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By using a Riccati transformation and inequality, we present some new oscillation theorems for the
second-order nonlinear dynamic equation with damping on time scales. An example illustrating
the importance of our results is also included.

1. Introduction

The theory of time scales, which has recently received a lot of attraction, was introduced by
Hilger in his Ph.D. Thesis in 1990 [1] in order to unify continuous and discrete analysis. The
books on the subjects of time scale, that is, measure chain, by Bohner and Peterson [2, 3]
summarize and organize much of time scale calculus.

We are concerned with second-order nonlinear dynamic equations with damping

((
xΔ(t)

)γ)Δ
+ p(t)

(
xΔ(t)

)γ
+ q(t)f(xσ(t)) = 0 (1.1)

on a time scale T; here p and q are real-valued positive rd-continuous positive functions
defined on T, and γ is a quotient of odd positive integers. We assume that f(x)/xγ ≥ L > 0,
x /= 0, supT = ∞, and define [t0,∞)

T
:= [t0,∞) ∩ T.
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In recent years, there has been much research activity concerning the oscillation and
nonoscillation of solutions of various dynamic equations [4–13]. However, there are few
papers dealing with the oscillation of dynamic equations with damping term [14–17].

Saker [18] presented several oscillation criteria for the nonlinear second-order
dynamic equation

(
p(t)xΔ(t)

)Δ
+ q(t)f(x(σ(t))) = 0, t ∈ [a, b], (1.2)

where a, b ∈ T and a < b.
Hassan [19] studied the oscillation behavior of the second-order half-linear dynamic

equation

(
r(t)
(
xΔ(t)

)γ)Δ
+ p(t)xγ(t) = 0, (1.3)

and obtained several new results.
Bohner et al. [20] established some oscillation criteria for the second-order nonlinear

dynamic equation

xΔΔ(t) + q(t)xΔσ(t) + p(t)
(
f ◦ xσ) = 0. (1.4)

Erbe et al. [16] considered the second-order nonlinear dynamic equations with
damping

(
r(t)
(
xΔ(t)

)γ)Δ
+ p(t)

(
xΔσ(t)

)γ
+ q(t)f(x(τ(t))) = 0, t ∈ T, (1.5)

and established some sufficient conditions for oscillation of (1.5).
Saker et al. [17] investigated the oscillation of second-order dynamic equations with

damping term of the form

(
r(t)xΔ(t)

)Δ
+ p(t)xΔσ(t) + q(t)f(x(σ(t))) = 0, t ∈ T, (1.6)

and obtained some new oscillation criteria for (1.6).
Zafer [21] studied the second-order nonlinear dynamic equations on time scales

yΔΔ + p(t)yΔ + q(t)yσ = 0, t ∈ T, (1.7)

and presented some oscillation and nonoscillation criteria. Obviously, (1.7) is the special
situation of (1.1).

Note that in the special case when T = R, (1.1) becomes the second-order nonlinear
damped differential equation

((
x′(t)

)γ)′ + p(t)
(
x′(t)

)γ + q(t)f(xσ(t)) = 0, t ∈ R, (1.8)
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and when T = Z, (1.1) becomes the second-order nonlinear damped difference equation

Δ
(
(Δx(t))γ

)
+ p(t)(Δx(t))γ + q(t)f(xσ(t)) = 0, t ∈ Z, (1.9)

where Δx(t) = x(t + 1) − x(t).
This paper is organized as follows: in Section 2, we give some preliminaries and

lemmas. In Section 3, we will establish some oscillation criteria for (1.1). In Section 4, we
give an example to illustrate the main results.

2. Preliminaries

It will be convenient to make the following notations:

d+(t) := max{0, d(t)}, d−(t) := max{0,−d(t)}, β(t) :=

⎧
⎨
⎩
α(t), 0 < γ ≤ 1,

αγ(t), γ > 1,

α(t) :=
t − t∗

t − t∗ + μ(t)
, R(t) := ep/(1−pμ)(t, t∗).

(2.1)

Lemma 2.1. Assume that x is Δ-differentiable. Then from Keller’s chain rule [2, Theorem 1.90],

(
(x(t))γ

)Δ = γ

∫1

0
[hxσ(t) + (1 − h)x(t)]γ−1xΔ(t)dh. (2.2)

Lemma 2.2 (see [22]). If f(x) = −Ax(γ+1)/γ + Bx, A > 0, then f(x) attains its maximum value at
x0 = (γB/(γ + 1)A)γ , and f(x0) = (γγ/(γ + 1)γ+1)(Bγ+1/Aγ).

Lemma 2.3. Suppose that x is an eventually positive solution of equation (1.1), 1−p(t)μ(t) > 0, and

∫∞

t0

Δt

R1/γ(t)
= ∞. (2.3)

Then there exists a t∗ > t0, such that for t > t∗,

((
xΔ(t)

)γ)Δ
< 0, xΔ(t) > 0, xΔΔ(t) < 0, x(t) > (t − t∗)xΔ(t),

x(t)
xσ(t)

> α(t). (2.4)

Proof. Pick t1 ∈ [t0,∞)
T
such that xσ(t) > 0 on [t1,∞)

T
. From (1.1), we have

[(
xΔ(t)

)γ]Δ
+ p(t)

(
xΔ(t)

)γ
< 0, t ∈ [t1,∞)

T
. (2.5)
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So, we get

1
1 − μ(t)p(t)

[(
xΔ(t)

)γ]Δ
+

p(t)
1 − μ(t)p(t)

(
xΔ(t)

)γ
< 0, t ∈ [t1,∞)

T
. (2.6)

Therefore,

[
R(t)

(
xΔ(t)

)γ]Δ
< 0, t ∈ [t1,∞)

T
. (2.7)

We claim that xΔ(t) > 0. If not, there exist t1 ≥ t0 and a constant C < 0 such that

R(t)
(
xΔ(t)

)γ ≤ C < 0, (2.8)

hence

xΔ(t) ≤
(

C

R(t)

)1/γ

. (2.9)

Integrating the above inequality from t1 to t, we obtain

x(t) ≤ x(t1) + C1/γ
∫ t

t1

1
R1/γ(s)

Δs −→ −∞, t −→ ∞, (2.10)

which is a contradiction. Hence,

xΔ(t) > 0. (2.11)

Obviously, by (2.7) and (2.11), we can see that

[(
xΔ(t)

)γ]Δ
< 0. (2.12)

From (2.11) and (2.12), we have

xΔΔ(t) < 0. (2.13)

It follows from (2.13) that

x(t) > x(t) − x(t∗) =
∫ t

t∗
xΔ(s)Δs ≥ xΔ(t)(t − t∗). (2.14)
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In view of (2.14) and xσ(t) = x(t) + μ(t)xΔ(t), it is easy to get that

x(t)
xσ(t)

> α(t). (2.15)

3. Main Results

In this section, we will give some new oscillation criteria for (1.1).

Theorem 3.1. Assume that (2.3) holds. Further, suppose that 1 − p(t)μ(t) > 0, and there exists a
positive Δ-differentiable function δ, such that for all sufficiently large t∗,

lim sup
t→∞

∫ t

t∗

[
Lq(s)δσ(s) − γγ

(
γ + 1

)γ+1
Bγ+1(s)
Aγ(s)

]
Δs = ∞, (3.1)

where A(t) = γδσ(t)β(t)/(δ(t))(γ+1)/γ , B(t) = (δΔ(t) − p(t)δσ(t)αγ(t))/δ(t). Then every solution
x of (1.1) oscillates on [t0,∞)

T
.

Proof. Let x(t) be a nonoscillatory solution of (1.1) on [t0,∞)
T
. Without loss of generality, we

assume x(t) > 0, for t ≥ t∗ ≥ t0. Consider the generalized Riccati substitution

w(t) = δ(t)

(
xΔ(t)

)γ
xγ(t)

, t ≥ t∗ ≥ t0, (3.2)

then w(t) > 0, and by the product rule and then the quotient

wΔ(t) = δΔ(t)

(
xΔ(t)

)γ
xγ(t)

+ δσ(t)

((
xΔ(t)

)γ
xγ(t)

)Δ

= δΔ(t)

(
xΔ(t)

)γ
xγ(t)

+ δσ(t)

((
xΔ(t)

)γ)Δ

(xσ(t))γ
− δσ(t)

(
xΔ(t)

)γ((x(t))γ)Δ
(x(t))γ(xσ(t))γ

.

(3.3)

Using (1.1) and (3.2), we find

wΔ(t) ≤ w(t)
δΔ(t)
δ(t)

− p(t)δσ(t)

(
xΔ(t)
x(t)

)γ(
x(t)
xσ(t)

)γ

− Lq(t)δσ(t) − δσ(t)

(
xΔ(t)

)γ((x(t))γ)Δ
(x(t))γ(xσ(t))γ

.

(3.4)

If 0 < γ ≤ 1, from Lemma 2.1, we get

(
(x(t))γ

)Δ ≥ γ(xσ(t))γ−1xΔ(t), (3.5)
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hence

wΔ(t) ≤ w(t)
δΔ(t)
δ(t)

− p(t)δσ(t)

(
xΔ(t)
x(t)

)γ(
x(t)
xσ(t)

)γ

− Lq(t)δσ(t) − γδσ(t)

(
xΔ(t)
x(t)

)γ+1
x(t)
xσ(t)

.

(3.6)

In view of Lemma 2.3 and (3.2), we obtain

wΔ(t) ≤ −Lq(t)δσ(t) +

(
δΔ(t)
δ(t)

− p(t)
δσ(t)
δ(t)

αγ(t)

)
w(t) − γδσ(t)α(t)

(δ(t))(γ+1)/γ
(w(t))(γ+1)/γ . (3.7)

If γ > 1, from Lemma 2.1, we get

(
(x(t))γ

)Δ ≥ γ(x(t))γ−1xΔ(t), (3.8)

hence

wΔ(t) ≤ w(t)
δΔ(t)
δ(t)

−p(t)δσ(t)

(
xΔ(t)
x(t)

)γ(
x(t)
xσ(t)

)γ

−Lq(t)δσ(t)−γδσ(t)

(
xΔ(t)
x(t)

)γ+1(
x(t)
xσ(t)

)γ

.

(3.9)

In view of Lemma 2.3, we have

wΔ(t) ≤ −Lq(t)δσ(t) +

(
δΔ(t)
δ(t)

− p(t)
δσ(t)
δ(t)

αγ(t)

)
w(t) − γδσ(t)αγ(t)

(δ(t))(γ+1)/γ
(w(t))(γ+1)/γ . (3.10)

Therefore,

wΔ(t) ≤ −Lq(t)δσ(t) +

(
δΔ(t)
δ(t)

− p(t)
δσ(t)
δ(t)

αγ(t)

)
w(t) − γδσ(t)β(t)

(δ(t))(γ+1)/γ
(w(t))(γ+1)/γ . (3.11)

From Lemma 2.3, we get

wΔ(t) ≤ −Lq(t)δσ(t) +
γγ

(
γ + 1

)γ+1
Bγ+1(t)
Aγ(t)

. (3.12)

Integrating the above inequality from t∗ to t, we have

∫ t

t∗

[
Lq(s)δσ(s) − γγ

(
γ + 1

)γ+1
Bγ+1(s)
Aγ(s)

]
Δs ≤ w(t∗) (3.13)

which leads to a contradiction to (3.1). This completes the proof.
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Remark 3.2. From Theorem 3.1, we can obtain different conditions for oscillation of all
solutions of (1.1)with different choice of δ.

Theorem 3.3. Assume that (2.3) holds. Further, suppose that 1−p(t)μ(t) > 0, and there exist positive
Δ-differentiable functions δ and r, such that for all sufficiently large t∗,

lim sup
t→∞

∫ t

t∗

[
Lq(s)δ(s)r(s) − γγ

(
γ + 1

)γ+1
Bγ+1(s)
Aγ(s)

]
Δs = ∞, (3.14)

where A(t) = γr(t)δ(t)/(δσ(t))(γ+1)/γ , B(t) = r(t)(δΔ(t) − p(t)δ(t))/δσ(t) + rΔ(t). Then every
solution x of (1.1) oscillates on [t0,∞)

T
.

Proof. Let x(t) be a nonoscillatory solution of (1.1) on [t0,∞)
T
. Without loss of generality, we

assume x(t) > 0, for t ≥ t∗ ≥ t0. Consider the generalized Riccati substitution as in (3.2). Then
w(t) > 0, and by the product rule and then the quotient

wΔ(t) = δΔ(t)

((
xΔ(t)

)γ
xγ(t)

)σ

+ δ(t)

((
xΔ(t)

)γ
xγ(t)

)Δ

= δΔ(t)

((
xΔ(t)

)γ
xγ(t)

)σ

+ δ(t)

((
xΔ(t)

)γ)Δ

(xσ(t))γ
− δ(t)

(
xΔ(t)

)γ((x(t))γ)Δ
(x(t))γ(xσ(t))γ

,

(3.15)

it follows from (1.1) and (3.2) that

wΔ(t) ≤ wσ(t)
δΔ(t)
δσ(t)

− p(t)δ(t)

(
xΔσ(t)
xσ(t)

)γ(
xΔ(t)
xΔσ(t)

)γ

− Lq(t)δ(t) − δ(t)

(
xΔ(t)

)γ((x(t))γ)Δ
(x(t))γ(xσ(t))γ

.

(3.16)

If 0 < γ ≤ 1, from Lemma 2.1, we get

(
(x(t))γ

)Δ ≥ γ(xσ(t))γ−1xΔ(t), (3.17)

hence

wΔ(t) ≤ wσ(t)
δΔ(t)
δσ(t)

− p(t)δ(t)

(
xΔσ(t)
xσ(t)

)γ(
xΔ(t)
xΔσ(t)

)γ

− Lq(t)δ(t)

− γδ(t)

(
xΔσ(t)
xσ(t)

)γ+1(
xσ(t)
x(t)

)γ
(

xΔ(t)
xΔσ(t)

)γ+1

.

(3.18)

In view of Lemma 2.3, we see that

wΔ(t) ≤ −Lq(t)δ(t) +
(

δΔ(t)
δσ(t)

− p(t)
δ(t)
δσ(t)

)
wσ(t) − γδ(t)

(δσ(t))(γ+1)/γ
(wσ(t))(γ+1)/γ . (3.19)
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If γ > 1, from Lemma 2.1, we get

(
(x(t))γ

)Δ ≥ γ(x(t))γ−1xΔ(t). (3.20)

So,

wΔ(t) ≤ wσ(t)
δΔ(t)
δσ(t)

− p(t)δ(t)

(
xΔσ(t)
xσ(t)

)γ(
xΔ(t)
xΔσ(t)

)γ

− Lq(t)δ(t)

− γδ(t)

(
xΔσ(t)
xσ(t)

)γ+1
xσ(t)
x(t)

(
xΔ(t)
xΔσ(t)

)γ+1

.

(3.21)

In view of Lemma 2.3, we find

wΔ(t) ≤ −Lq(t)δ(t) +
(

δΔ(t)
δσ(t)

− p(t)
δ(t)
δσ(t)

)
wσ(t) − γδ(t)

(δσ(t))(γ+1)/γ
(wσ(t))(γ+1)/γ . (3.22)

Therefore,

wΔ(t) ≤ −Lq(t)δ(t) +
(

δΔ(t)
δσ(t)

− p(t)
δ(t)
δσ(t)

)
wσ(t) − γδ(t)

(δσ(t))(γ+1)/γ
(wσ(t))(γ+1)/γ . (3.23)

From Lemma 2.2, we obtain

wΔ(t) ≤ −Lq(t)δσ(t) +
γγ

(
γ + 1

)γ+1
Bγ+1(t)
Aγ(t)

. (3.24)

Integrating the above inequality from t∗ to t, we get

∫ t

t∗

[
Lq(s)δ(s)r(s) − γγ

(
γ + 1

)γ+1
Bγ+1(s)
Aγ(s)

]
Δs ≤ r(t∗)w(t∗) (3.25)

which leads to a contradiction to (3.14). This completes the proof.

Remark 3.4. From Theorem 3.3, we can obtain different conditions for oscillation of all
solutions of (1.1)with different choice of δ and r.

In the following, we will establish Kamenev-type oscillation criteria for (1.1).

Theorem 3.5. Assume that (2.3) holds. Further, suppose that 1 − p(t)μ(t) > 0, and there exists a
positive Δ-differentiable function δ, such that for m > 1 and all sufficiently large t∗,

lim sup
t→∞

1
tm

∫ t

t∗
(t − s)m

[
Lq(s)δσ(s) − γγ

(
γ + 1

)γ+1
Bγ+1(s)
Aγ(s)

]
Δs = ∞, (3.26)
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where A(t) = γδσ(t)β(t)/(δ(t))(γ+1)/γ , B(t) = (δΔ(t) − p(t)δσ(t)αγ(t))/δ(t). Then every solution
x of (1.1) is oscillatory on [t0,∞)T.

Proof. We may assume that (1.1) has a nonoscillatory solution x(t) such that x(t) > 0. Define
w by (3.2) as before, then we get (3.24). From (3.24), we have

Lq(t)δσ(t) − γγ

(
γ + 1

)γ+1
Bγ+1(t)
Aγ(t)

≤ −wΔ(t). (3.27)

Thus

∫ t

t∗
(t − s)m

[
Lq(s)δσ(s) − γγ

(
γ + 1

)γ+1
Bγ+1(s)
Aγ(s)

]
Δs ≤ −

∫ t

t∗
(t − s)mwΔ(s)Δs. (3.28)

Upon integration, we arrive at

−
∫ t

t∗
(t − s)mwΔ(t)Δs = (t − s)m w(t)|tt∗ −

∫ t

t∗

(
(t − s)m

)Δsw(σ(t))Δs. (3.29)

Note that ((t − s)m)Δs ≤ −m(t − σ(s))m−1 ≤ 0, t ≥ σ(s), m ≥ 1 (see Saker [11]); then using
(3.28), we have

∫ t

t∗
(t − s)m

[
Lq(s)δσ(s) − γγ

(
γ + 1

)γ+1
Bγ+1(s)
Aγ(s)

]
Δs ≤ (t − t∗)mw(t∗). (3.30)

Therefore,

1
tm

∫ t

t∗
(t − s)m

[
Lq(s)δσ(s) − γγ

(
γ + 1

)γ+1
Bγ+1(s)
Aγ(s)

]
Δs ≤ (t − t∗)m

tm
w(t∗). (3.31)

Hence,

lim sup
t→∞

1
tm

∫ t

t∗
(t − s)m

[
Lq(s)δσ(s) − γγ

(
γ + 1

)γ+1
Bγ+1(s)
Aγ(s)

]
Δs = ∞, (3.32)

which contradicts (3.26). This completes the proof.

Theorem 3.6. Assume that (2.3) holds. Further, suppose that 1 − p(t)μ(t) > 0, and there exists a
positive Δ-differentiable function δ, such that for m > 1 and all sufficiently large t∗,

lim sup
t→∞

1
tm

∫ t

t∗
(t − s)m

[
Lq(s)δ(s) − γγ

(
γ + 1

)γ+1
Bγ+1(s)
Aγ(s)

]
Δs = ∞, (3.33)
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where A(t) = γδ(t)/(δσ(t))(γ+1)/γ , B(t) = (δΔ(t) − p(t)δ(t))/δσ(t). Then every solution x of (1.1)
oscillates on [t0,∞)

T
.

Proof. In view of Theorem 3.3, the proof is similar to that of [18, Theorem 3.2].

In the following, we will establish the Philos-type oscillation criteria for (1.1).

Theorem 3.7. Assume that (2.3) holds. Further, suppose that 1− p(t)μ(t) > 0, there exists a positive
Δ-differentiable function δ, and H,h ∈ Crd(D,R), where D = {(t, s) : t ≥ s ≥ t0} such that

H(t, t) = 0, t ≥ t0, H(t, s) > 0, t > s ≥ t0. (3.34)

H has a continuous and nonpositiveΔ-partial derivativeHΔs(t, s) with respect to the second variable
and satisfies

HΔs(σ(t), s) +H(σ(t), σ(s))

(
δΔ(s) − p(s)δσ(s)αγ(s)

δ(s)

)
= −h(t, s)

δ(s)
(H(σ(t), σ(s)))γ/(γ+1),

(3.35)

and for sufficiently large t∗,

lim sup
t→∞

1
H(σ(t), t∗)

∫σ(t)

t∗
K(t, s)Δs = ∞, (3.36)

where

K(t, s) = LH(σ(t), σ(s))δσ(s)q(s) − (h−(t, s))
γ+1

(
γ + 1

)γ+1(
δσ(s)β(s)

)γ . (3.37)

Then every solution x of (1.1) oscillates on [t0,∞)
T
.

Proof. Let x(t) be a nonoscillatory solution of (1.1) on [t0,∞)
T
. Without loss of generality, we

assume x(t) > 0, for t ≥ t∗ ≥ t0. Define w by (3.2) as before, then we have (3.11). From (3.11),
we have

Lq(t)δσ(t) ≤ −wΔ(t) +

(
δΔ(t)
δ(t)

− p(t)
δσ(t)
δ(t)

αγ(t)

)
w(t) − γδσ(t)β(t)

(δ(t))(γ+1)/γ
(w(t))(γ+1)/γ . (3.38)
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Thus,

L

∫σ(t)

t∗
H(σ(t), σ(s))q(s)δσ(s)Δs ≤ −

∫σ(t)

t∗
H(σ(t), σ(s))wΔ(s)Δs

+
∫σ(t)

t∗
H(σ(t), σ(s))

(
δΔ(s)
δ(s)

− p(s)
δσ(s)
δ(s)

αγ(s)

)
w(s)Δs

−
∫σ(t)

t∗
H(σ(t), σ(s))

γδσ(s)β(s)

(δ(s))(γ+1)/γ
(w(s))(γ+1)/γΔs.

(3.39)

Integrating the right side by parts, we have

−
∫σ(t)

t∗
H(σ(t), σ(s))wΔ(s)Δs ≤ H(σ(t), t∗)w(t∗) +

∫σ(t)

t∗
HΔs(σ(t), s)w(s)Δs, (3.40)

and then by using (3.34) and (3.35), we arrive at

L

∫σ(t)

t∗
H(σ(t), σ(s))q(s)δσ(s)Δs

≤
∫σ(t)

t∗

[
h−(t, s)

δ(s)(H(σ(t), σ(s)))γ/(γ+1)
w(s) −H(σ(t), σ(s))

γδσ(s)β(s)

(δ(s))(γ+1)/γ
(w(s))(γ+1)/γ

]
Δs

+H(σ(t), t∗)w(t∗).
(3.41)

Define

λ =
γ + 1
γ

, Aλ = H(σ(t), σ(s))
γδσ(s)β(s)

δλ(s)
, Bλ−1 =

h−(t, s)

λ
(
γδσ(s)β(s)

)1/λ . (3.42)

By employing the inequality

λABλ−1 −Aλ ≤ (λ − 1)Bλ, λ ≥ 1, (3.43)

we obtain

h−(t, s)

δ(s)(H(σ(t), σ(s)))γ/(γ+1)
w(s)

−H(σ(t), σ(s))
γδσ(s)β(s)

(δ(s))(γ+1)/γ
(w(s))(γ+1)/γ ≤ (h−(t, s))

γ+1

(
γ + 1

)γ+1(
δσ(s)β(s)

)λ .
(3.44)
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Therefore,

1
H(σ(t), t∗)

∫σ(t)

t∗
K(t, s)Δs ≤ w(t∗), (3.45)

which contradicts (3.36). The proof is complete.

Theorem 3.8. Assume that (2.3) holds. Further, suppose that 1− p(t)μ(t) > 0, there exists a positive
Δ-differentiable function δ, and H,h ∈ Crd(D,R), where D = {(t, s) : t ≥ s ≥ t0} such that (3.28)
holds, and H has a continuous and nonpositive Δ-partial derivative HΔs(t, s) with respect to the
second variable and satisfies

HΔs(t, s) +H(t, s)

(
δΔ(s)
δ(s)

− p(s)
δσ(s)
δ(s)

)
= −h(t, s)

δσ(s)
(H(t, s))γ/(γ+1). (3.46)

If for sufficiently large t∗

lim sup
t→∞

1
H(t, t∗)

∫ t

t∗
K(t, s)Δs = ∞, (3.47)

where

K(t, s) = LH(t, s)δ(s)q(s) − (h−(t, s))
γ+1

(
γ + 1

)γ+1(δσ(s))γ
, (3.48)

then every solution x of (1.1) oscillates on [t0,∞)
T
.

Proof. In view of Theorem 3.3, the proof is similar to [16, Theorem 2.2].

Theorem 3.9. Assume that (2.3) holds. Further, suppose that 1−p(t)μ(t) > 0, and for all sufficiently
large t∗,

lim sup
t→∞

(t − t∗)γ
∫∞

t

q(s)Δs >
1
L
. (3.49)

Then every solution x of (1.1) oscillates on [t0,∞)
T
.

Proof. Let x(t) be a nonoscillatory solution of (1.1) on [t0,∞)
T
. Without loss of generality, we

assume x(t) > 0, for t ≥ t∗ ≥ t0. From (1.1) and Lemma 2.3, we get for T ≥ t ≥ t∗,

L

∫T

t

q(s)xγ(s)Δs < L

∫T

t

q(s)xγσ(s)Δs <
(
xΔ(t)

)γ −
(
xΔ(T)

)γ
<
(
xΔ(t)

)γ
. (3.50)
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Letting T → ∞, we obtain

L

∫∞

t

q(s)xγ(s)Δs <
(
xΔ(t)

)γ
. (3.51)

In view of Lemma 2.3, we obtain

L

∫∞

t

q(s)Δs <

(
xΔ(t)
x(t)

)γ

<

(
1

t − t∗

)γ

. (3.52)

Thus

lim sup
t→∞

(t − t∗)γ
∫∞

t

q(s)Δs ≤ 1
L
, (3.53)

which is a contradiction. This completes the proof.

4. Example

In this section, we will give an example to illustrate our results.

Example 4.1. Consider the second-order damped dynamic equation on time scales

((
xΔ(t)

)γ)Δ
+
1
t

(
xΔ(t)

)γ
+ t(xσ(t))γ = 0, (4.1)

where

μ(t) < t, p(t) =
1
t
, q(t) = t, δ(t) = 1, L = 1, f(x) = xγ . (4.2)

Obviously, f(x)/xγ = 1 ≥ L = 1.

It is easy to see that (2.3) holds. For 0 < γ ≤ 1, one has

lim sup
t→∞

∫ t

t∗

[
s− γγ

(
γ + 1

)γ+1
((1/s)αγ(s))γ+1(

γαγ(S)
)γ

]
Δs = lim sup

t→∞

∫ t

t∗

[
s− 1
(
γ + 1

)γ+1
1

sγ+1
αγ2(s)

]
Δs = ∞,

(4.3)

and for γ > 1,

lim sup
t→∞

∫ t

t∗

[
s − γγ

(
γ + 1

)γ+1
((1/s)αγ(s))γ+1(

γα(s)
)γ

]
Δs = lim sup

t→∞

∫ t

t∗

[
s − 1
(
γ + 1

)γ+1
1

sγ+1
αγ(s)

]
Δs = ∞.

(4.4)

Hence, by Theorem 3.1, every solution x of (4.1) is oscillatory.



14 Discrete Dynamics in Nature and Society

Remark 4.2. It is easy to see that the results in [16–21] cannot be applied in (4.1), and to the
best of our knowledge nothing is known regarding the oscillatory behavior of (1.1), so our
results are new.
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