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We establish new oscillation criteria for second-order delay differential equations with mixed
nonlinearities of the form (p(t)x′(t))′+

∑n
i=1 pi(t)x(t−τi)+

∑n
i=1 qi(t)|x(t−τi)|αisgnx(t−τi) = e(t), t ≥

0, where p(t), pi(t), qi(t), and e(t) are continuous functions defined on [0,∞), and p(t) > 0, p′(t) ≥ 0,
and α1 > · · · > αm > 1 > αm+1 > · · · > αn > 0. No restriction is imposed on the potentials pi(t), qi(t),
and e(t) to be nonnegative. These oscillation criteria extend and improve the results given in the
recent papers. An interesting example illustrating the sharpness of our results is also provided.

1. Introduction

We consider the second-order delay differential equations containing mixed nonlinearities of
the form

(
p(t)x′(t)

)′ +
n∑

i=1

pi(t)x(t − τi) +
n∑

i=1

qi(t)|x(t − τi)|αi sgnx(t − τi) = e(t), t ≥ 0. (1.1)

In what follows we assume that τi ≥ 0, p ∈ C1[0,∞), p(t) > 0, p′(t) ≥ 0, pi, qi, e ∈
C[0,∞), α1 > · · · > αm > 1 > αm+1 > · · · > αn > 0 (n > m ≥ 1), and

∫∞

0

1
p(t)

dt = ∞. (1.2)

As usual, a solution x(t) of (1.1) is called oscillatory if it is defined on some ray [T,∞)
with T ≥ 0 and has arbitrary large zeros, otherwise, it is called nonoscillatory. Equation (1.1)
is called oscillatory if all of its extendible solutions are oscillatory.
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Recently, Mustafa [1] has studied the oscillatory solutions of certain forced Emden-
Fowler like equations

x′′(t) + a(t)|x(t)|λ sgnx(t) = e(t), t ≥ t0 ≥ 1. (1.3)

Sun and Wong [2], as well as Sun and Meng [3] have established oscillation criteria for the
second-order equation

(
p(t)x′(t)

)′ + q(t)x(t) +
n∑

i=1

qi(t)|x(t)|αi sgnx(t) = e(t), t ≥ 0. (1.4)

Later in [4], Li and Chen have extended (1.4) to the delay differential equation

(
p(t)x′(t)

)′ + q(t)x(t − τ) +
n∑

i=1

qi(t)|x(t − τ)|αi sgnx(t − τ) = e(t), t ≥ 0. (1.5)

As it is indicated in [2, 3], further research on the oscillation of equations of mixed type is
necessary as such equations arise in mathematical modeling, for example, in the growth of
bacteria population with competitive species. In this paper, we will continue in the direction
to study the oscillatory properties of (1.1). We will employ the method in study of Kong in
[5] and the arithmetic-geometric mean inequality (see [6]) to establish the interval oscillation
criteria for the unforced (1.1) and forced (1.1), which extend and improve the known results.
Our results are generalizations of the main results in [3, 4]. We also give an example to
illustrate the sharpness of our main results.

2. Main Results

We need the following lemma proved in [2, 3] for our subsequent discussion.

Lemma 2.1. For any given n-tuple {α1, α2, . . . , αn} satisfying α1 > α2 > · · · > αm > 1 > αm+1 >
· · · > αn > 0, there corresponds an n-tuple {η1, η2, . . . , ηn} such that

n∑

i=1

αiηi = 1, (a)

which also satisfies either

n∑

i=1

ηi < 1, 0 < ηi < 1, (b)

or

n∑

i=1

ηi = 1, 0 < ηi < 1. (c)
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For a given set of exponents {αi} satisfying α1 > α2 > · · · > αm > 1 > αm+1 > · · · > αn > 0,
Lemma 2.1 ensures the existence of an n-tuple {η1, η2, . . . , ηn} such that either (a) and (b) hold
or (a) and (c) hold. When n = 2 and α1 > 1 > α2 > 0, in the first case, we have

η1 =
1 − α2

(
1 − η0

)

α1 − α2
, η2 =

α1
(
1 − η0

) − 1
α1 − α2

, (2.1)

where η0 can be any positive number satisfying 0 < η0 < (α1 − 1)/α1. This will ensure that
0 < η1, η2 < 1, and conditions (a) and (b) are satisfied. In the second case, we simply solve (a)
and (c) and obtain

η1 =
1 − α2

α1 − α2
, η2 =

α1 − 1
α1 − α2

. (2.2)

Following Philos [7], we say that a continuous function H(t, s) belongs to a function
class Da,b, denoted by H ∈ Da,b, if H(b, s) > 0,H(s, a) > 0 for b > s > a, and H(t, s) has
continuous partial derivatives ∂H(t, s)/∂t and ∂H(t, s)/∂s in [a, b] × [a, b]. Set

h1(t, s) =
∂H(t, s)/∂t

2
√
H(t, s)

, h2(t, s) =
−∂H(t, s)/∂s

2
√
H(t, s)

. (2.3)

Based on Lemma 2.1, we have the following interval criterion for oscillation of (1.1).

Theorem 2.2. If, for any T ≥ 0, there exist a1, b1, c1, a2, b2 and c2 such that T ≤ a1 < c1 < b1 ≤
a2 < c2 < b2,

pi(t) ≥ 0, t ∈ [a1 − τi, b1] ∪ [a2 − τi, b2], i = 1, 2, . . . , n,

qi(t) ≥ 0, t ∈ [a1 − τi, b1] ∪ [a2 − τi, b2], i = 1, 2, . . . , n,

e(t) ≤ 0, t ∈ [a1 − τi, b1], e(t) ≥ 0, t ∈ [a2 − τi, b2],

(2.4)

and there existHj ∈ Daj ,bj such that

1
Hj

(
cj , aj

)

∫ cj

aj

(
Qj(s)Hj

(
s, aj

) − p(s)h2
j1

(
s, aj

))
ds

+
1

Hj

(
bj , cj

)

∫bj

cj

(
Qj(s)Hj

(
bj , s

) − p(s)h2
j2

(
bj , s

))
ds > 0,

(2.5)

for j = 1, 2, where hj1 , hj2 are defined as in (2.3), η1, η2, . . . , ηn are positive constants satisfying (a)
and (b) in Lemma 2.1, η0 = 1 −∑n

i=1 ηi, and

Qj(t) =
n∑

i=1

pi(t)

(
t − aj

t − aj + τi

)

+
(
η−1
0 |e(t)|

)η0
n∏

i=1

(
η−1
i qi(t)

)ηi
(

t − aj

t − aj + τi

)αiηi

, (2.6)

then (1.1) is oscillatory.
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Proof. Let x(t) be a nonoscillatory solution of (1.1). Without loss of generality, wemay assume
that x(t) > 0 for all t ≥ t1 − τ ≥ 0, where t1 depends on the solution x(t) and τ = max{τi},
i = 1, . . . , n. When x(t) is eventually negative, the proof follows the same argument by using
the interval [a2, b2] instead of [a1, b1]. Choose a1, b1 ≥ t1 such that pi(t), qi(t) ≥ 0, e(t) ≤ 0 for
t ∈ [a1 − τi, b1], and i = 1, 2, . . . , n.

From (1.1), we have that x′(t) ≥ 0 for t ∈ [a1 − τi, b1]. If not, there exists t2 ∈ [a1 − τi, b1]
such that x′(t2) < 0. Because

(
p(t)x′(t)

)′ ≤ 0, (2.7)

we have p(t)x′(t) ≤ p(t2)x′(t2). Integrating from t2 to t, we obtain

x(t) ≤ x(t2) + p(t2)x′(t2)
∫ τ

t2

1
p(s)

ds. (2.8)

Noting the assumption (1.2), we have x(t) ≤ 0 for sufficient large t. This is a contradiction
with x(t) > 0. From (2.7) and the conditions p(t) > 0, p′(t) ≥ 0, we obtain x′′(t) ≤ 0 for
t ∈ [a1 − τi, b1].

Employing the convexity of x(t), we obtain

x(t − τi)
x(t)

≥ t − a1

t − a1 + τi
, t ∈ [a1, b1]. (2.9)

Define

ω(t) = −p(t)x
′(t)

x(t)
. (2.10)

Recall the arithmetic-geometric mean inequality

n∑

i=0

ηiui ≥
n∏

i=0

u
ηi
i , ui ≥ 0, (2.11)

where η0 = 1−∑n
i=1 ηi and ηi > 0, i = 1, 2, . . . , n, are chosen according to the given α1, α2, . . . , αn

as in Lemma 2.1 satisfying (a) and (b). Let

u0(t) = η−1
0 |e(t)|, ui(t) = η−1

i qi(t)(x(t − τi))αi . (2.12)
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We have

ω′(t) =
−(p(t)x(t))′

x(t)
+
ω2(t)
p(t)

=
∑n

i=1 pi(t)x(t − τi) +
∑n

i=1 qi(t)(x(t − τi))αi − e(t)
x(t)

+
ω2(t)
p(t)

≥
n∑

i=1

pi(t)
(

t − a1

t − a1 + τi

)

+
(
η−1
0 |e(t)|

)η0
∏n

i=1
(
η−1
i qi(t)

)ηixαiηi(t − τi)
x(t)

+
ω2(t)
p(t)

=
n∑

i=1

pi(t)
(

t − a1

t − a1 + τi

)

+
(
η−1
0 |e(t)|

)η0
∏n

i=1
(
η−1
i qi(t)

)ηixαiηi(t − τi)
∏n

i=1x
αiηi(t)

+
ω2(t)
p(t)

≥
n∑

i=1

pi(t)
(

t − a1

t − a1 + τi

)

+
(
η−1
0 |e(t)|

)η0
n∏

i=1

(
η−1
i qi(t)

)ηi
(

t − a1

t − a1 + τi

)αiηi

+
ω2(t)
p(t)

= Q1(t) +
ω2(t)
p(t)

.

(2.13)

Multiplying both sides of (2.13) by H1(b1, t) ∈ Da1,b1 and integrating by parts, we find
that

−ω(c1)H1(b1, c1) ≥
∫b1

c1

(
Q1(s)H1(b1, s) − p(s)h2

12(b1, s)
)
ds. (2.14)

That is,

−ω(c1) ≥ 1
H1(b1, c1)

∫b1

c1

(
Q1(s)H1(b1, s) − p(s)h2

12(b1, s)
)
ds. (2.15)

On the other hand, multiplying both sides of (2.13) by H1(t, a1) ∈ Da1,b1 and
integrating by parts, we can easily obtain

ω(c1) ≥ 1
H1(c1, a1)

∫ c1

a1

(
Q1(s)H1(s, a1) − p(s)h2

11(s, a1)
)
ds. (2.16)

Equations (2.15) and (2.16) yield

1
H1(c1, a1)

∫ c1

a1

(
Q1(s)H1(s, a1) − p(s)h2

11(s, a1)
)
ds

+
1

H1(b1, c1)

∫b1

c1

(
Q1(s)H1(b1, s) − p(s)h2

12(b1, s)
)
ds ≤ 0,

(2.17)

which contradicts (2.5) for j = 1. The proof of Theorem 2.2 is complete.
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Remark 2.3. When τ1 = · · · = τn = 0, Σn
i=1pi(t) = q(t), the conditions q(t) ≥ 0 for t ∈ [a1, b1] ∪

[a2, b2], p′(t) ≥ 0 and (1.2) can be removed. Therefore, Theorem 2.2 reduces to Theorem 1 in
[3].

Remark 2.4. When τ1 = · · · = τn = τ , Σn
i=1pi(t) = q(t), Theorem 2.2 reduces to Theorem 1 in [4]

for which the conditions q(t) ≥ 0 for t ∈ [a1−τ, b1]∪[a2−τ, b2], p′(t) ≥ 0 and (1.2) are needed.
There are some mistakes in the proof of Theorem 1 in [4].

The following theorem gives an oscillation criterion for the unforced (1.1).

Theorem 2.5. If, for any T ≥ 0, there exist a, b, and c such that T ≤ a < c < b, pi(t) ≥ 0, and
qi(t) ≥ 0 for t ∈ [a − τi, b], i = 1, 2, . . . , n, and there existsH ∈ Da,b, such that

1
H(c, a)

∫ c

a

(
H(s, a)Q(s) − p(s)h2

1(s, a)
)
ds +

1
H(b, c)

∫b

c

(
H(b, s)Q(s) − p(s)h2

2(b, s)
)
ds > 0,

(2.18)

where

Q(t) =
n∑

i=1

pi(t)
(

t − a

t − a + τi

)

+
n∏

i=1

(
η−1
i qi(t)

)ηi
(

t − a

t − a + τi

)αiηi

, (2.19)

η1, η2, . . . , ηn are positive constants satisfying (a) and (c) in Lemma 2.1, and h1, h2 are defined as in
(2.3), then the unforced (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of (1.1). Without loss of generality, wemay assume
that x(t) > 0 for all t ≥ t1 − τ ≥ 0, where t1 depends on the solution x(t) and τ = max{τi},
i = 1, . . . , n. Similar to the proof in Theorem 2.2, we can obtain

x(t − τi)
x(t)

≥ t − a

t − a + τi
, t ∈ [a, b]. (2.20)

Define

ω(t) = −p(t)x
′(t)

x(t)
. (2.21)

Recall the arithmetic-geometric mean inequality

n∑

i=1

ηiui ≥
n∏

i=1

u
ηi
i , ui ≥ 0, (2.22)

where ηi > 0, i = 1, 2, . . . , n, are chosen according to the given α1, α2, . . . , αn as in Lemma 2.1
satisfying (a) and (c). Let

ui = η−1
i qi(t)(x(t − τi))αi . (2.23)
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We can obtain

ω′(t) =
−(p(t)x(t))′

x(t)
+
ω2(t)
p(t)

=
∑n

i=1 pi(t)x(t − τi) +
∑n

i=1 qi(t)(x(t − τi))αi

x(t)
+
ω2(t)
p(t)

≥
n∑

i=1

pi(t)
(

t − a

t − a + τi

)

+
∏n

i=1
(
η−1
i qi(t)

)ηixαiηi(t − τi)
x(t)

+
ω2(t)
p(t)

=
n∑

i=1

pi(t)
(

t − a

t − a + τi

)

+
∏n

i=1
(
η−1
i qi(t)

)ηixαiηi(t − τi)
∏n

i=1x
αiηi(t)

+
ω2(t)
p(t)

≥
n∑

i=1

pi(t)
(

t − a

t − a + τi

)

+
n∏

i=1

(
η−1
i qi(t)

)ηi
(

t − a

t − a + τi

)αiηi

+
ω2(t)
p(t)

= Q(t) +
ω2(t)
p(t)

.

(2.24)

Multiplying both sides of (2.24) byH(b, t) ∈ Da,b and integrating by parts, we obtain

∫b

c

H(b, t)ω′(t)dt ≥
∫b

c

H(b, t)Q(t)dt +
∫b

c

H(b, t)
ω2(t)
p(t)

dt,

−H(b, c)ω(c) ≥
∫b

c

H(b, t)Q(t)dt +
∫b

c

(

H(b, t)
ω2(t)
p(t)

− 2ω(t)h2(b, t)
√
H(b, t)

)

dt

=
∫b

c

(
H(b, t)Q(t)−p(t)h2

2(b, t)
)
dt+

∫b

c

(√
H(b, t)
p(t)

ω(t)−
√
p(t)h2(b, t)

)2

dt

≥
∫b

c

(
H(b, t)Q(t) − p(t)h2

2(b, t)
)
dt.

(2.25)

It follows that

−ω(c) ≥ 1
H(b, c)

∫b

c

(
H(b, t)Q(t) − p(t)h2

2(b, t)
)
dt. (2.26)

On the other hand, multiplying both sides of (2.24) byH(t, a) ∈ Da,b and integrating by parts,
we have

ω(c) ≥ 1
H(c, a)

∫ c

a

(
H(t, a)Q(t) − p(t)h2

1(t, a)
)
dt. (2.27)
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Equations (2.26) and (2.27) yield

1
H(c, a)

∫ c

a

(
H(t, a)Q(t) − p(t)h2

1(t, a)
)
dt +

1
H(b, c)

∫b

c

(
H(b, t)Q(t) − p(t)h2

2(b, t)
)
dt < 0,

(2.28)

which contradicts (2.24). The proof of Theorem 2.5 is complete.

Remark 2.6. When τ1 = · · · = τn = 0, Σn
i=1pi(t) = q(t), the conditions q(t) ≥ 0 for t ∈ [a, b],

p′(t) ≥ 0 and (1.2) can be removed. Therefore, Theorem 2.5 reduces to Theorem 2 in [3].

Remark 2.7. When τ1 = · · · = τn = τ , Σn
i=1pi(t) = q(t), Theorem 2.5 reduces to Theorem 2 in [4]

for which the conditions q(t) ≥ 0 for t ∈ [a − τ, b], p′(t) ≥ 0 and (1.2) are needed.

3. Example

In this section, we provide an example to illustrate our results.
Consider the following equation:

x′′(t)+k sin t
∣
∣
∣
∣x

(

t−π

8

)∣
∣
∣
∣

α1

sgnx
(

t−π

8

)

+l cos t
∣
∣
∣x
(
t − π

4

)∣
∣
∣
α2

sgnx
(
t − π

4

)
=−m cos 2t, t≥0,

(3.1)

where k, l, m are positive constants, α1 > 1, and 0 < α2 < 1. Here

p(t) = 1, p1(t) = p2(t) = 0, q1(t) = k sin t, q2(t) = l cos t,

τ1 =
π

8
, τ2 =

π

4
, e(t) = −m cos 2t.

(3.2)

According to the direct computation, we have

Qj(t) = k0|cos 2t|η0(sin t)η1(cos t)η2
(

t − aj

t − aj + τ1

)α1η1( t − aj

t − aj + τ2

)α2η2

, j = 1, 2, (3.3)

where k0 = (η−1
0 /m)η0(η−1

1 /k)η1(η−1
2 /l)η2 , η0 can be any positive number satisfying 0 < η0 <

(α1 − 1)/α1, and η1, η2 satisfy (2.1). For any T ≥ 0, we can choose

a1 = 2iπ, a2 = b1 = 2iπ +
π

4
, b2 = 2iπ +

π

2
, c1 = 2iπ +

π

8
, c2 = 2iπ +

3π
8
,

(3.4)
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for i = 0, 1, . . . , and H1(t, s) = H2(t, s) = (t − s)2. By simple computation, we obtain hj1(t, s) =
hj2(t, s) = 1, j = 1, 2. From Theorem 2.2, we have that (3.1) is oscillatory if

∫2iπ+π/8

2iπ
Q1(s)(s − 2iπ)2ds +

∫2iπ+π/4

2iπ+π/8
Q1(s)

(
2iπ +

π

4
− s

)2
ds >

π

4
,

∫2iπ+3π/8

2iπ+π/4
Q2(s)

(
s − 2iπ − π

4

)2
ds +

∫2iπ+π/2

2iπ+3π/8
Q2(s)

(
2iπ +

π

2
− s

)2
ds >

π

4
.

(3.5)

If H1(t, s) = H2(t, s) = sin2(t − s), by simple computation, we obtain hj1(t, s) = hj2(t, s) =
cos(t − s) for j = 1, 2. From Theorem 2.2, we have that (3.1) is oscillatory if

∫2iπ+π/8

2iπ
Q1(s)(s − 2iπ)2ds +

∫2iπ+π/4

2iπ+π/8
Q1(s)

(
2iπ +

π

4
− s

)2
ds >

π

16
+

√
2
8

,

∫2iπ+3π/8

2iπ+π/4
Q2(s)

(
s − 2iπ − π

4

)2
ds +

∫2iπ+π/2

2iπ+3π/8
Q2(s)

(
2iπ +

π

2
− s

)2
ds >

π

16
+
√
2
8

.

(3.6)
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