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We investigate the almost surely asymptotic stability of Euler-type methods for neutral stochastic
delay differential equations (NSDDEs) using the discrete semimartingale convergence theorem.
It is shown that the Euler method and the backward Euler method can reproduce the almost
surely asymptotic stability of exact solutions to NSDDEs under additional conditions. Numerical
examples are demonstrated to illustrate the effectiveness of our theoretical results.

1. Introduction

The neutral stochastic delay differential equation (NSDDE) has attracted much more
attention, and much work (see [1–4]) has been done. For example, Mao [2] studied the
existence and uniqueness, moment and pathwise estimates, and the exponential stability of
the solution to the NSDDE. Moreover, Mao et al. [4] studied the almost surely asymptotic
stability of the NEDDE with Markovian switching:

d[x(t) −N(x(t − τ), r(t))] = f(t, x(t), x(t − τ), r(t))dt + g(t, x(t), x(t − τ), r(t))dB(t). (1.1)

Since most NSDDEs cannot be solved explicitly, numerical solutions have become
an important issue in the study of NSDDEs. Convergence analysis of numerical methods
for NSDDEs can be found in [5–7]. On the other hand, stability theory of numerical
solutions is one of the fundamental research topics in the numerical analysis. For stochastic
differential equations (SDEs) as well as stochastic delay differential equations (SDDEs),
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moment stability and asymptotic stability of numerical solutions have received much more
attention (e.g., [8–13] for moment stability and [12–14] for asymptotic stability). Recently,
Wang and Chen [15] studied the mean-square stability of the semi-implicit Euler method for
NSDDEs. We aim in this paper to study the almost surely asymptotic stability of Euler-type
methods for NSDDEs using the discrete semimartingale convergence theorem. The discrete
semimartingale convergence theorem (cf. [16, 17]) plays an important role in the almost
surely asymptotic stability analysis of numerical solutions to SDEs and SDDEs [17–19].
Using the discrete semimartingale convergence theorem, we show that Euler-type methods
for NSDDEs can preserve the almost surely asymptotic stability of exact solutions under
additional conditions.

In Section 2, we introduce some necessary notations and state the discrete semimartin-
gale convergence theorem as a lemma. In Section 3, we study the almost surely asymptotic
stability of exact solutions to NSDDEs. Section 4 gives the almost surely asymptotic stability
of the Euler method. In Section 5, we discuss the almost surely asymptotic stability of the
backward Euler method. Numerical experiments are presented in Section 6.

2. Preliminaries

Throughout this paper, unless otherwise specified, we use the following notations. Let
(Ω,F, {Ft}t≥0, P) be a complete probability space with filtration {Ft}t≥0 satisfying the usual
conditions (i.e., it is right continuous andF0 contains all P -null sets). B(t) is a scalar Brownian
motion defined on the probability space. | · | denotes the Euclidean norm in Rn. The inner
product of x, y in Rn is denoted by 〈x, y〉 or xTy. If A is a vector or matrix, its transpose is
denoted by AT . If A is a matrix, its trace norm is denoted by |A| =

√
trace(ATA). Let τ > 0

and C([−τ, 0];Rn) denote the family of all continuous Rn-valued functions on [−τ, 0]. Let
Cb

F0
([−τ, 0];Rn) be the family of all F0-measurable bounded C([−τ, 0];Rn)-valued random

variables ξ = {ξ(θ) : −τ ≤ θ ≤ 0}.
Consider an n-dimensional NSDDE

d[x(t) −N(x(t − τ))] = f(t, x(t), x(t − τ))dt + g(t, x(t), x(t − τ))dB(t), (2.1)

on t ≥ 0 with initial data {x(θ) : −τ ≤ θ ≤ 0} = ξ ∈ Cb
F0
([−τ, 0];Rn). Here N : Rn → Rn,

f : R+ × Rn × Rn → Rn, and g : R+ × Rn × Rn → Rn.
Let C1,2(R+ ×Rn;R+) denote the family of all nonnegative functions V (t, x) on R+ ×Rn

which are continuously once differentiable in t and twice differentiable in x. For each V ∈
C1,2(R+ × Rn;R+), define an operator LV from R+ × Rn × Rn to R by

LV
(
t, x, y

)
= Vt

(
t, x −N

(
y
))

+ Vx

(
t, x −N

(
y
))
f
(
t, x, y

)

+
1
2
trace

[
gT(t, x, y

)
Vxx

(
t, x −N

(
y
))
g
(
t, x, y

)]
,

(2.2)

where

Vt(t, x) =
∂V (t, x)

∂t
, Vx(t, x) =

(
∂V (t, x)
∂x1

, . . . ,
∂V (t, x)
∂xn

)
, Vxx(t, x) =

(
∂2V (t, x)
∂xi∂xj

)

n×n
.

(2.3)
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As a standing hypothesis, we impose the following assumption on the coefficients
N, f , and g.

Assumption 2.1. Assume that both f and g satisfy the local Lipschitz condition. That is, for
each integer i > 0, there exists a positive constant Ki such that

∣
∣f
(
t, x, y

) − f
(
t, x, y

)∣∣2 ∨ ∣
∣g
(
t, x, y

) − g
(
t, x, y

)∣∣2 ≤ Ki

(
|x − x|2 + ∣

∣y − y
∣
∣2
)

(2.4)

for x, y, x, y ∈ Rn with |x| ∨ |x| ∨ |y| ∨ |y| ≤ i and t ∈ R+. Assume also that there is a constant
κ ∈ (0, 1) such that

∣
∣N(x) −N

(
y
)∣∣ ≤ κ

∣
∣x − y

∣
∣, ∀x, y ∈ Rn. (2.5)

Assume moreover that for all t ∈ R+,

N(0) = 0, f(t, 0, 0) = 0, g(t, 0, 0) = 0. (2.6)

The following discrete semimartingale convergence theorem (cf. [16, 17])will play an
important role in this paper.

Lemma 2.2. Let {Ai} and {Ui} be two sequences of nonnegative random variables such that both
Ai and Ui are Fi-measurable for i = 1, 2, . . ., and A0 = U0 = 0 a.s. Let Mi be a real-valued local
martingale with M0 = 0 a.s. Let ζ be a nonnegative F0-measurable random variable. Assume that
{Xi} is a nonnegative semimartingale with the Doob-Mayer decomposition

Xi = ζ +Ai −Ui +Mi. (2.7)

If limi→∞Ai < ∞ a.s., then for almost all ω ∈ Ω

lim
i→∞

Xi < ∞, lim
i→∞

Ui < ∞, (2.8)

that is, both Xi and Ui converge to finite random variables.

3. Almost Surely Asymptotic Stability of the Exact Solution

In this section, we will study the almost surely asymptotic stability of exact solutions to (2.1).
To be precise, let us give the definition on the almost surely asymptotic stability of exact
solutions.

Definition 3.1. The solution x(t) to (2.1) is said to be almost surely asymptotically stable if

lim
t→∞

x(t) = 0 a.s. (3.1)

for any initial data ξ ∈ Cb
F0
([−τ, 0];Rn).
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Theorem 3.2. Let Assumption 2.1 hold. Assume that there are four positive constants λ1 − λ4 such
that

2
(
x −N

(
y
))T

f
(
t, x, y

) ≤ −λ1|x|2 + λ2
∣
∣y

∣
∣2,

∣
∣g
(
t, x, y

)∣∣2 ≤ λ3|x|2 + λ4
∣
∣y

∣
∣2

(3.2)

for t ≥ 0 and x, y ∈ Rn. If

λ1 − λ3 > λ2 + λ4, (3.3)

then, for any initial data ξ ∈ Cb
F0
([−τ, 0];Rn), there exists a unique global solution x(t) to (2.1) and

the solution x(t) is almost surely asymptotically stable.

Proof. Let U(t, x) = |x|2. Using (3.2) and (3.3), we have

LU
(
t, x, y

)
= 2

(
x −N

(
y
))T

f
(
t, x, y

)
+
∣∣g
(
t, x, y

)∣∣2

≤ −(λ1 − λ3)|x|2 + (λ2 + λ4)
∣∣y

∣∣2

≤ −(λ1 − λ3)|x|2 + (λ1 − λ3)
∣∣y

∣∣2.

(3.4)

Then, from Theorem 3.1 in [4], we conclude that there exists a unique global solution x(t) to
(2.1) for any initial data ξ ∈ Cb

F0
([−τ, 0];Rn). According to (3.3), there is a constant α > 0 such

that

λ1 − λ3 − 2α ≥ (λ2 + λ4 + 2α)eατ ∀0 ≤ α ≤ α. (3.5)

Let V (t, x) = eαtU(t, x). Here α ∈ (0, α] ∩ (0, (2/τ) log(1/κ)). Then

LV
(
t, x, y

)
= eαt

(
αU

(
t, x −N

(
y
)))

+ LU(t, x)

≤ eαt
[
α
∣∣x −N

(
y
)∣∣2 − (λ1 − λ3)|x|2 + (λ2 + λ4)

∣∣y
∣∣2
]

≤ eαt
[
−(λ1 − λ3 − 2α)|x|2 + (λ2 + λ4 + 2α)

∣∣y
∣∣2
]

≤ −W(t, x) +W
(
t − τ, y

)
,

(3.6)

where W(t, x) = (λ1 − λ3 − 2α)eαt|x|2. By Theorem 4.1 in [4], we can obtain that the solution
x(t) is almost surely asymptotically stable. The proof is completed.

Theorem 3.2 gives sufficient conditions of the almost surely asymptotic stability of
the NSDDE (2.1). Based on these sufficient conditions, we will investigate the almost surely
asymptotic stability of Euler-type methods in the following sections.
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4. Stability of the Euler Method

Applying the Euler method (EM) to (2.1) yields

Xk+1 −N(Xk+1−m) = Xk −N(Xk−m) + f(kh,Xk,Xk−m)h

+g(kh,Xk,Xk−m)ΔBk, k = 0, 1, 2, . . . ,

Xk = ξ(kh), k = −m,−m + 1, . . . , 0.

(4.1)

Here h = τ/m (m is an positive integer) is the stepsize, and ΔBk = B((k + 1)h) − B(kh)
represents the Browian motion increment. To be precise, let us introduce the definition on the
almost surely asymptotic stability of numerical solutions.

Definition 4.1. The numerical solution Xk to (2.1) is said to be almost surely asymptotically
stable if

lim
k→∞

Xk = 0 a.s. (4.2)

for any bounded variables ξ(kh), k = −m,−m + 1, . . . , 0.

Theorem 4.2. Let conditions (3.2)-(3.3) hold. Assume that f satisfies the linear growth condition,
namely, there exists a positive constant L such that

∣∣f
(
t, x, y

)∣∣2 ≤ L
(
|x|2 + ∣∣y

∣∣2
)
. (4.3)

Then there exists a h0 > 0 such that if h < h0, then for any given finite-valued F0-measurable
random variables ξ(kh), k = −m,−m + 1, . . . , 0, the EM approximate solution (4.1) is almost surely
asymptotically stable.

Proof. Let Yk = Xk −N(Xk−m). Then, it follows from (4.1) that

Yk+1 = Yk + f(kh,Xk,Xk−m)h + g(kh,Xk,Xk−m)ΔBk, k = 0, 1, 2, . . . . (4.4)

Squaring both sides of (4.4), we have

|Yk+1|2 = |Yk|2 +
∣∣f(kh,Xk,Xk−m)

∣∣2h2 +
∣∣g(kh,Xk,Xk−m)

∣∣2h

+ 2
〈
Yk, f(kh,Xk,Xk−m)

〉
h + 2

〈
Yk, g(kh,Xk,Xk−m)

〉
ΔBk

+ 2h
〈
f(kh,Xk,Xk−m), g(kh,Xk,Xk−m)

〉
ΔBk

+
∣∣g(kh,Xk,Xk−m)

∣∣2
(
ΔB2

k − h
)
.

(4.5)
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Using (3.2) and (4.3), we can obtain that

|Yk+1|2 ≤ |Yk|2 + L
(
|Xk|2 + |Xk−m|2

)
h2 +

(
λ3|Xk|2 + λ4|Xk−m|2

)
h

+
(
−λ1|Xk|2 + λ2|Xk−m|2

)
h +mk,

(4.6)

where

mk = 2
〈
Yk, g(kh,Xk,Xk−m)

〉
ΔBk + 2h

〈
f(kh,Xk,Xk−m), g(kh,Xk,Xk−m)

〉
ΔBk

+
∣
∣g(kh,Xk,Xk−m)

∣
∣2
(
ΔB2

k − h
)
.

(4.7)

It therefore follows that

|Yk+1|2 − |Yk|2 ≤ −(λ1 − λ3 − Lh)h|Xk|2 + (λ2 + λ4 + Lh)h|Xk−m|2 +mk, (4.8)

which implies that

|Yk|2 − |Y0|2 ≤ −(λ1 − λ3 − Lh)h
k−1∑

i=0
|Xi|2 + (λ2 + λ4 + Lh)h

k−1∑

i=0
|Xi−m|2 +

k−1∑

i=0

mi. (4.9)

Note that

k−1∑

i=0
|Xi−m|2 =

−1∑

i=−m
|Xi|2 +

k−m−1∑

i=0
|Xi|2. (4.10)

Then, we have

|Yk|2 + (λ2 + λ4 + Lh)h
k−1∑

i=k−m
|Xi|2 ≤ |Y0|2 + (λ2 + λ4 + Lh)h

−1∑

i=−m
|Xi|2

− (λ1 − λ3 − λ2 − λ4 − 2Lh)h
k−1∑

i=0
|Xi|2 +Mk,

(4.11)

where Mk =
∑k−1

i=0 mi. By [18],Mk is a martingale with M0 = 0. From (3.3), we obtain that

λ1 − λ3 − λ2 − λ4 − 2Lh > 0, as 0 < h < h0, (4.12)

where h0 = (λ1 − λ3 − λ2 − λ4)/2L. Hence, from Lemma 2.2, we therefore have

lim
k→∞

k−1∑

i=0
|Xi|2 < ∞ a.s., 0 < h < h0. (4.13)
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Then, we conclude that

lim
k→∞

|Xk|2 = 0 a.s., 0 < h < h0. (4.14)

The proof is completed.

Theorem 4.2 shows that if the coefficient f obeys the linear growth condition, in
addition to the conditions imposed in Theorem 3.2, then the EM approximate solution (4.1)
reproduces the almost surely asymptotic stability of exact solutions to (2.1) for sufficiently
small stepsize.

5. Stability of the Backward Euler Method

Applying the backward Euler method (BEM) to (2.1) yields

Xk+1 −N(Xk+1−m) = Xk −N(Xk−m) + f((k + 1)h,Xk+1, Xk+1−m)h

+g(kh,Xk,Xk−m)ΔBk, k = 0, 1, 2, . . . ,

Xk = ξ(kh), k = −m,−m + 1, . . . , 0.

(5.1)

As a standing hypothesis, we assume that the BEM (5.1) is well defined. The following
theorem shows that if the above assumption and the conditions imposed in Theorem 3.2
hold, then the BEM approximate solution (5.1) inherits the almost surely asymptotic stability
of exact solutions to (2.1) without any stepsize restriction.

Theorem 5.1. Let conditions (3.2)-(3.3) hold. Then for any given finite-valued F0-measurable
random variables ξ(kh), k = −m,−m+ 1, . . . , 0, the BEM approximate solution (5.1) is almost surely
asymptotically stable.

Proof. Let Yk = Xk −N(Xk−m). Then, it follows from (5.1) that

Yk+1 − f((k + 1)h,Xk+1, Xk+1−m)h = Yk + g(kh,Xk,Xk−m)ΔBk, k = 0, 1, 2, . . . . (5.2)

Squaring both sides of (5.2), we have

|Yk+1|2 +
∣∣f((k + 1)h,Xk+1, Xk+1−m)

∣∣2h2

= |Yk|2 + 2
〈
Yk+1, f((k + 1)h,Xk+1, Xk+1−m)

〉
h + |g(kh,Xk,Xk−m)|2h

+ 2
〈
Yk, g(kh,Xk,Xk−m)

〉
ΔBk +

∣∣g(kh,Xk,Xk−m)
∣∣2
(
ΔB2

k − h
)
.

(5.3)

Using (3.2), we can obtain that

|Yk+1|2 ≤ |Yk|2 +
(
−λ1|Xk+1|2 + λ2|Xk+1−m|2

)
h +

(
λ3|Xk|2 + λ4|Xk−m|2

)
h +mk, (5.4)
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where

mk = 2
〈
Yk, g(kh,Xk,Xk−m)

〉
ΔBk +

∣
∣g(kh,Xk,Xk−m)

∣
∣2
(
ΔB2

k − h
)
. (5.5)

It therefore follows that

|Yk+1|2 − |Yk|2 ≤ −λ1h|Xk+1|2 + λ3h|Xk|2 + λ2h|Xk+1−m|2 + λ4h|Xk−m|2 +mk, (5.6)

which implies that

|Yk|2 − |Y0|2 ≤ −λ1h
k−1∑

i=0
|Xi+1|2 + λ3h

k−1∑

i=0
|Xi|2 + λ2h

k−1∑

i=0
|Xi+1−m|2

+ λ4h
k−1∑

i=0
|Xi−m|2 +

k−1∑

i=0

mi.

(5.7)

Note that

k−1∑

i=0
|Xi−m|2 =

−1∑

i=−m
|Xi|2 +

k−m−1∑

i=0
|Xi|2,

k−1∑

i=0
|Xi+1−m|2 =

−1∑

i=−m+1

|Xi|2 +
k−m∑

i=0
|Xi|2.

(5.8)

Then, we have

|Yk|2 ≤ |Y0|2 + λ2h
−1∑

i=−m+1

|Xi|2 + λ4h
−1∑

i=−m
|Xi|2

− λ1h
k∑

i=1

|Xi|2 + λ3h
k−1∑

i=0
|Xi|2

+ λ2h
k−m∑

i=0
|Xi|2 + λ4h

k−m−1∑

i=0
|Xi|2 +

k−1∑

i=0

mi.

(5.9)

Namely,

|Yk|2 + λ1h|Xk|2 + λ2h
k−1∑

i=k−m+1

|Xi|2 + λ4h
k−1∑

i=k−m
|Xi|2

≤ |Y0|2 + λ1h|X0|2 + λ2h
−1∑

i=−m+1

|Xi|2 + λ4h
−1∑

i=−m
|Xi|2

− (λ1 − λ3 − λ2 − λ4)h
k−1∑

i=0
|Xi|2 +Mk,

(5.10)
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Figure 1:Almost surely asymptotic stability of the EM approximate solutionXn with the stepsize h = 1/25.

where Mk =
∑k−1

i=0 mi. By [18],Mk is a martingale with M0 = 0. From (3.3), we obtain that

λ1 − λ3 − λ2 − λ4 > 0. (5.11)

Using Lemma 2.2 yields

lim
k→∞

k−1∑

i=0
|Xi|2 < ∞ a.s., h > 0. (5.12)

Then, we conclude that

lim
k→∞

|Xk|2 = 0 a.s., h > 0. (5.13)

The proof is completed.

6. Numerical Experiments

In this section, we present numerical experiments to illustrate the theoretical results presented
in the previous sections.



10 Discrete Dynamics in Nature and Society

0 5 10 15 20
−4

−3

−2

−1

0

1

2

3

4

tn

X
n

Xn(ω1)
Xn(ω2)
Xn(ω3)

Figure 2:Almost surely asymptotic stability of the BEM approximate solutionXn with the stepsize h = 0.1.

Consider the following scalar linear problem

d

[
x(t) − 1

2
sin(x(t − 2))

]
= (−8x(t) + sin(x(t − 2)))dt + x(t − 2)dB(t), t ≥ 0,

x(t) = t + 1, −2 ≤ t ≤ 0.

(6.1)

For test (6.1), we have that L = 72, λ1 = 11, λ2 = 4, λ3 = 0, and λ4 = 1. By Theorem 3.2, the
exact solution to (6.1) is almost surely asymptotically stable.

Theorem 4.2 shows that the EM approximate solution to (6.1) can preserve the almost
surely asymptotic stability of exact solutions for h < 1/24. In Figure 1, we compute three
different paths (Xn(ω1), Xn(ω2), Xn(ω3)) using EM (4.1) to approximate (6.1) with the
stepsize h = 1/25. Figure 1 shows that Xn(ω1), Xn(ω2), Xn(ω3) are asymptotically stable.
Theorem 5.1 shows that the BEM approximate solution to (6.1) reproduces the almost surely
asymptotic stability of exact solutions for any h > 0. In Figure 2, three different paths
(Xn(ω1), Xn(ω2), Xn(ω3)) are computed by using the BEM (5.1) to approximate (6.1) with
the stepsize h = 0.1. Figure 2 demonstrates that these paths are asymptotically stable.

7. Conclusions

This paper deals with the almost surely asymptotic stability of Euler-type methods for
NSDDEs by using the discrete semimartingale convergence theorem. We show that the EM
reproduces the almost surely asymptotic stability of exact solutions to NSDDEs under an
additional linear growth condition. If we assume the BEM is well defined, the BEM can
also preserve the almost surely asymptotic stability without the additional linear growth
condition.



Discrete Dynamics in Nature and Society 11

Acknowledgments

The authors would like to thank the referees for their helpful comments and suggestions. This
work is supported by the NSF of China (no. 11071050).

References

[1] V. B. Kolamnovskii and V. R. Nosov, Stability and Periodic Modes of Control Systems with Aftereffect,
Nauka, Moscow, Russia, 1981.

[2] X. Mao, Stochastic Differential Equations and Their Applications, Horwood Publishing Series in
Mathematics & Applications, Horwood Publishing, 1997.

[3] D. Z. Liu, G. Y. Yang, and W. Zhang, “The stability of neutral stochastic delay differential equations
with Possion jumps by fixed poins,” Journal of Computational and Applied Mathematics, vol. 235, pp.
3115–3120, 2011.

[4] X. Mao, Y. Shen, and C. Yuan, “Almost surely asymptotic stability of neutral stochastic differential
delay equations with Markovian switching,” Stochastic Processes and Their Applications, vol. 118, no. 8,
pp. 1385–1406, 2008.

[5] B. J. Yin and Z. H. Ma, “Convergence of the semi-implicit Euler method for neutral stochastic delay
differential equations with phase semi-Markovian switching,”Applied Mathematical Modelling, vol. 35,
pp. 2094–2109, 2011.

[6] S. B. Zhou and F. K. Wu, “Convergence of numerical solutions to neutral stochastic delay differential
equations with Markovian switching,” Journal of Computational and Applied Mathematics, vol. 229, no.
1, pp. 85–96, 2009.

[7] S. Gan, H. Schurz, and H. Zhang, “Mean square convergence of stochastic θ-methods for nonlinear
neutral stochastic differential delay equations,” International Journal of Numerical Analysis and
Modeling, vol. 8, no. 2, pp. 201–213, 2011.

[8] C. T. H. Baker and E. Buckwar, “Exponential stability in p-th mean of solutions, and of convergent
Euler-type solutions, of stochastic delay differential equations,” Journal of Computational and Applied
Mathematics, vol. 184, no. 2, pp. 404–427, 2005.

[9] M. Liu, W. Cao, and Z. Fan, “Convergence and stability of the semi-implicit Euler method for a linear
stochastic differential delay equation,” Journal of Computational and Applied Mathematics, vol. 170, no.
2, pp. 255–268, 2004.

[10] D. J. Higham, “Mean-square and asymptotic stability of the stochastic theta method,” SIAM Journal
on Numerical Analysis, vol. 38, no. 3, pp. 753–769, 2000.

[11] Y. Saito and T. Mitsui, “Stability analysis of numerical schemes for stochastic differential equations,”
SIAM Journal on Numerical Analysis, vol. 33, no. 6, pp. 2254–2267, 1996.

[12] S. Pang, F. Deng, and X. Mao, “Almost sure and moment exponential stability of Euler-Maruyama
discretizations for hybrid stochastic differential equations,” Journal of Computational and Applied
Mathematics, vol. 213, no. 1, pp. 127–141, 2008.

[13] D. J. Higham, X. Mao, and C. Yuan, “Almost sure and moment exponential stability in the numerical
simulation of stochastic differential equations,” SIAM Journal on Numerical Analysis, vol. 45, no. 2, pp.
592–609, 2007.

[14] Y. Saito and T. Mitsui, “T-stability of numerical scheme for stochastic differential equations,” in
Contributions in Numerical Mathematics, vol. 2, pp. 333–344, World Scientific Series in Applicable
Analysis, 1993.

[15] W. Q. Wang and Y. P. Chen, “Mean-square stability of semi-implicit Euler method for nonlinear
neutral stochastic delay differential equations,” Applied Numerical Mathematics, vol. 61, pp. 696–701,
2011.

[16] A. N. Shiryayev, Probablity, Springer, Berlin, Germany, 1996.
[17] A. Rodkina and H. Schurz, “Almost sure asymptotic stability of drift-implicit θ-methods for bilinear

ordinary stochastic differential equations in R
1,” Journal of Computational and Applied Mathematics, vol.

180, no. 1, pp. 13–31, 2005.
[18] F.Wu, X.Mao, and L. Szpruch, “Almost sure exponential stability of numerical solutions for stochastic

delay differential equations,” Numerische Mathematik, vol. 115, no. 4, pp. 681–697, 2010.
[19] Q. Li and S. Gan, “Almost sure exponential stability of numerical solutions for stochastic delay

differential equations with jumps,” Journal of Applied Mathematics and Computing. In press.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


