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By using fermionic p-adic q-integral on Zp, we give some interesting relationship between the
twisted (h, q)-Euler numbers with weight α and the q-Bernstein polynomials.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper, we always make use of the
following notations: Z denotes the ring of rational integers, Zp denotes the ring of p-adic
rational integers, Qp denotes the field of p-adic rational numbers, and Cp denotes the
completion of algebraic closure of Qp, respectively. Let N be the set of natural numbers and
Z+ = N ∪ {0}. Let Cpn = {w | wpn = 1} be the cyclic group of order pn, and let

Tp = lim
n→∞

Cpn = Cp∞ = ∪n≥0Cpn, (1.1)

(see [1–22]), be the locally constant space. For w ∈ Tp, we denote by φw : Zp → Cp the
locally constant function x �→ wx. The p-adic absolute value is defined by |x|p = 1/pr , where
x = prs/t(r ∈ Q and s, t ∈ Z with (s, t) = (p, s) = (p, t) = 1). In this paper, we assume that
q ∈ Cp with |q − 1|p < 1 as an indeterminate. The q-number is defined by

[x]q =
1 − qx

1 − q
, (1.2)
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(see [1–22]). Note that limq→ 1[x]q = x. For

f ∈ UD
(
Zp

)
=
{
f | f : Zp −→ Cp is uniformly differentiable function

}
, (1.3)

the fermionic p-adic q-integral on Zp is defined by Kim as follows:

I−q
(
f
)
=
∫

Zp

f(x)dμ−q(x) = lim
N→∞

1 + q

1 + qp
N

pN−1∑

x=0

f(x)
(−q)x, (1.4)

(see [1–7]). From (1.4), we note that

qnI−q
(
fn
)
= (−1)nI−q

(
f
)
+ [2]q

n−1∑

l=0

(−1)n−1−lqlf(l), (1.5)

where fn(x) = f(x + n) for n ∈ N.
For k, n ∈ Z+ and x ∈ [0, 1], Kim defined q-Bernstein polynomials, which are different

q-Bernstein polynomials of Phillips, as follows:

Bk,n

(
x, q
)
=

(
n

k

)

[x]kq[1 − x]n−kq−1 , (1.6)

(see [5]). In [9], the p-adic extension of (1.6) is given by

Bk,n

(
x, q
)
=

(
n

k

)

[x]kq[1 − x]n−kq−1 , where x ∈ Zp, n, k ∈ Z+. (1.7)

For α ∈ Z, h ∈ Z, w ∈ Tp, and q ∈ Cp with |1 − q|p ≤ 1, twisted (h, q)-Euler numbers E(h,α)
n,q,w

with weight α are defined by

E
(h,α)
n,q,w =

∫

Zp

φw(x)qx(h−1)[x]nqαdμ−q(x). (1.8)

In the special case, x = 0, E(h,α)
n,q,w(0) = E

(h,α)
n,q,w are called the n-th twisted (h, q)-Euler numbers

with weight α.
In this paper, we investigate some relations between the q-Bernstein polynomials

and the twisted (h, q)-Euler numbers with weight α. From these relations, we derive some
interesting identities on the twisted (h, q)-Euler numbers and polynomials with weight
α.
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2. Twisted (h, q)-Euler Numbers and Polynomials with Weight α

By using p-adic q-integral and (1.8), we obtain

∫

Zp

φw(x)qx(h−1)[x]nqαdμ−q(x) = lim
N→∞

1
[
pN
]
−q

pN−1∑

x=0
[x]nqαw

xqx(h−1)
(−q)x

= [2]q

(
1

1 − qα

)n n∑

l=0

(
n

l

)

(−1)l 1
1 +wqαl+h

.

(2.1)

We set

F
(h,α)
q,w (t) =

∞∑

n=0

E
(h,α)
n,q,w

tn

n!
. (2.2)

By (2.1) and (2.2), we have

F
(h,α)
q,w (t) =

∞∑

n=0

E
(h,α)
n,q,w

tn

n!

= [2]q
∞∑

n=0

((
1

1 − qα

)n n∑

l=0

(
n

l

)

(−1)l 1
1 +wqαl+h

)
tn

n!

= [2]q
∞∑

m=0
(−1)mwmqhme[m]qαt .

(2.3)

Since [x + y]qα = [x]qα + qαx[y]qα , we obtain

E
(h,α)
n,q,w(x) =

∫

Zp

φw

(
y
)
qy(h−1)

[
y + x

]
qα tdμ−q

(
y
)

=
n∑

l=0

(
n

l

)

qαxl[x]n−lqα

∫

Zp

φw

(
y
)
qy(h−1)

[
y
]l
qαdμ−q

(
y
)

=
n∑

l=0

(
n

l

)

qαxl[x]n−lqα E
(h,α)
l,q,w

.

(2.4)

Therefore, we obtain the following theorem.

Theorem 2.1. For n ∈ Z+ and w ∈ Tp, we have

E
(h,α)
n,q,w(x) = [2]q

∞∑

m=0
(−1)mwmqhm[x +m]nqα . (2.5)
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Furthermore,

E
(h,α)
n,q,w(x) =

n∑

l=0

(
n

l

)

qαxl[x]n−lqα E
(h,α)
l,q,w

=
(
[x]qα + qαxE

(h,α)
q,w

)n
,

(2.6)

with usual convention about replacing (E(h,α)
q,w )

n
with E(h,α)

n,q,w.

Let F(h,α)
q,w (t, x) =

∑∞
n=0E

(h,α)
n,q,w(x)tn/n!. Then we see that

F
(h,α)
q,w (t, x) = [2]q

∞∑

m=0
(−1)mwmqmhe[x+m]qαt . (2.7)

In the special case, x = 0, let F(h,α)
q,w (t, 0) = F

(h,α)
q,w (t).

By (2.1), we get

E
(h,α)
n,q−1,w−1(1 − x) = (−1)nwqαn+h−1E(h,α)

n,q,w(x). (2.8)

From (2.3) and (2.7), we note that

wqhF
(h,α)
q,w (t, 1) + F

(h,α)
q,w (t) = [2]q. (2.9)

By (2.9), we get the following recurrence formula:

E
(h,α)
0,q,w =

[2]q
1 + qhw

, qhwE
(h,α)
n,q,w(1) + E

(h,α)
n,q,w = 0 if n > 0. (2.10)

By (2.10) and Theorem 2.1, we obtain the following theorem.

Theorem 2.2. For n ∈ Z+ and w ∈ Tp, we have

E
(h,α)
0,q,w =

[2]q
1 + qhw

, qhw
(
qαE

(h,α)
q,w + 1

)n
+ E

(h,α)
n,q,w = 0 if n > 0, (2.11)

with usual convention about replacing (E(h,α)
q,w )

n
with E(h,α)

n,q,w.
By (2.4), Theorem 2.1, and Theorem 2.2, we have

q2hw2E
(h,α)
n,q,w(2) −

[2]q
1 + qhw

q2hw2 −
[2]q

1 + qhw
qhw

= q2hw2
n∑

l=0

(
n

l

)

qαl
(
qαE

(h,α)
q,w + 1

)l −
[2]q

1 + qhw
q2hw2 −

[2]q
1 + qhw

qhw
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= q2hw2
n∑

l=1

(
n

l

)

qαl
(
qαE

(h,α)
q,w + 1

)l −
[2]q

1 + qhw
qhw

= −qhw
n∑

l=1

(
n

l

)

qαlE
(h,α)
l,q,w

−
[2]q

1 + qhw
qhw

= −qhw
n∑

l=0

(
n

l

)

qαlE
(h,α)
l,q,w

= −qhwE
(h,α)
n,q,w(1) = E

(h,α)
n,q,w if n > 0.

(2.12)

Therefore, we obtain the following theorem.

Theorem 2.3. For n ∈ N, we have

E
(h,α)
n,q,w(2) =

(
1

q2hw2

)

E
(h,α)
n,q,w +

[2]q
1 + qhw

+

(
1

qhw

)
[2]q

1 + qhw
. (2.13)

By (2.8), we see that

qh−1w
∫

Zp

[1 − x]nq−αq
(h−1)xwxdμ−q(x) = (−1)nqαn+h−1w

∫

Zp

[x − 1]nqαq
(h−1)xwxdμ−q(x)

= (−1)nqαn+h−1wE
(h,α)
n,q,w(−1) = E

(h,α)
n,q−1,w−1(2).

(2.14)

Therefore, we obtain the following theorem.

Theorem 2.4. For n ∈ Z+, we have

qh−1w
∫

Zp

[1 − x]nq−αq
(h−1)xwxdμ−q(x) = E

(h,α)
n,q−1,w−1(2). (2.15)

Let n ∈ N. By Theorems 2.3 and 2.4, we get

qh−1w
∫

Zp

[1 − x]nq−αq
(h−1)xwxdμ−q(x)

= q2hw2E
(h,α)
n,q−1,w−1 + qh−1w

(
[2]q

1 + qhw

)

+ q2h−1w2

(
[2]q

1 + qhw

)

.

(2.16)

From (2.16), we have

∫

Zp

[1 − x]nq−1q
(h−1)xwxdμ−q(x) = qh+1wE

(h,α)
n,q−1,w−1 +

(
[2]q

1 + qhw

)

+ qhw

(
[2]q

1 + qhw

)

. (2.17)
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Therefore, we obtain the following corollary.

Corollary 2.5. For n ∈ N, we have

∫

Zp

[1 − x]nq−αq
(h−1)xwxdμ−q(x) = qh+1wE

(h,α)
n,q−1,w−1 + [2]q. (2.18)

Kim defined the q-Bernstein polynomials with weight α of degree n as below.
For x ∈ Zp, the p-adic q-Bernstein polynomials with weight α of degree n are given by

B
(α)
k,n

(
x, q
)
=

(
n

k

)

[x]kqα[1 − x]n−kq−α , where n, k ∈ Z+. (2.19)

compare [5, 10, 22] By (2.19), we get the symmetry of q-Bernstein polynomials as follows:

B
(α)
k,n

(
x, q
)
= B

(α)
n−k,n

(
1 − x, q−1

)
, (2.20)

see [8]. Thus, by Corollary 2.5, (2.19), and (2.20), we see that

∫

Zp

B
(α)
k,n

(
x, q
)
q(h−1)xwxdμ−q(x) =

∫

Zp

B
(α)
n−k,n

(
1 − x, q−1

)
q(h−1)xwxdμ−q(x)

=

(
n

k

)
k∑

l=0

(
k

l

)

(−1)k+l
∫

Zp

[1 − x]n−lq−α q
(h−1)xwxdμ−q(x)

=

(
n

k

)
k∑

l=0

(
k

l

)

(−1)k+l
(
qh+1wE

(h,α)
n−l,q−1,w−1 + [2]q

)
.

(2.21)

For n, k ∈ Z+ with n > k, we have

∫

Zp

B
(α)
k,n

(
x, q
)
q(h−1)xwxdμ−q(x) =

(
n

k

)
k∑

l=0

(
k

l

)

(−1)k+l
(
qh+1wE

(h,α)
n−l,q−1,w−1 + [2]q

)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

qh+1wE
(h,α)
n,q−1,w−1 + [2]q if k = 0,

qh+1w

⎛

⎝
n

k

⎞

⎠
k∑

l=0

⎛

⎝
k

l

⎞

⎠(−1)k+lE(h,α)
n−l,q−1,w−1 if k > 0.

(2.22)
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Let us take the fermionic q-integral on Zp for the q-Bernstein polynomials with weight α of degree n
as follows:

∫

Zp

B
(α)
k,n

(
x, q
)
q(h−1)xwxdμ−q(x) =

(
n

k

)∫

Zp

[x]kq[1 − x]n−kq−α q
(h−1)xwxdμ−q(x)

=

(
n

k

)
n−k∑

l=0

(
n − k

l

)

(−1)lE(h,α)
l+k,q,w.

(2.23)

Therefore, by (2.22) and (2.23), we obtain the following theorem.

Theorem 2.6. Let n, k ∈ Z+ with n > k. Then we have

∫

Zp

B
(α)
k,n

(
x, q
)
q(h−1)xwxdμ−q(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

qh+1wE
(h,α)
n,q−1,w−1 + [2]q if k = 0,

qh+1w

⎛

⎝
n

k

⎞

⎠
k∑

l=0

⎛

⎝
k

l

⎞

⎠(−1)k+lE(h,α)
n−l,q−1,w−1 if k > 0.

(2.24)

Moreover,

n−k∑

l=0

(
n − k

l

)

(−1)lE(h,α)
l+k,q,w =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

qh+1wE
(h,α)
n,q−1,w−1 + [2]q if k = 0,

qh+1w
k∑

l=0

⎛

⎝
k

l

⎞

⎠(−1)k+lE(h,α)
n−l,q−1,w−1 if k > 0.

(2.25)

Let n1, n2, k ∈ Z+ with n1 + n2 > 2k. Then we get

∫

Zp

B
(α)
k,n1

(
x, q
)
B
(α)
k,n2

(
x, q
)
q(h−1)xwxdμ−q(x)

=

(
n1

k

)(
n2

k

)
2k∑

l=0

(
2k

l

)

(−1)l+2k
∫

Zp

[1 − x]n1+n2−l
q−α q(h−1)xwxdμ−q(x)

=

(
n1

k

)(
n2

k

)
2k∑

l=0

(
2k

l

)

(−1)l+2k
(
qh+1wE

(h,α)
n1+n2−l,q−1,w−1 + [2]q

)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

qh+1wE
(h,α)
n1+n2,q−1,w−1 + [2]q if k = 0,

⎛

⎝
n1

k

⎞

⎠

⎛

⎝
n2

k

⎞

⎠
2k∑

l=0

⎛

⎝
2k

l

⎞

⎠(−1)2k+l
(
qh+1wE

(h,α)
n1+n2−l,q−1,w−1 + [2]q

)
if k /= 0.

(2.26)

Therefore, by (2.26), we obtain the following theorem.
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Theorem 2.7. For n1, n2, k ∈ Z+ with n1 + n2 > 2k, we have

∫

Zp

B
(α)
k,n1

(
x, q
)
B
(α)
k,n2

(
x, q
)
q(h−1)xwxdμ−q(x)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

qh+1wE
(h,α)
n1+n2,q−1,w−1 + [2]q if k = 0,

qh+1w

⎛

⎝
n1

k

⎞

⎠

⎛

⎝
n2

k

⎞

⎠
2k∑

l=0

⎛

⎝
2k

l

⎞

⎠(−1)2k+lE(h,α)
n1+n2−l,q−1,w−1 if k /= 0.

(2.27)

From the binomial theorem, we can derive the following equation:

∫

Zp

B
(α)
k,n1

(
x, q
)
B
(α)
k,n2

(
x, q
)
q(h−1)xwxdμ−q(x)

=

(
n1

k

)(
n2

k

)
n1+n2−2k∑

l=0

(−1)l
(
n1 + n2 − 2k

l

)∫

Zp

[x]2k+lq q(h−1)xwxdμ−q(x)

=

(
n1

k

)(
n2

k

)
n1+n2−2k∑

l=0

(−1)l
(
n1 + n2 − 2k

l

)

E
(h,α)
2k+l,q,w.

(2.28)

Thus, by (2.28) and Theorem 2.7, we obtain the following corollary.

Corollary 2.8. Let n1, n2, k ∈ Z+ with n1 + n2 > 2k. Then we have

n1+n2−2k∑

l=0

(−1)l
(
n1 + n2 − 2k

l

)

E
(h,α)
2k+l,q =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

qh+1wE
(h,α)
n1+n2,q−α,w−1 + [2]q if k = 0,

qh+1w
2k∑

l=0

⎛

⎝
2k

l

⎞

⎠(−1)2k+lE(h,α)
n1+n2−l,q−α,w−1 if k > 0.

(2.29)

For x ∈ Zp and s ∈ N with s ≥ 2, let n1, n2, . . . , ns, k ∈ Z+ with n1 + · · · + ns > sk. Then we
take the fermionic p-adic q-integral on Zp for the q-Bernstein polynomials with weight α of degree n
as follows:

∫

Zp

B
(α)
k,n1

(
x, q
) · · ·B(α)

k,ns

(
x, q
)

︸ ︷︷ ︸
s-times

q(h−1)xwxdμ−q(x)

=

(
n1

k

)

· · ·
(
ns

k

)∫

Zp

[x]skq [1 − x]n1+···+ns−sk
q−α q(h−1)xwxdμ−q(x)
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=

(
n1

k

)

· · ·
(
ns

k

)
sk∑

l=0

(
sk

l

)

(−1)l+sk
∫

Zp

[1 − x]n1+···+ns−l
q−α q(h−1)xwxdμ−q(x)

=

(
n1

k

)

· · ·
(
ns

k

)
sk∑

l=0

(
sk

l

)

(−1)l+sk
(
qh+1wE

(h,α)
n1+···+ns−l,q−1,w−1 + [2]q

)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

qh+1wE
(h,α)
n1+···+ns,q−1,w−1 + [2]q if k = 0,

qh+1w

⎛

⎝
n1

k

⎞

⎠ · · ·
⎛

⎝
ns

k

⎞

⎠
sk∑

l=0

⎛

⎝
sk

l

⎞

⎠(−1)l+skE(h,α)
n1+···+ns−l,q−1,w−1 if k > 0.

(2.30)

Therefore, by (2.30), we obtain the following theorem.

Theorem 2.9. For s ∈ N with s ≥ 2, let n1, n2, . . . , ns, k ∈ Z+ with n1 + · · · + ns > sk. Then we get

∫

Zp

B
(α)
k,n1

(
x, q
) · · ·B(α)

k,ns

(
x, q
)

︸ ︷︷ ︸
s-times

q(h−1)xwxdμ−q(x)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

qh+1wE
(h,α)
n1+···+ns,q−1,w−1 + [2]q if k = 0,

qh+1w

⎛

⎝
n1

k

⎞

⎠ · · ·
⎛

⎝
ns

k

⎞

⎠
sk∑

l=0

⎛

⎝
sk

l

⎞

⎠(−1)l+skE(h,α)
n1+···+ns−l,q−1,w−1 if k > 0.

(2.31)

By the definition of q-Bernstein polynomials with weight α and the binomial theorem, we
easily get

∫

Zp

B
(α)
k,n1

(
x, q
) · · ·B(α)

k,ns

(
x, q
)

︸ ︷︷ ︸
s-times

q(h−1)xwxdμ−q(x)

=

(
n1

k

)

· · ·
(
ns

k

)
n1+···+ns−sk∑

l=0

(−1)l
(
n1 + · · · + ns − sk

l

)∫

Zp

[x]sk+lq q(h−1)xwxdμ−q(x)

=

(
n1

k

)

· · ·
(
ns

k

)
n1+···+ns−sk∑

l=0

(−1)l
(
n1 + · · · + ns − sk

l

)

E
(h,α)
sk+l,q,w.

(2.32)

Therefore, we have the following corollary.
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Corollary 2.10. For w ∈ Tp, s ∈ N with s ≥ 2, let n1, n2, . . . , ns, k ∈ Z+ with n1 + · · · + ns > sk.
Then we have

n1+···+ns−sk∑

l=0

(−1)l
(
n1 + · · · + ns − sk

l

)

E
(h,α)
sk+l,q,w

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

qh+1wE
(h,α)
n1+···+ns,q−1,w−1 + [2]q if k = 0,

qh+1w
sk∑

l=0

⎛

⎝
sk

l

⎞

⎠(−1)l+skE(h,α)
n1+···+ns−l,q−1,w−1 if k > 0.

(2.33)

References

[1] L.-C. Jang, W.-J. Kim, and Y. Simsek, “A study on the p-adic integral representation on Zp associated
with Bernstein and Bernoulli polynomials,” Advances in Difference Equations, Article ID 163217, 6
pages, 2010.

[2] T. Kim, “q-Euler numbers and polynomials associated with p-adic q-integrals,” Journal of Nonlinear
Mathematical Physics, vol. 14, no. 1, pp. 15–27, 2007.

[3] T. Kim, “Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the
fermionic p-adic integral on Zp,” Russian Journal of Mathematical Physics, vol. 16, no. 4, pp. 484–491,
2009.

[4] T. Kim, “Barnes-type multiple q-zeta functions and q-Euler polynomials,” Journal of Physics. A.
Mathematical and Theoretical, vol. 43, no. 25, Article ID 255201, 11 pages, 2010.

[5] T. Kim, “A note on q-Bernstein polynomials,” Russian Journal of Mathematical Physics, vol. 18, no. 1, pp.
73–82, 2011.

[6] T. Kim, “q-Volkenborn integration,” Russian Journal of Mathematical Physics, vol. 9, no. 3, pp. 288–299,
2002.

[7] T. Kim, “q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients,”
Russian Journal of Mathematical Physics, vol. 15, no. 1, pp. 51–57, 2008.

[8] T. Kim, J. Choi, Y. H. Kim, and C. S. Ryoo, “On the fermionic p-adic integral representation of Bernstein
polynomials associated with Euler numbers and polynomials,” Journal of Inequalities and Applications,
vol. 2010, Article ID 864247, 12 pages, 2010.

[9] T. Kim, B. Lee, J. Choi, and Y. H. Kim, “A new approach of q-Euler numbers and polynomials,”
Proceedings of the Jangjeon Mathematical Society, vol. 14, no. 1, pp. 7–14, 2011.

[10] T. Kim, J. Choi, and Y.-H. Kim, “Some identities on the q-Bernstein polynomials, q-Stirling numbers
and q-Bernoulli numbers,” Advanced Studies in Contemporary Mathematics, vol. 20, no. 3, pp. 335–341,
2010.

[11] T. Kim, “Some identities for the Bernoulli, the Euler and the Genocchi numbers and polynomials,”
Advanced Studies in Contemporary Mathematics, vol. 20, no. 1, pp. 23–28, 2010.

[12] T. Kim, “The modified q-Euler numbers and polynomials,” Advanced Studies in Contemporary
Mathematics, vol. 16, no. 2, pp. 161–170, 2008.

[13] T. Kim, “Note on the Euler numbers and polynomials,”Advanced Studies in Contemporary Mathematics,
vol. 17, no. 2, pp. 131–136, 2008.

[14] H. Ozden and Y. Simsek, “A new extension of q-Euler numbers and polynomials related to their
interpolation functions,” Applied Mathematics Letters, vol. 21, no. 9, pp. 934–939, 2008.

[15] H. Ozden and Y. Simsek, “Interpolation function of the h, q-extension of twisted Euler numbers,”
Computers & Mathematics with Applications, vol. 56, no. 4, pp. 898–908, 2008.

[16] H. Ozden, Y. Simsek, and I. N. Cangul, “Euler polynomials associated with p-adic q-Euler measure,”
General Mathematics, vol. 15, no. 2, pp. 24–37, 2007.

[17] S.-H. Rim, J.-H. Jin, E.-J. Moon, and S.-J. Lee, “On multiple interpolation functions of the q-Genocchi
polynomials,” Journal of Inequalities and Applications, Article ID 351419, 13 pages, 2010.

[18] S.-H. Rim, S. J. Lee, E. J. Moon, and J. H. Jin, “On the q-Genocchi numbers and polynomials associated
with q-zeta function,” Proceedings of the Jangjeon Mathematical Society, vol. 12, no. 3, pp. 261–267, 2009.



Discrete Dynamics in Nature and Society 11

[19] C. S. Ryoo, “On the generalized Barnes type multiple q-Euler polynomials twisted by ramified roots
of unity,” Proceedings of the Jangjeon Mathematical Society, vol. 13, no. 2, pp. 255–263, 2010.

[20] C. S. Ryoo, “A note on the weighted q-Euler numbers and polynomials,” Advanced Studies in
Contemporary Mathematics, vol. 21, pp. 47–54, 2011.

[21] Y. Simsek, O. Yurekli, and V. Kurt, “On interpolation functions of the twisted generalized Frobinuous-
Euler numbers,” Advanced Studies in Contemporary Mathematics, vol. 14, pp. 49–68, 2007.

[22] Y. Simsek and M. Acikgoz, “A new generating function of (q-) Bernstein-type polynomials and their
interpolation function,” Abstract and Applied Analysis, vol. 2010, Article ID 769095, 12 pages, 2010.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


