A number of limit results for ρ∗-mixing sequences of random variables have been

established by many authors. We refer to Bradley [1] for the central limit theorem, Bryc and
Smoleński [2], Peligrad and Gut [3], and Utev and Peligrad [4] for moment inequalities, Gan
[5], Kuczmaszewska [6], andWu and Jiang [7] for almost sure convergence, andAn and Yuan
[8], Cai [9], Gan [5], Kuczmaszewska [10], Peligrad and Gut [3], and Zhu [11] for complete
convergence.

The concept of complete convergence of a sequence of random variables was
introduced by Hsu and Robbins [12]. A sequence {Xn, n ≥ 1} of random variables converges
completely to the constant θ if

∞∑

n=1

P(|Xn − θ| > ε) < ∞ ∀ε > 0. (1.3)

In view of the Borel-Cantelli lemma, this implies that Xn → θ almost surely. Therefore, the
complete convergence is a very important tool in establishing almost sure convergence of
summation of random variables as well as weighted sums of random variables. Hsu and
Robbins [12] proved that the sequence of arithmetic means of independent and identically
distributed random variables converges completely to the expected value if the variance of
the summands is finite. Erdös [13] proved the converse. The result of Hsu-Robbins-Erdös
is a fundamental theorem in probability theory and has been generalized and extended in
several directions by many authors. One of the most important generalizations is Baum and
Katz [14] strong law of large numbers.

Theorem 1.1 (Baum and Katz [14]). Let p ≥ 1/α and 1/2 < α ≤ 1. Let {Xn, n ≥ 1} be
a sequence of independent and identically distributed random variables with EX1 = 0. Then the
following statements are equivalent:

(i) E|X1|p < ∞;

(ii)
∑∞

n=1 n
pα−2P(max1≤j≤n|

∑j

i=1 Xi| > εnα) < ∞ for all ε > 0,

Peligrad and Gut [3] extended the result of Baum and Katz [14] to ρ∗-mixing random variables.

Theorem 1.2 (Peligrad and Gut [3]). Let p > 1/α and 1/2 < α ≤ 1. Let {Xn, n ≥ 1} be a sequence
of identically distributed ρ∗-mixing random variables with EX1 = 0. Then the following statements
are equivalent:

(i) E|X1|p < ∞;

(ii)
∑∞

n=1 n
pα−2P(max1≤j≤n|

∑j

i=1 Xi| > εnα) < ∞ for all ε > 0.

Cai [9] complemented Theorem 1.2 when p = 1/α.
Recently, An and Yuan [8] obtained a complete convergence result for weighted sums of

identically distributed ρ∗-mixing random variables.
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Theorem 1.3 (An and Yuan [8]). Let p > 1/α and 1/2 < α ≤ 1. Let {Xn, n ≥ 1} be a sequence of
identically distributed ρ∗-mixing random variables with EX1 = 0.Assume that {ani, 1 ≤ i ≤ n, n ≥ 1}
is an array of real numbers satisfying

n∑

i=1

|ani|p = O
(
nδ
)

for some 0 < δ < 1, (1.4)

#Ank = #
{
1 ≤ i ≤ n : |ani|p > (k + 1)−1

}
≥ ne−1/k ∀k ≥ 1, n ≥ 1. (1.5)

Then the following statements are equivalent:

(i) E|X1|p < ∞;

(ii)
∑∞

n=1 n
pα−2P(max1≤j≤n|

∑j

i=1 aniXi| > εnα) < ∞ for all ε > 0.

Note that the result of An and Yuan [8] is not an extension of Peligrad and Gut’s [3]
result, since condition (1.4) does not hold for the array with ani = 1, 1 ≤ i ≤ n, n ≥ 1. An
and Yuan [8] proved the implication (i)⇒(ii) under condition (1.4), and proved the converse
under conditions (1.4) and (1.5). However, the array satisfying both (1.4) and (1.5) does not
exist. Noting that #Ank/(k + 1) ≤ ∑n

i=1 |ani|p ≤ O(nδ), we have that ne−1/k ≤ #Ank ≤ (k +
1)O(nδ). But, this does not hold when k is fixed and n is large enough.

In this paper, we obtain a new complete convergence result for weighted sums of
identically distributed ρ∗-mixing random variables. Our result extends the result of Peligrad
and Gut [3], and generalizes and sharpens the result of An and Yuan [8].

Throughout this paper, the symbol C denotes a positive constant which is not
necessarily the same one in each appearance, [x] denotes the integer part of x, and a ∧ b =
min{a, b}.

2. Main Result

To prove our main result, we need the following lemma which is a Rosenthal-type inequality
for ρ∗-mixing random variables.

Lemma 2.1 (Utev and Peligrad [4]). Let {Xn, n ≥ 1} be a sequence of ρ∗-mixing random variables
with EXn = 0 and E|Xn|r < ∞ for some r ≥ 2 and all n ≥ 1. Then there exists a constant D =
D(r, k, ρ∗

k
) depending only on r, k, and ρ∗

k
such that for any n ≥ 1,

E

⎛

⎝max
1≤j≤n

∣∣∣∣∣

j∑

i=1

Xi

∣∣∣∣∣

r
⎞

⎠ ≤ D

⎧
⎨

⎩

n∑

i=1

E|Xi|r +
(

n∑

i=1

EX2
i

)r/2
⎫
⎬

⎭
, (2.1)

where ρ∗k < 1.

Now we state the main result of this paper.
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Theorem 2.2. Let p > 1/α and 1/2 < α ≤ 1. Let {Xn, n ≥ 1} be a sequence of identically distributed
ρ∗-mixing random variables with EX1 = 0. Assume that {ani, 1 ≤ i ≤ n, n ≥ 1} is an array of real
numbers satisfying

n∑

i=1

|ani|q = O(n) for some q > p. (2.2)

If E|X1|p < ∞, then

∞∑

n=1

npα−2P

(

max
1≤j≤n

∣
∣
∣
∣∣

j∑

i=1

aniXi

∣
∣
∣
∣∣
> εnα

)

< ∞ ∀ε > 0. (2.3)

Conversely, if (2.3) holds for any array {ani} satisfying (2.2), then E|X1|p < ∞.

To prove Theorem 2.2, we first prove the following lemma which is the sufficiency of
Theorem 2.2 when the array is bounded.

Lemma 2.3. Let {Xn, n ≥ 1} be a sequence of identically distributed ρ∗-mixing random variables with
EX1 = 0 and E|X1|p < ∞ for some p > 1/α and 1/2 < α ≤ 1. Assume that {ani, 1 ≤ i ≤ n, n ≥ 1} is
an array of real numbers satisfying |ani| ≤ 1 for 1 ≤ i ≤ n and n ≥ 1. Then (2.3) holds.

Proof. For 1 ≤ i ≤ n and n ≥ 1, define X′
ni = XiI(|Xi| ≤ nα). Since EXi = 0 and

∑n
i=1 |ani| ≤ n,we

have that

n−αmax
1≤j≤n

∣∣∣∣∣

j∑

i=1

aniEX
′
ni

∣∣∣∣∣
= n−αmax

1≤j≤n

∣∣∣∣∣

j∑

i=1

aniEXiI(|Xi| > nα)

∣∣∣∣∣

≤ n−α
n∑

i=1

|ani|E|X1|I(|X1| > nα)

≤ n1−αE|X1|I(|X1| > nα)

≤ n1−pαE|X1|pI(|X1| > nα) −→ 0

(2.4)

as n → ∞.Hence for n large enough, we have

n−αmax
1≤j≤n

∣∣∣∣∣

j∑

i=1

aniEX
′
ni

∣∣∣∣∣
<

ε

2
. (2.5)
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It follows that

∞∑

n=1

npα−2P

(

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

aniXi

∣
∣
∣
∣
∣
> εnα

)

≤
∞∑

n=1

npα−2
n∑

i=1

P(|Xi| > nα) +
∞∑

n=1

npα−2P

(

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

aniX
′
ni

∣
∣
∣
∣
∣
> εnα

)

≤
∞∑

n=1

npα−1P(|X1| > nα) + C
∞∑

n=1

npα−2P

(

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

ani

(
X′

ni − EX′
ni

)
∣
∣
∣
∣
∣
>

εnα

2

)

=: I + CJ.

(2.6)

Noting that
∑∞

n=1 n
pα−1P(|X1| > nα) ≤ CE|X1|p < ∞, we have I < ∞. Thus, it remains to show

that J < ∞.

We have by Markov’s inequality and Lemma 2.1 that for any r ≥ 2,

J ≤
(
2
ε

)r ∞∑

n=1

npα−rα−2Emax
1≤j≤n

∣∣∣∣∣

j∑

i=1

ani

(
X′

ni − EX′
ni

)
∣∣∣∣∣

r

≤ C
∞∑

n=1

npα−rα−2

⎧
⎨

⎩

(
n∑

i=1

a2
niE
∣∣X′

ni

∣∣2
)r/2

+
n∑

i=1

|ani|rE
∣∣X′

ni

∣∣r

⎫
⎬

⎭

≤ C
∞∑

n=1

npα−rα−2+r/2
(
E|X1|2I(|X1| ≤ nα)

)r/2
+ C

∞∑

n=1

npα−rα−1E|X1|rI(|X1| ≤ nα)

=: CJ1 + CJ2.

(2.7)

In the last inequality, we used the fact that |ani| ≤ 1 for 1 ≤ i ≤ n and n ≥ 1.
If p ≥ 2, then we take large enough r such that r > max{(pα − 1)/(α − 1/2), p}. Since

r > (pα − 1)/(α − 1/2), we get

J1 ≤ C
∞∑

n=1

npα−rα−2+r/2 < ∞. (2.8)



6 Discrete Dynamics in Nature and Society

Since r > p,we also get

J2 =
∞∑

n=1

npα−rα−1
n∑

i=1

E|X1|rI
(
(i − 1)α < |X1| ≤ iα

)

=
∞∑

i=1

E|X1|rI
(
(i − 1)α < |X1| ≤ iα

) ∞∑

n=i

npα−rα−1

≤ C
∞∑

i=1

E|X1|rI
(
(i − 1)α < |X1| ≤ iα

)
ipα−rα

≤ CE|X1|p < ∞.

(2.9)

If p < 2, then we take r = 2. Since r > p, (2.9) still holds, and so J1 = J2 < ∞.

We next prove the sufficiency of Theorem 2.2 when the array is unbounded.

Lemma 2.4. Let {Xn, n ≥ 1} be a sequence of identically distributed ρ∗-mixing random variables with
EX1 = 0 and E|X1|p < ∞ for some p > 1/α and 1/2 < α ≤ 1. Assume that {ani, 1 ≤ i ≤ n, n ≥ 1} is
an array of real numbers satisfying ani = 0 or |ani| > 1, and

n∑

i=1

|ani|q ≤ n for some q > p. (2.10)

Then (2.3) holds.

Proof. If p < 2, then we can take δ > 0 such that p < p+δ < min{2, q}. Since ani = 0 or |ani| > 1,
we have that

∑n
i=1 |ani|p+δ ≤ ∑n

i=1 |ani|q ≤ n. Thus we may assume that (2.10) holds for some
p < q < 2 when p < 2.

Let S′
nj =
∑j

i=1 aniXiI(|aniXi| ≤ nα) for 1 ≤ j ≤ n and n ≥ 1. In view of EXi = 0, we get

n−αmax
1≤j≤n

∣∣∣ES′
nj

∣∣∣ = n−αmax
1≤j≤n

∣∣∣∣∣

j∑

i=1

aniEXiI(|aniXi| > nα)

∣∣∣∣∣

≤ n−α
n∑

i=1

E|aniXi|I(|aniXi| > nα)

≤ n−pα
n∑

i=1

E|aniXi|pI(|aniXi| > nα)

≤ n−pα
n∑

i=1

|ani|pE|X1|p

≤ n−pα
(

n∑

i=1

|ani|q
)p/q

n1−p/qE|X1|p

≤ n1−pαE|X1|p −→ 0,

(2.11)
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since pα > 1. Hence for n large enough, we have that n−αmax1≤j≤n|ES′
nj | < ε/2. It follows that

∞∑

n=1

npα−2P

(

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

aniXi

∣
∣
∣
∣
∣
> εnα

)

≤
∞∑

n=1

npα−2P
(
max
1≤i≤n

|aniXi| > nα

)
+

∞∑

n=1

npα−2P
(
max
1≤j≤n

∣
∣
∣S′

nj

∣
∣
∣ > εnα

)

≤
∞∑

n=1

npα−2
n∑

i=1

P(|aniXi| > nα) + C
∞∑

n=1

npα−2P
(
max
1≤j≤n

∣
∣
∣S′

nj − ES′
nj

∣
∣
∣ >

εnα

2

)

=: I + CJ.

(2.12)

For 1 ≤ j ≤ n − 1 and n ≥ 2, let

Inj =
{
1 ≤ i ≤ n : n1/q(j + 1

)−1/q
< |ani| ≤ n1/qj−1/q

}
. (2.13)

Then {Inj , 1 ≤ j ≤ n − 1} are disjoint,
⋃n−1

j=1 Inj = {1 ≤ i ≤ n : ani /= 0}, and∑k
j=1 #Inj ≤ k + 1 for

1 ≤ k ≤ n − 1, since

n ≥
∑

{1≤i≤n:ani /= 0}
|ani|q =

n−1∑

j=1

∑

i∈Inj
|ani|q ≥ n

k∑

j=1

1
j + 1

#Inj ≥ n

(k + 1)

k∑

j=1

#Inj . (2.14)

For convenience of notation, let t = 1/(α − 1/q). Since ani = 0 or |ani| > 1, and
∑n

i=1 |ani|q ≤ n,
we have a11 = 0. It follows that

I =
∞∑

n=2

npα−2
n−1∑

j=1

∑

i∈Inj
P(|aniXi| > nα)

≤
∞∑

n=2

npα−2
n−1∑

j=1

P
(
|X1|t > njt/q

)
#Inj

≤
∞∑

n=2

npα−2
n−1∑

j=1

#Inj
∑

k≥[njt/q]
P
(
k < |X1|t ≤ k + 1

)
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≤
∞∑

n=2

npα−2
∞∑

k=n

P
(
k < |X1|t ≤ k + 1

)(n−1)∧[((k+1)/n)q/t]∑

j=1

#Inj

≤
∞∑

n=2

npα−2
∞∑

k=n

P
(
k < |X1|t ≤ k + 1

)
n ∧
([(

k + 1
n

)q/t
]

+ 1

)

≤
∞∑

n=1

npα−2
[n1+t/q]∑

k=n

P
(
k < |X1|t ≤ k + 1

)([(k + 1
n

)q/t
]

+ 1

)

+
∞∑

n=1

npα−1
∞∑

k=[n1+t/q]+1

P
(
k < |X1|t ≤ k + 1

)

=: I1 + I2.

(2.15)

Since pα − 2 − q/t = −α(q − p) − 1 < −1, we obtain

I1 ≤ C
∞∑

n=1

npα−2−q/t
[n1+t/q]∑

k=n

P
(
k < |X1|t ≤ k + 1

)
kq/t

≤ C
∞∑

k=1

P
(
k < |X1|t ≤ k + 1

)
kq/t

k∑

n=[kq/(q+t)]

npα−2−q/t

≤ C
∞∑

k=1

P
(
k < |X1|t ≤ k + 1

)
kq/t−qα(q−p)/(q+t)

≤ CE|X1|p < ∞.

(2.16)

We also obtain

I2 ≤
∞∑

k=1

P
(
k < |X1|t ≤ k + 1

)[kq/(t+q)]∑

n=1

npα−1

≤ C
∞∑

k=1

P
(
k < |X1|t ≤ k + 1

)
kp(α−1/q) ≤ CE|X1|p < ∞.

(2.17)

From I1 < ∞ and I2 < ∞,we have I < ∞. Thus, it remains to show that J < ∞.
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We have by Markov’s inequality and Lemma 2.1 that for any r ≥ 2,

J ≤ C
∞∑

n=1

npα−rα−2Emax
1≤j≤n

∣
∣
∣S′

nj − ES′
nj

∣
∣
∣
r

≤ C
∞∑

n=1

npα−rα−2
(

n∑

i=1

E|aniXi|2I(|aniXi| ≤ nα)

)r/2

+ C
∞∑

n=1

npα−rα−2
n∑

i=1

E|aniXi|rI(|aniXi| ≤ nα)

=: J1 + J2.

(2.18)

Observe that for r ≥ q and n > m,

n ≥
n−1∑

j=1

∑

i∈Inj
|ani|q ≥ n

n−1∑

j=1

1
j + 1

#Inj ≥ n(m + 1)r/q−1
n−1∑

j=m

(
j + 1
)−r/q#Inj . (2.19)

So
∑n−1

j=m j−r/q#Inj ≤ Cm−(r/q−1) for r ≥ q and n > m.

For J1 and J2,we proceed with two cases.
(i) If p ≥ 2, then we take r large enough such that r > max{(pα− 1)/(α− 1/2), q}. Then

we obtain that

J1 ≤ C
∞∑

n=1

npα−rα−2
(

n∑

i=1

|ani|2
)r/2

≤ C
∞∑

n=1

npα−rα−2
(

n∑

i=1

|ani|q
)r/2

≤ C
∞∑

n=1

npα−rα−2+r/2 < ∞.

(2.20)

The second inequality follows by the fact that ani = 0 or |ani| > 1.
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Noting that a11 = 0, we also obtain that

J2 =
∞∑

n=2

npα−rα−2
n−1∑

j=1

∑

i∈Inj
E|aniXi|rI(|aniXi| ≤ nα)

≤
∞∑

n=2

npα−rα−2+r/q
n−1∑

j=1

j−r/q#InjE|X1|rI
(
|X1|t ≤ n

(
j + 1
)t/q)

≤
∞∑

n=2

npα−rα−2+r/q
n−1∑

j=1

j−r/q#Inj
∑

0≤k≤[n(j+1)t/q]
E|X1|rI

(
k < |X1|t ≤ k + 1

)

=
∞∑

n=2

npα−rα−2+r/q
n−1∑

j=1

j−r/q#Inj
2n∑

k=0

E|X1|rI
(
k < |X1|t ≤ k + 1

)

+
∞∑

n=2

npα−rα−2+r/q
n−1∑

j=1

j−r/q#Inj
[n(j+1)t/q]∑

k=2n+1

E|X1|rI
(
k < |X1|t ≤ k + 1

)

=: J3 + J4.

(2.21)

Since pα− rα− 2+ r/q < qα− rα− 2+ r/q = −(r − q)(α− 1/q)− 1 < −1 and q > p,we have that

J3 =
∞∑

n=2

npα−rα−2+r/q
2n∑

k=0

E|X1|rI
(
k < |X1|t ≤ k + 1

)n−1∑

j=1

j−r/q#Inj

≤ C
∞∑

n=2

npα−rα−2+r/q
2n∑

k=0

E|X1|rI
(
k < |X1|t ≤ k + 1

)

≤ C
∞∑

k=1

E|X1|rI
(
k < |X1|t ≤ k + 1

) ∞∑

n=[k/2]

npα−rα−2+r/q

≤ C
∞∑

k=1

E|X1|rI
(
k < |X1|t ≤ k + 1

)
kpα−rα−1+r/q

≤ C
∞∑

k=1

P
(
k < |X1|t ≤ k + 1

)
kpα−1

≤ CE|X1|p < ∞.

(2.22)
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Since 1/t + 1/q − α = 0 and pα − 2 − q/t = −α(q − p) − 1 < −1, we also have that

J4 ≤
∞∑

n=2

npα−rα−2+r/q
[n(q+t)/q]∑

k=2n+1

E|X1|rI
(
k < |X1|t ≤ k + 1

) n−1∑

j=[(k/n)q/t]−1
j−r/q#Inj

≤ C
∞∑

n=2

npα−rα−2+r/q
[n(q+t)/q]∑

k=2n+1

E|X1|rI
(
k < |X1|t ≤ k + 1

)([(k

n

)q/t
]

− 1

)−(r/q−1)

≤ C
∞∑

k=5

E|X1|rI
(
k < |X1|t ≤ k + 1

)
k−(r−q)/t

[k/2]∑

n=[kq/(q+t)]

npα−2−q/t

≤ C
∞∑

k=5

E|X1|rI
(
k < |X1|t ≤ k + 1

)
k−(r−q)/t−(α−1/q)(q−p)

≤ CE|X1|p < ∞.

(2.23)

From J3 < ∞ and J4 < ∞,we have J2 < ∞.
(ii) If p < 2, then we take r = 2. As noted above, we may assume that p < q < 2. Since

r > q, as in the case p ≥ 2, we have J1 = J2 ≤ CE|X1|p < ∞.

We now prove Theorem 2.2 by using Lemmas 2.3 and 2.4.

Proof of Theorem 2.2.

Sufficiency. Without loss of generality, we may assume that
∑n

i=1 |ani|q ≤ n for some q > p. For
n ≥ 1, let

An = {1 ≤ i ≤ n : |ani| ≤ 1}, Bn = {1 ≤ i ≤ n : |ani| > 1}, (2.24)

and let a′
ni = ani if i ∈ An, a

′
ni = 0 otherwise, and a′′

ni = ani if i ∈ Bn, a
′′
ni = 0 otherwise. Then

max
1≤j≤n

∣∣∣∣∣

j∑

i=1

aniXi

∣∣∣∣∣
≤ max

1≤j≤n

∣∣∣∣∣

j∑

i=1

a′
niXi

∣∣∣∣∣
+max

1≤j≤n

∣∣∣∣∣

j∑

i=1

a′′
niXi

∣∣∣∣∣
. (2.25)

It follows that

∞∑

n=1

npα−2P

(

max
1≤j≤n

∣∣∣∣∣

j∑

i=1

aniXi

∣∣∣∣∣
> εnα

)

≤
∞∑

n=1

npα−2P

(

max
1≤j≤n

∣∣∣∣∣

j∑

i=1

a′
niXi

∣∣∣∣∣
>

εnα

2

)

+
∞∑

n=1

npα−2P

(

max
1≤j≤n

∣∣∣∣∣

j∑

i=1

a′′
niXi

∣∣∣∣∣
>

εnα

2

)

=: I + J.

(2.26)

By Lemma 2.3, we have I < ∞. By Lemma 2.4, we have J < ∞.Hence (2.3) holds.
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Necessity. Choose, for each n ≥ 1, an1 = · · · = ann = 1. Then {ani} satisfies (2.2). By (2.3), we
obtain that

∞∑

n=1

npα−2P

(

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

Xi

∣
∣
∣
∣
∣
> εnα

)

< ∞ ∀ε > 0, (2.27)

which implies that

∞∑

n=1

npα−2P
(
max
1≤j≤n

∣∣Xj

∣∣ > εnα

)
< ∞ ∀ε > 0. (2.28)

Observe that

∞ >
∞∑

i=1

2i∑

n=2i−1+1

npα−2P
(
max
1≤j≤n

∣∣Xj

∣∣ > εnα

)

≥

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∞∑

i=1

(
2i−1
)pα−22i−1P

(

max
1≤j≤2i−1

∣∣Xj

∣∣ > ε
(
2i
)α
)

if pα ≥ 2,

∞∑

i=1

(
2i
)pα−22i−1P

(

max
1≤j≤2i−1

∣∣Xj

∣∣ > ε
(
2i
)α
)

if 1 < pα < 2,

≥

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∞∑

i=1

P

(

max
1≤j≤2i−1

∣∣Xj

∣∣ > ε
(
2i
)α
)

if pα ≥ 2,

2pα−2
∞∑

i=1

P

(

max
1≤j≤2i−1

∣∣Xj

∣∣ > ε
(
2i
)α
)

if 1 < pα < 2.

(2.29)

Hence we have that for any ε > 0, P(max1≤j≤2i−1 |Xj | > ε(2i)α) → 0 as i → ∞, and so
P(max1≤j≤n|Xj | > nα) → 0 as n → ∞. The rest of the proof is same as that of Peligrad
and Gut [3] and is omitted.

Remark 2.5. Taking ani = 1 for 1 ≤ i ≤ n and n ≥ 1, we can immediately get Theorem 1.2
from Theorem 2.2. If the array {ani} satisfies (1.4), then it satisfies (2.2): taking q such that
p < q < p/δ,we have

n∑

i=1

|ani|q ≤ max
1≤i≤n

|ani|q−p
n∑

i=1

|ani|p ≤ Cnδ(q−p)/pnδ ≤ Cn. (2.30)

So the implication (i)⇒(ii) of Theorem 1.3 follows from Theorem 2.2. As noted after
Theorem 1.3, the implication (ii)⇒(i) of Theorem 1.3 is not true. Therefore, our result extends
the result of Peligrad and Gut [3] to a weighted average, and generalizes and sharpens the
result of An and Yuan [8].
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