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Vector-host epidemic models with direct transmission are proposed and analyzed. It is shown that
the stability of the equilibria in the proposed models can be controlled by the basic reproduction
number of the disease transmission. One model considers that the dynamics of human hosts and
vectors are described by SIS and SI model, respectively, where the global asymptotical stability for
the equilibria of the model is analyzed by constructing Lyapunov function, respectively. The other
model considers that the dynamics of the human hosts and vectors are described by SIRS and SI
model, respectively, where the global stability of the disease-free equilibrium and the persistence
of the disease in the model are also analyzed, respectively.

1. Introduction

Mathematical models of infectious disease have proven to be valuable component for
public health planing and responses, as well as an important application of population
biology. A simple model may play a significant role in the development of a better
understanding of the infectious disease and the various preventive strategies used against
it [1–9]. Recently, mathematical models concerning the emergence and reemergence of the
vector-host infectious disease have been proposed and analyzed. For example, Esteva and
Vargas [10] have investigated an ordinary differential equation compartmental model for
the spread of dengue fever. Their results suggested that the disease can be controlled by the
threshold parameter R0 and could persist if and only if R0 exceeds 1. In [11], a vector-host
epidemic mathematical model with demographic structure has been investigated, where the
threshold condition for control of the vector diseases transmission has been obtained and the
dynamical behavior of the model is globally performed. Epidemiological models with vector
host are numerous in the literature [12–16], and we also refer the reader to [1–3] for a general
reference since they are not detailed here.
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In the aforementioned modeling work on vector-host disease transmissions, many
authors consider that these infections diseases, such as malaria, dengue fever, West Nile
virus, and so forth, are transmitted to the human population by insects or vectors (e.g.,
infected mosquitoes). However, some evidences show that direct transmission is possible
through blood transfusion, vertically or through needlestick injury. Such models with direct
transmission in addition to vector transmission have been also reported in malaria and in
Chagas diseases. For example, in the paper in [17], an epidemic model of a vector-host
disease with direct transmission and the vector-mediated transmission has been investigated.
Recently, the paper in [18] has modeled and analyzed an age-since-infection structured model
of Chagas diseases with direct transmission and vector transmission. In this paper, we shall
investigate the transmission of a simple vector-host infectious disease by compartmental
epidemiological model. A type Ross-MacDonald model for vector-host infectious disease
is widely applied, where the host and vector population are divided into the susceptible
and infected individuals. Here, we first consider a vector-host epidemic model with direct
and vector transmissions. To explore dynamics of the solution of the nonlinear system of
differential equations governing the infectious diseases, some mathematical methods and
ideas are applied [19–23] in recent years. One of our aims in this paper is to show that the
disease-free equilibrium and the endemic equilibrium are, respectively, the global stability by
constructing suitable Lyapunov functional. Our results show that the equilibria of the model
can be controlled by the basic reproduction number R0. That is, if R0 is less than one, the
disease-free equilibrium is globally asymptotically stable, and in such a case the endemic
equilibrium does not exist; if R0 is greater than one, then the disease persists and the unique
endemic equilibrium is globally asymptotically stable.

Then, we extend the above model by taking into account that the dynamics of the
human hosts and vectors are described by SIRS and SI model, respectively. Mathematical
analysis of the dynamical behavior of the equilibria in this model is performed. The global
stability of the disease-free equilibrium and the persistence of the disease in the model are
obtained, respectively.

The paper is organized as follows. In Section 2, a vector-host epidemic model with
direct and vector transmissions is presented, where the dynamics of the human hosts and
vectors are described by SIS and SI model, respectively. In Section 3, the global stability
of equilibria in the model is investigated by constructing suitable Lyapunov function. In
Section 4, an extended vector-host epidemic model with direct and vector transmissions is
investigated, where the dynamics of the human hosts and vectors are described by SIRS and
SI model, respectively. The paper ends with brief remarks.

2. The Model with Host SIS

In this section, a vector-host epidemic model with direct and vector transmissions is
presented and investigated, where the dynamics of the host is described by SIS model.
It is assumed that there is no immunity in vector population and host population, and
the total host population NH(t) is partitioned into two distinct epidemiological subclasses
which are susceptibles and infectious subclasses, with the sizes denoted by SH(t) and IH(t),
respectively, and the total vector populationNV (t) is divided into susceptibles and infectious,
with the sizes denoted by SV (t) and IV (t), respectively.

The proposed model satisfies the following assumptions.
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(H1) Susceptible hosts can be infected via two routes of transmission, that is, directly,
through a contact with an infected individual (possibly as a result of blood
transfusion), and through being bitten by an infectious vector. Thus, we denote
the rate of direct transmission by β1 so that the incidence of new infections via this
route is given by a standard incidence rate β1SH(t)IH(t)/NH . We denote the biting
rate that a pathogen-carrier vector has to susceptible hosts as β2, and the incidence
of new infections transmitted by the vectors is given again by a standard incidence
rate β2SH(t)IV (t)/NH .

(H2) It is assumed that the host total population NH is constant. The birth rate and
the per-capita natural mortality rate of host are equal, μ. φ is the recovery rate of
infective hosts.

(H3) The vector total population NV is constant, and η is the per-capita natural mortality
rate of vector. The host infectious-to-vector susceptible transmission rate is given by
βSV (t)IH(t)/NH .

The dynamics of this infectious disease in the host and vector populations can be
described by the following system of nonlinear differential equations:

dSH
dt

= μNH − β1SHIH
NH

− β2SHIV
NV

+ φIH − μSH,

dIH
dt

=
β2SHIV
NH

+
β1SHIH
NH

− (
μ + φ

)
IH,

dSV
dt

= ηNV − ηSV − βSV IH
NH

,

dIV
dt

=
βSV IH
NH

− ηIV .

(2.1)

The feasible region for system (2.1) is R4
+ (the positive orthant of R4

+). System (2.1) is
obviously well-posed. In order to analyze system (2.1), let sh = SH/NH , ih = IH/NH ,
sv = SV/NV , iV = IV /NV , and m = NV/NH . For the convenience, here, we still write sh,
ih, sv, and iv as SH , IH , SV , and IV . So system (2.1) can be reduced to the following equations:

dSH
dt

= μ − μSH − β2mSHIV − β1SHIH + φIH,

dIH
dt

= β2mSHIV + β1SHIH − (
μ + φ

)
IH,

dSV
dt

= η − ηSV − βSV IH,

dIV
dt

= βSV IH − ηIV .

(2.2)
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3. Stability of the Equilibria of System (2.2)

It is easy to verify that all of the solutions of system (2.2) exist and are nonnegative. Let

Γ =
{
(SH, IH, SV , IV ) ∈ R4

+ : SH, IH, SV , IV ≥ 0, SH + IH = 1, SV + IV = 1
}
. (3.1)

It can be verified that Γ is positively invariant with respect to (2.2). Direct calculation
shows that system (2.2) has always the disease-free equilibrium E0 = (1, 0, 1, 0) in Γ. Let
R0 = (β2m/(μ + φ))(β/η) + β1/(μ + φ). If R0 > 1, then system (2.2) has the unique endemic
equilibrium E∗ = (S∗

H, I
∗
H, S

∗
V , I

∗
V ) in Γ, where

S∗
H =

(
μ + φ

)(
η + βI∗H

)

β1
(
η + βI∗H

)
+ ββ2m

, S∗
V =

η

η + βI∗H
, I∗V =

βI∗H
η + βI∗H

, (3.2)

and I∗H , which is the unique positive solution of the following equation is given as:

f
(
I∗H

)
= a2

(
I∗H

)2 + a1I
∗
H + a0, (3.3)

where

a2 = ββ1 > 0, a1 = ηβ1 + ββ2m − ββ1 +
(
μ + φ

)
β,

a0 = −η(μ + φ
)
(R0 − 1) < 0.

(3.4)

Remark 3.1. According to Theorem 2 in [24], R0 is called the basic reproduction number. It
represents the average number of people infected directly and indirectly that single infectious
host can generate in a totally susceptible population of hosts and vectors.

Now we shall investigate the local geometric properties of the equilibria of the system
(2.2). We first give the following results.

Theorem 3.2. IfR0 < 1, the disease-free equilibrium E0 of model (2.2) is locally asymptotically stable,
and is unstable if R0 > 1.

Proof. Linearizing around the disease-free equilibrium E0, we obtain the following character-
istic equation:

(
λ1 + μ

)(
λ2 + η

)[
λ2 +

(
η + μ + φ − β1

)]
λ +

(
μ + φ

)
η(1 − R0) = 0. (3.5)

Let

f(λ) = λ2 +A1λ +A0, (3.6)
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where

A1 = η + μ + φ − β1,

A0 =
(
μ + φ

)
η(1 − R0).

(3.7)

Since it follows that μ+φ > β1 from R0 < 1, thus A0 > 0 and A1 > 0. So f(λ) have two negative
roots. So, all of the eigenvalues of the characteristic equation (3.5) are negative real parts.
Hence, the equilibrium E0 is locally asymptotically stable in the interior of Γ. This completes
the proof of Theorem 3.2.

Theorem 3.3. If R0 < 1, the disease-free equilibrium E0 of the model (2.2) is globally asymptotically
stable.

Proof. To establish the global stability of the disease-free equilibrium E0, we construct the
following Lyapunov function:

L(SH, IH, SV , IV ) =
(
SH − S∗

H − S∗
H log

SH
NH

)
+ IH +

μ + φ
β

[(
SV − S∗

V − S∗
V log

SV
NH

)
+ IV

]
.

(3.8)

By directly calculating the derivation of L along the solution of (2.2), we obtain

dL

dt
=
(
SH − S∗

H

)S′
H

SH
+ I ′H +

(
SV − S∗

V

)S′
V

SV
+ I ′V

=
SH − S∗

H

SH

[
μ − μSH + φIH − β1SHIH − β2SHIV

]
+
[
β1SHIH + β2SHIV − (

μ + φ
)
IH

]

+
SV − S∗

V

SV

[
η − βSV IH − ηSV

]
+
[
βSV IH − ηIV

]
.

(3.9)

Using IH = 1 − SH , S∗
H = 1, and S∗

V = 1, we have

dL

dt
=

(SH − 1)
SH

[(
μ + φ

)
(1 − SH) −

(
β1SHIH + β2SHIV

)]
+
[
β1SHIH + β2SHIV − (

μ + φ
)
IH

]

− ημ + φ
β

(SV − 1)2

SV
− μ + φ

β
βSV IH

SV − 1
SV

+
μ + φ
β

[
βSV IH − ηIV

]

= −(μ + φ
) (SH − 1)2

SH
− η

(
μ + φ

)

β

(SV − 1)2

SV
− η

(
μ + φ

)

β
(1 − R0)IV ≤ 0.

(3.10)

Noting that dL/dt = 0 if and only if SH = S∗
H , SV = S∗

V , and IH = IV = 0, therefore, the
largest compact invariant set in {(SH, IH, SV , IV ) ∈ Γ : dL/dt = 0} is the singleton {E0},
where E0 is the disease-free equilibrium in system (2.2). By LaSalle’s invariant principle [19],
E0 is globally asymptotically stable in Γ.

This completes the proof of Theorem 3.3.
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Now we shall investigate the local geometric properties of the endemic equilibria of
system (2.2). We have the following results.

Theorem 3.4. If R0 > 1, the endemic equilibrium E∗ of system (2.2) is locally asymptotically stable.

Proof. Since the human and vector populations remain constant in Γ, therefore, letting SH =
1 − IH and SV = 1 − IV , system (2.2) in the invariant set Γ can be written as the equivalent to
the following two-dimensional nonlinear system:

dIH
dt

= β2m(1 − IH)IV + β1(1 − IH)IH − (
μ + φ

)
IH,

dIV
dt

= β(1 − IV )IH − ηIV .
(3.11)

Thus, the characteristic equation of E∗ is

f(λ) = λ2 + B1λ + B0 = 0,

B1 = β2mI
∗
V + 2β1I

∗
H + μ + φ − β1 + βI∗H + η,

B0 =
(
β2mI

∗
V + β1I

∗
H

)
η + β2mβI

∗
V + ββ1

(
I∗H

)2
> 0.

(3.12)

Using μ + φ = β1(1 − I∗H) + β2m(1 − I∗H)(I∗V /I
∗
H) > β1(1 − I∗H), it is easy to verify that B1 > 0.

Therefore, from (3.12), we obtain that the eigenvalues of J(E∗) have two negative real parts.
Therefore E∗ is locally asymptotically stable for R0 > 1.

Finally, we shall give the global stability of the endemic equilibrium E∗. We have the
following results

Theorem 3.5. If R0 > 1, the endemic equilibrium E∗ of the model (2.2) is globally asymptotically
stable.

Proof. Let us construct the following Lyapunov function

V (SH, IH, SV , IV ) = k1

(
SH − S∗

H − S∗
H log

SH
NH

)
+ k2

(
IH − I∗H − I∗H log

IH
NH

)

+ k3

(
SV − S∗

V − S∗
V log

SV
NH

)
+ k4

(
IV − I∗V − I∗V log

IV
NH

)
,

(3.13)

where

k1 = k2 = βS∗
V I

∗
H, k3 = k4 = β2mS

∗
HI

∗
V + β1S

∗
HI

∗
H. (3.14)
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By directly calculating the derivation of V (t) along the solution of (2.2), we have

]
dV

dt
= k1

(
SH − S∗

H

)S′
H

SH
+ k2

(
IH − I∗H

)I ′H
IH

+ k3
(
SV − S∗

V

)S′
V

SV
+ k4

(
IH − I∗H

)I ′H
IH

=
SH − S∗

H

SH

[
μ − μSH + φIH − β1SHIH − β2SHIV

]

+
IH − I∗H
IH

[
β1SHIH + β2SHIV − (

μ + φ
)
IH

]

+
SV − S∗

V

SV

[
η − βSV IH − ηSV

]
+
IV − I∗V
IV

[
βSV IH − ηIV

]

= −βS∗
V I

∗
H

(
μ + φ

)
(
SH − S∗

H

)2

SH
− η(β2mS

∗
HI

∗
V + β1S

∗
HI

∗
H

)
(
SV − S∗

V

)2

SV

+ βS∗
V I

∗
H

(
β2mS

∗
HI

∗
V + β1S

∗
HI

∗
H

)

×
[(
SH − S∗

H

)

SH
−

(
SH − S∗

H

)

SH
(
β2mS

∗
HI

∗
V + β1S

∗
HI

∗
H

) × (
β2SHIV + β1SHIH

)
]

− βS∗
V I

∗
H

(
β2mS

∗
HI

∗
V + β1S

∗
HI

∗
H

)
[
IH − I∗H
IHI

∗
H

+
I∗H
IH

β2mSHIV + β1SHIH
β2mS

∗
HI

∗
V + β1S

∗
HI

∗
H

+
I∗H
IH

]

− βS∗
V I

∗
H

(
β2mS

∗
HI

∗
V + β1S

∗
HI

∗
H

)

×
[(
SV − S∗

V

)

SV

(

1 − βSV IH
βS∗

V I
∗
H

)

+
IV − I∗V
IV

βSV IH
βS∗

V I
∗
H

− IV − I∗V
IV

]

= −βS∗
V I

∗
H

(
μ + φ

)
(
SH − S∗

H

)2

SH
− η(β2mS

∗
HI

∗
V + β1S

∗
HI

∗
H

)
(
SV − S∗

V

)2

SV

− βS∗
V I

∗
H

(
β2mS

∗
HI

∗
V + β1S

∗
HI

∗
H

)

×
[
S∗
H

SH
+
S∗
V

SV
+
SHI

∗
H

(
β2mIV + βIH

)

S∗
HIH

(
β2mI

∗
V + βI∗H

) +
SV IH

(
β2mI

∗
V + βI∗H

)

S∗
V I

∗
H

(
β2mIV + βIH

) − 4

]

.

(3.15)

Since the arithmetic mean is greater than or equal to the geometric mean, we have

S∗
H

SH
+
S∗
V

SV
+
SHI

∗
H

(
β2mIV + βIH

)

S∗
HIH

(
β2mI

∗
V + βI∗H

) +
SV IH

(
β2mI

∗
V + βI∗H

)

S∗
V I

∗
H

(
β2mIV + βIH

) ≥ 4, ∀SH, IH, SV , IV ≥ 0. (3.16)

Hence, it follows from (3.15) that we obtain dV/dt ≤ 0. Noting that dV/dt = 0 if and only
if SH = S∗

H , SV = S∗
V , IH = I∗H , and IV = I∗V , therefore, the largest compact invariant set

in {(SH, IH, SV , IV ) ∈ Γ : dV/dt = 0} is the singleton {E∗}, where E∗ is the disease-free
equilibrium in system (2.2). By LaSalle’s invariant principle, E∗ is globally asymptotically
stable in Γ.

This completes the proof of Theorem 3.5.
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Remark 3.6. In this section, by constructing suitable Lyapunov function, it is established in
Theorems 3.3 and 3.5 that R0 is a sharp threshold parameter and completely determines
the global stability of (2.2) in the feasible region Γ. We can extend model (2.1) to more
stage progression compartments model and establish the global stability of the model by
constructing Lyapunov functions of the formW(x1, x2, . . . , xn) =

∑n
i=1 ki(xi−x∗

i −x∗
i logxi/x∗

I).

4. The Model with Host SIRS

In this section, we shall extend the model (2.1) by considering that the dynamics of the host is
described by SIRS model. It is assumed that the host populations are constant that is, SH+IH+
RH =NH (constant). Similar to model (2.2), by using dimensionless, we obtain SH+IH+RH =
1, and SV + IV = 1. Thus we consider the following differential equation model:

dSH
dt

= μ − μSH − β2mSHIV + φIH − β1SHIH + δ(1 − IH − SH),

dIH
dt

= β2mSHIV + β1SHIH − (
μ + φ + γ

)
IH,

dIV
dt

= β(1 − IV )IH − ηIV ,

(4.1)

where γ is the rate at which the host populations acquire immunity. δ is the per-capita rate
of loss of immunity in host populations. The other variables and parameters are the same as
those of model (2.1). Let Ω = {(SH, IH, IV ) ∈ R3

+ | 0 ≤ SH + IH ≤ 1, 0 ≤ IV ≤ 1}. It is easy
to verify that Ω is positively invariant. Now we first investigate the existence of equilibria of
(4.1). Letting the equations of system (4.1) with the right-hand side be zero, obviously, E0 =
(1, 0, 0) is always the disease-free equilibrium of system (4.1), and letting R0 = (ββ2m/(μ +
φ + γ)η) + (β1/(μ + φ + γ)), we can obtain that the unique endemic equilibrium of system
(4.1) E∗ = (S∗

H, I
∗
H, I

∗
V ) for R0 > 1, S∗

H, I
∗
V satisfies the following relations:

S∗
H =

(
μ + φ + γ

)
I∗H

β2mI
∗
V + β1I

∗
H

, I∗V =
βI∗H

βI∗H + η
, (4.2)

and I∗H is the positive solution of the following quadratic polynomial:

β1β

(
1 +

γ

μ + δ

)
(
I∗H

)2 +
[
(
ββ2m + β1η

) γ

μ + δ
+ β

(
μ + δ

) − β1β

]
I∗H +

(
μ + φ + γ

)
η(1 − R0) = 0.

(4.3)

By linearizing system (4.1) around the disease-free equilibrium E0 of system (4.1) and
analyzing the characteristic equation of E0, it is easy to obtain the following results.

Theorem 4.1. If R0 < 1, the disease-free equilibrium E0 of system (4.1) is locally asymptotically
stable, and is unstable if R0 > 1.

Theorem 4.2. If R0 < 1, then the infection-free equilibrium E0 of system (4.1) is globally
asymptotically stable in Ω.
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Proof. From the last two equations of system (4.1), we have

I ′H ≤ β2mIV +
(
β1 −

(
μ + φ + γ

))
IH,

I ′V ≤ βIH − ηIV .
(4.4)

Let us consider the following equations:

Z′
1 = β2mZ2 +

(
β1 −

(
μ + φ + γ

))
Z1,

Z′
2 = βZ1 − ηZ2.

(4.5)

From R0 < 1, we have ββ2m + β1η < (μ + φ + γ)η. It is easy to show that, if ββ2m + β1η <
(μ+φ + γ)η for any solutions of (4.5) with nonnegative initial values, we have limt→∞Zi(t) =
0, i = 1, 2. Let 0 < IH(0) ≤ Z1(0), and 0 < IV (0) ≤ Z2(0). If (Z1(t), Z2(t)) is a solution of system
(4.5) with nonnegative initial values (Z1(0), Z1(0)), then, by comparison principle, we have
IH(t) ≤ Z1(t), and IV (t) ≤ Z2(t) for all sufficiently large t. Hence, we have limt→∞IH(t) = 0,
and limt→∞IV (t) = 0. The maximal compact invariant subset in {(SH, IH, IV ) ∈ Ω : I ′H = I ′V =
0} consists of the SH-axis. From this set, it is easy to obtain that SH → 1, IH = 0, and IV = 0
for t ≥ 0. It follows that all trajectories starting in Ω approach E0 for R0 < 1.

This completes the proof of Theorem 4.2.

Theorem 4.3. If R0 > 1, the disease of system (4.1) is uniformly persistent in IntΩ.

Proof. Similar to the proof of Theorem 3.4 in [23], we choose X = Ω, X1 = intΩ, X2 = bd(Ω).
It is easy to obtain that Y2 = {(S, 0, 0) : 0 < S ≤ 1} and Ω2 =

⋃
y∈Y2

ω(y) = {E0}, and {E0} is
an isolated compact invariant set in X. Furthermore, letting M = {E0}, thus, M is an acyclic
isolated covering of Ω2.

Now we only need to show that {E0} is a weak repeller for X1. Suppose that there
exists a positive orbit (SH, IH, IV ) of (4.1) such that

lim
t→+∞

SH(t) = 1, lim
t→+∞

IH(t) = 0, lim
t→+∞

IV (t) = 0. (4.6)

Since R0 > 1, there exists a small enough ε > 0 such that

ββ2m(1 − ε)2 + β1(1 − ε)η > (
μ + φ + γ

)
η. (4.7)

From (4.1), we choose t0 > 0 large enough such that, when t ≥ t0, we have

I ′H > β2m(1 − ε)IV +
(
β1(1 − ε) − (

μ + φ + γ
))
IH,

I ′V > β(1 − ε)IH − ηIV .
(4.8)

Consider the following matrix Mε defined by

Mε =

(
β1(1 − ε) − (

μ + φ + γ
)
β2m(1 − ε)

β(1 − ε) −η

)

. (4.9)
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Figure 1: Variation of SH , IH , and IV with time for the parameter values μ = 0.00042, β1 = 0.00004, β2 =
0.00002, β = 0.00003, α = 0.01, m = 0.005, γ = 0.0012, and δ = 0.00002 when R0 = 17.0124.

Since Mε admits positive off-diagonal element, the Perron-Frobenius Theorem [19] implies
that there is a positive eigenvector v = (v1, v2) for the maximum eigenvalue λ∗ of Mε. From
(4.7), we see that the maximum eigenvalue λ∗ is positive. Let us consider the following
system:

du1

dt
= β2m(1 − ε)u2 +

(
β1(1 − ε) − (

μ + φ + γ
))
u1,

du2

dt
= β(1 − ε)u1 − ηu2.

(4.10)

Let u(t) = (u1(t), u2(t)) be a solution of (4.10) through (lv1, lv2) at t = t0, where l > 0 satisfies
lv1 < IH(t0), and lv2 < IV (t0). Since the semiflow of (4.10) is monotone andMεv > 0, it follows
that ui(t) are strictly increasing and ui(t) → +∞ as t → +∞, contradicting the eventual
boundedness of positive solutions of system (4.1). Thus, E0 is weak repeller for X1.

This completes the proof of Theorem 4.3.

Remark 4.4. In this section, although we have not discussed the stability of E∗ in model (4.1)
(this can be achieved via a tedious process, involving the determination of the signs of the
eigenvalues of the corresponding Jacobian), numerical simulation (Figure 1) confirms that
the equilibrium (E∗) in model (4.1) is stable whenever it exists.

5. The Concluding Remarks

Malaria, dengue fever, and so forht are very sever vector-host disease in some developing
countries where hygienic and cultural conditions are inadequate. Despite the improvements
in these conditions in the past decades, the endemic levels of these diseases have not tended
to decrease; on the contrary, the endemic level in some countries has increased from initial
incidence being about 60 per 100,000 yearly to the present 110 per 100,000 [25]. In this paper,
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mathematical models for a vector-host disease transmission are proposed and analyzed. Our
models seem to be quite robust in their qualitative behavior. The constant human recruitment
rate and exponential natural death, as well as vector population with asymptotically constant,
are incorporated into the model. The basic reproduction numbers of the model (2.1) and
the extended models (4.1) are obtained, respectively. The dynamics behavior of the models
is determined by their basic reproduction number, respectively. That is, if R0(R0) ≤ 1, the
disease-free equilibrium is globally asymptotically stable. If R0 > 1, the disease persists and
the unique endemic equilibrium is globally asymptotically stable. Additionally, we show that,
if R0 > 1, system (4.1) has a unique positive equilibrium. Numerical simulations suggest that
the unique endemic equilibrium is globally asymptotically stable whenever it exists, and we
conjecture that the unique positive equilibrium is globally asymptotically stable. The simple
model treated in this paper shows that direct transmission rate has played a very important
role into the diseases transmission, besides indirect transmission rate, mean duration of host
carriers, mean life of vector in the environment, the transmission rate of the host infected to
vector susceptible, and so forth.
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