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This paper studies the global synchronization problem for a class of complex networks with
discrete time delays. By using the theory of calculus on time scales, the properties of Kronecker
product, and Lyapunov method, some sufficient conditions are obtained to ensure the global
synchronization of the complex networks with delays on time scales. These sufficient conditions
are formulated in terms of linear matrix inequalities (LMIs). The main contribution of the result is
that the global synchronization problems with both discrete time and continuous time are unified
under the same framework.

1. Introduction

As well known, complex dynamical networks have been a subject of high importance and
increasing interest within the science and technology communities. The synchronization is
one of the most typical phenomena in complex networks, which is ubiquitous in the real
world, such as secure communication, chaos generators design, and harmonic oscillation
generation, ([1–8], and references cited therein).

During the past many years, the synchronization of complex networks has received
increasing research attention. There are lots of the papers studying the continuous time and
the discrete time dynamical systems. However, most of the investigations are restricted to the
continuous or discrete systems, respectively, [9–22]. For avoiding this trouble, it is meaningful
to study this problem on time scales which can unify the continuous and discrete dynamical
systems under the unified framework.

The theory of time scale calculus was initiated by Hilger in 1988, developed, and
consummated by Bohner and Peterson [23–25], which has a tremendous potential for
applications in some mathematical models of real processes and phenomena studied in
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physics, population dynamics, biotechnology, economics, and so on [26, 27]. This novel and
fascinating type of mathematics is more general and versatile than the traditional theories
of differential and difference equations as it can, under one framework, mathematically
describe continuous and discrete hybrid processes and hence is the optimal way forward
for accurate and malleable mathematical modeling. The field of dynamic equations on time
scales contains, links, and extends the classical theory of differential and difference equations.

However, to the best of our knowledge, there are few works investigating the
synchronization problem of complex networks with delays on time scales.

Notations. Throughout this paper, R
n and R

n×m denote the n-dimensional Euclidean
space and the set of all n×m real matrices, respectively. T is a time scale, which is an arbitrary
nonempty closed subset of the real number R with the topology and ordering inherited from
R, and assume that 0 ∈ T, and T is unbounded above, that is, sup T = ∞. Set [a, b]

T
:= {t ∈

T, a ≤ t ≤ b}. T
+ = {t ∈ T, t ≥ 0}. P > 0 means that matrix P is real, symmetric, and positive

definite. I and O denote the identity matrix and the zero matrix with compatible dimensions,
respectively; and diag{· · · } stands for a block-diagonal matrix. The superscript “T” stands
for a matrix transposition. The Kronecker product of matrices Q ∈ R

m×n and R ∈ R
p×q is a

matrix in R
mp×nq and denoted as Q ⊗ R. Let τ > 0 and C([−τ, 0]

T
; Rn) denote the family of

continuous functions ϕ from [−τ, 0]
T

to R
n with the norm ‖ϕ‖ = sup−τ≤θ≤0‖ϕ(θ)‖, where ‖ · ‖

is the Euclidean norm in R
n.

The rest of this paper is organized as follows. In Section 2, some preliminaries on
time scale are briefly outlined. In Section 3, by utilizing the approach of the Lyapunov
functional method on time scale and the LMI [28], our main result for ensuring the global
synchronization is derived. In Section 4, an example is given to illustrate the effectiveness of
our main result. Finally, in Section 5, this paper is concluded.

2. Preliminaries

In this paper, the global synchronization problem is investigated for a class of complex
networks with discrete time delays which is described by the following dynamic equation
on time scale T:

xΔ
i (t) = Axi(t) + Bf(xi(t)) + Bτf(xi(t − τ1)) +

N∑

j=1

GijΓxj(t − τ2) + Λi, i = 1, 2, . . . ,N, (2.1)

where t ∈ T, xi(t) = (xi1(t), xi2(t), . . . , xin(t))
T ∈ R

n is the state vector of the ith network
at time t. A denotes a known connection matrix, B and Bτ denote the connection weight
matrices, Γ ∈ R

n×n is the matrix describing the innercoupling between the subsystems
at time t, G = (Gij)N×N is the outercoupling configuration matrix representing the
coupling strength and the topological structure of the complex networks, and Λi is the
external input. The constants τ1 and τ2 stand for the constant time delays, and f(xi(t)) =
(f1(xi1(t)), f2(xi2(t)), . . . , fn(xin(t)))

T is an unknown but sector-bounded nonlinear function.
The initial conditions associated with system (2.1) are given by

xi(s) = ϕi(s), s ∈ [−h, 0]
T
, i = 1, 2, . . . ,N, (2.2)

where ϕi(s) is rd-continuous and the corresponding state trajectory is denoted as xi(t, ϕi).
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Throughout this paper, the following assumptions are needed.

Assumption 2.1. The outer-coupling configuration matrix of the complex networks (2.1)
satisfies

Gij = Gji ≥ 0
(
i /= j

)
, Gii = −

N∑

j=1,j /= i

Gij

(
i, j = 1, 2, . . . ,N

)
. (2.3)

Assumption 2.2. For all u, v ∈ R
n, the nonlinear function f(·) is assumed to satisfy the

following sector-bounded condition:

(
f(u) − f(v) − Lf(u − v)

)T(
f(u) − f(v) − Lf(u − v)

)
≤ 0, (2.4)

where Lf and Lf are real constant matrices with Lf−Lf being symmetric and positive definite.

Assumption 2.3. 0 ≤ τi < h (i = 1, 2).

Remark 2.4. System (2.1) is a general model of a class of complex networks. Its one special
case with continuous time system is the following:

dxi(t)
dt

= Axi(t) + Bf(xi(t)) + Bτf(xi(t − τ1))

+
N∑

j=1

GijΓxj(t − τ2) + Λi, i = 1, 2, . . . ,N (2.5)

for t ∈ [t0,+∞), and its another special case with discrete time system is the following:

Δxi(t) = Axi(t) + Bf(xi(t)) + Bτf(xi(t − τ1))

+
N∑

j=1

GijΓxj(t − τ2) + Λi, i = 1, 2, . . . ,N (2.6)

for t ∈N, where Δxi(t) = xi(t + 1) − xi(t) is the forward difference operator.
The continuous-time system (2.5) and the discrete-time system (2.6) are unified as

system (2.1). The main objective of this paper is to study the synchronization problem of
system (2.1) under the same framework.

In order to obtain the main results, some preliminary results are presented in this
section.

Definition 2.5 (see [23]). A time scale T is an arbitrary nonempty closed subset of the real set R

with the topology and ordering inherited from R. The forward and backward jump operators
σ, ρ : T → T and the graininess μ : T → R

+ are defined, respectively, by σ(t) := inf{s ∈ T :
s > t}; ρ(t) := sup{s ∈ T : s < t};μ(t) := σ(t) − t. We put inf ∅:= sup T and sup ∅:= inf T, where
∅ denotes the empty set. A point t is said to be left-dense if t > inf T and ρ(t) = t, right-dense
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if t < sup T and σ(t) = t, left-scattered if ρ(t) < t, and right-scattered if σ(t) > t. If T has a
left-scattered maximum m, then we define T

k to be T − {m}. Otherwise T
k = T.

Definition 2.6 (see [23]). A function f : T → R is called right-dense continuous provided it is
continuous at right-dense point of T and the left side limit exists (finite) at left-dense point of
T. The set of all right-dense continuous functions on T is defined by Crd = Crd(T) = Crd(T,R).

Definition 2.7 (see [23]). For a function f : T → R, t ∈ T
k, the delta derivative of f(t), fΔ(t), is

the number (if it exists) with the property that, for a given ε > 0, there exists a neighborhood
U of t such that

∣∣∣
[
f(σ(t)) − f(s)

]
− fΔ(t)[σ(t) − s]

∣∣∣ < ε|σ(t) − s| (2.7)

for all s ∈ U.
If t is right-scattered and f is continuous at t, then

fΔ(t) =
f(σ(t)) − f(t)

σ(t) − t . (2.8)

If t is right-dense, then

fΔ(t) = lim
s→ t

f(σ(t)) − f(s)
σ(t) − s = lim

s→ t

f(t) − f(s)
t − s . (2.9)

For all t ∈ T
k, one can get

f(σ(t)) = f(t) + μ(t)fΔ(t). (2.10)

If fΔ ≥ 0, then f is not decreasing on time scale.

Lemma 2.8 (see [23]). If f and g are two differentiable functions, then the product rule for the
derivative of product f · g is that

(
f · g

)Δ = fΔ · g + fσ · gΔ = fΔ · gσ + f · gΔ. (2.11)

Definition 2.9 (see [23]). A function F : T
k → R is called a delta-antiderivative of f : T → R

provided FΔ = f holds for all t ∈ T
k. In this case, we define the integral of f by

∫ t

a

f(s)Δs = F(t) − F(a), for t ∈ T, (2.12)

and we have the following formula:

∫σ(t)

t

f(s)Δs = μ(t)f(t), for t ∈ T
k. (2.13)
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Definition 2.10 (see [23]). A function f : T → R is called regressive provided

1 + μ(t)f(t)/= 0, ∀ t ∈ T. (2.14)

The addition “⊕” is defined by p ⊕ q := p + q + μpq. The set of all regressive functions
on a time scale T forms an Abelian group under the addition “⊕”. The additive inverse in
this group is denoted by �p := −p/(1 + μp). Then the subtraction � on the set of regressive
functions is defined by p � q := p ⊕ (�p). It can be shown easily that p � q = −(p − q)/(1 + μq).
The set of all regressive and right-dense continuous functions will be denoted by R = R(T) =
R(T,R).

We denote that R+ = R+(T,R) = {f ∈ R : 1 + μ(t)f(t) > 0 for all t ∈ T}. Obviously R+

is the set of all positively regressive elements of R. One can easily verify that if f ∈ R+, then
�f ∈ R+.

Lemma 2.11 (see [23]). Assume v : T → R is strictly increasing and T = v(T) is a time scale. If
f : T → R is an rd-continuous function and v is differentiable with rd-continuous derivative, then
for a, b ∈ T,

∫b

a

f(t)vΔ(t)Δt =
∫v(b)

v(a)

(
f ◦ v−1(s)

)
Δs. (2.15)

Definition 2.12. LetA be anm×n-matrix-valued function on T. We say thatA is rd-continuous
on T if each entry of A is rd-continuous on T, and the class of all such rd-continuous
m × n-matrix-valued function on T is denoted, similar to the scalar case, by Crd = Crd(T) =
Crd(T,Rm×n).

We say that A is differentiable on T provided each entry of A is differentiable on T. In
this case, we put

AΔ =
(
aΔij

)

1≤i≤m, 1≤j≤n
, (2.16)

where A = (aij)1≤i≤m, 1≤j≤n. And denote that Aσ = (aσij).

Lemma 2.13 (see [23]). Suppose A and B are differentiable n × n-matrix-valued functions. Then

(1) (A + B)Δ = AΔ + BΔ;

(2) (αA)Δ = αAΔ ifα is a constant;

(3) (AB)Δ = AΔBσ +ABΔ.

Let

x(t) =
(
xT1 (t), x

T
2 (t), . . . , x

T
N(t)

)T
, Λ =

(
ΛT

1 ,Λ
T
2 , . . . ,Λ

T
N

)T
,

F(x(t)) =
(
fT (x1(t)), fT (x2(t)), . . . , fT (xN(t))

)T
,

(2.17)
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together with the Kronecker product “⊗” for matrices, system (2.1) can be recasted into

xΔ(t) = (IN ⊗A)x(t) + (IN ⊗ B)F(x(t)) + (IN ⊗ Bτ)F(x(t − τ1)) + (G ⊗ Γ)x(t − τ2) + Λ.
(2.18)

Definition 2.14. The complex system (2.18) is said to be globally synchronized, if

lim
t→∞
‖xi(t) − xj(t)‖ = 0, (2.19)

hold for all ϕi(s), ϕj(s) ∈ Crd([−h, 0]T
,Rn), i, j = 1, 2, . . .N.

Lemma 2.15 (see [29]). The Kronecker product has the following properties:

(1) (αA) ⊗ B = A ⊗ (αB),
(2) (A + B) ⊗ C = A ⊗ C + B ⊗ C,
(3) (A ⊗ B)(C ⊗D) = (AC) ⊗ (BD),

(4) (A ⊗ B)T = AT ⊗ BT .

In the mean of time scale, Schwarz inequality holds similarly.

Lemma 2.16. Suppose f, g : T → R are two rd-continuous functions, and 0, t ∈ T, t > 0. Then

(∫ t

0
f(s)g(s)Δs

)2

≤
∫ t

0
f2(s)Δs

∫ t

0
g2(s)Δs. (2.20)

Remark 2.17. One can prove Lemma 2.16 easily by using analysis knowledge. The proof is not
given here for the purpose of space saving.

Corollary 2.18. Suppose f : T → R is an rd-continuous function and 0, t ∈ T, t > 0. Then

(∫ t

0
f(s)Δs

)2

≤ t
∫ t

0
f2(s)Δs. (2.21)

Lemma 2.19. Assume 0, t ∈ T, t > 0. M ∈ R
n×n is a symmetric and positive semidefinite matrix,

and f : [0, t]
T
→ R

n is a vector function. If the integrations concerned are well defined, then the
following inequality holds:

(∫ t

0
f(s)Δs

)T

M

(∫ t

0
f(s)Δs

)
≤ t

∫ t

0
fT (s)Mf(s)Δs. (2.22)

Proof. Since matrix M is symmetric and positive semidefinite, there exists a reversible
orthogonal matrix P = (pij) ∈ R

n×n, such that

M = P−1Λ̃P = PT Λ̃P, (2.23)
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where Λ̃ = diag{λ1, λ2, . . . , λn}, λi ≥ 0 (i = 1, 2, . . . , n) are the eigenvalues of M. Then, one has

(∫ t

0
f(s)Δs

)T

M

(∫ t

0
f(s)Δs

)
=

(∫ t

0
f(s)Δs

)T

PT Λ̃P

(∫ t

0
f(s)Δs

)

=

(
P

∫ t

0
f(s)Δs

)T

Λ̃

(
P

∫ t

0
f(s)Δs

)
=

(∫ t

0
Pf(s)Δs

)T

Λ̃

(∫ t

0
Pf(s)Δs

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫ t

0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑

i=1

p1ifi(s)

n∑

i=1

p2ifi(s)

...
n∑

i=1

pnifi(s)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Δs

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

⎡
⎢⎢⎢⎢⎢⎢⎣

λ1

λ2

. . .

λn

⎤
⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫ t

0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑

i=1

p1ifi(s)

n∑

i=1

p2ifi(s)

...
n∑

i=1

pnifi(s)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Δs

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= λ1

(∫ t

0

n∑

i=1

p1ifi(s)Δs

)2

+ λ2

(∫ t

0

n∑

i=1

p2ifi(s)Δs

)2

+ · · · + λn

(∫ t

0

n∑

i=1

pnifi(s)Δs

)2

.

(2.24)

By using Corollary 2.18, one can obtain

(∫ t

0

n∑

i=1

pjifi(s)Δs

)2

≤ t
∫ t

0

(
n∑

i=1

pjifi(s)

)2

Δs, j = 1, 2, . . . , n; (2.25)

then

(∫ t

0
f(s)Δs

)T

M

(∫ t

0
f(s)Δs

)

≤ λ1t

∫ t

0

(
n∑

i=1

p1ifi(s)

)2

Δs + λ2t

∫ t

0

(
n∑

i=1

p2ifi(s)

)2

Δs + · · · + λnt
∫ t

0

(
n∑

i=1

pnifi(s)

)2

Δs

= t
∫ t

0

[(
n∑

i=1

p1ifi(s)

)
λ1

(
n∑

i=1

p1ifi(s)

)
+ · · · +

(
n∑

i=1

pnifi(s)

)
λn

(
n∑

i=1

pnifi(s)

)]
Δs

= t
∫ t

0

(
Pf(s)

)T Λ̃
(
Pf(s)

)
Δs = t

∫ t

0
fT (s)

(
PT Λ̃P

)
f(s)Δs

= t
∫ t

0
fT (s)Mf(s)Δs.

(2.26)

The proof is completed.
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Lemma 2.20 (see [30]). Let U = (αij)N×N , P ∈ R
n×n, x = (xT1 , x

T
2 , . . . , x

T
N)T where xi =

(xi1, xi2, . . . , xin)
T ∈ R

n and y = (yT1 , y
T
2 , . . . , y

T
N)T where yi = (yi1, yi2, . . . , yin)

T ∈ R
n (i =

1, 2, . . . ,N). IfU = UT and each row sum ofU is zero, then

xT (U ⊗ P)y = −
∑

1≤i<j≤N
αij
(
xi − xj

)T
P
(
yi − yj

)
. (2.27)

3. Main Results and Proofs

In this section, the main results for global synchronization criteria of the delayed complex
networks on time scales are presented.

Theorem 3.1. Suppose Assumptions 2.1 and 2.2 hold. The global synchronization of system (2.18)
is achieved if there exist n × n positive matrices P > 0, P1 > 0, P2 > 0, Q1 > 0, Q2 > 0, R > 0, and
matricesM1,M2, S, and positive scalars ε1, ε2, such that the following LMI holds for all 1 ≤ i < j ≤
N:

Dij = D1 +D2 +DT
2 +D3 +DT

3 < 0, (3.1)

where

D1 = diag
{

2PA +Q1 +Q2 + 2M1 + 2M2 − ε1L̂, 0n×n,−Q1 − ε2L̂,−Q2, R − 2ε1In,

−R − 2ε2In, hP1 + hP2 − S − ST ,−
1
h
P1,−

1
h
P2

}
,

D2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

On×n PA −M1 −M2 On×n On×n ATST −M1 −M2

O2n×n

−NGijΓTST

O8n×6n BTST O8n×2n

BTτ S
T

O3n×n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

D3 =

⎡
⎢⎢⎢⎢⎢⎣

−NGij(PΓ) PB + ε1L̆ PBτ

−NGij(PΓ) PB PBτ

O9n×3n On×n On×n ε2L̆ O9n×3n

O6n×n O6n×n O6n×n

⎤
⎥⎥⎥⎥⎥⎦

(3.2)

with

L̂ = LTfL
f + Lf

T
Lf , L̆ = LTf + L

fT . (3.3)
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Proof. Letting

y(t) = (IN ⊗A)x(t) + (IN ⊗ B)F(x(t )) + (IN ⊗ Bτ)F(x(t − τ1)) + (G ⊗ Γ)x(t − τ2), (3.4)

system (2.18) becomes

xΔ(t) = y(t) + Λ. (3.5)

Based on the theory of calculus on time scales, we choose the following Lyapunov
functional candidate:

V (t) = 2V1(t) + V2(t) + V3(t) + V4(t) + V5(t) + V6(t), (3.6)

where

V1(t) = xT (t)(U ⊗ P)x(t), V2(t) =
∫0

−τ1

∫ t

t+θ
yT (s)(U ⊗ P1)y(s)ΔsΔθ,

V3(t) =
∫0

−τ2

∫ t

t+θ
yT (s)(U ⊗ P2)y(s)ΔsΔθ, V4(t) =

∫ t

t−τ1

xT (s)(U ⊗Q1)x(s)Δs,

V5(t) =
∫ t

t−τ2

xT (s)(U ⊗Q2)x(s)Δs, V6(t) =
∫ t

t−τ1

FT (x(s))(U ⊗ R)F(x(s))Δs,

U =

⎡
⎢⎢⎢⎢⎢⎣

N − 1 −1 · · · −1

−1 N − 1 · · · −1

· · · · · · · · · · · ·
−1 −1 · · · N − 1

⎤
⎥⎥⎥⎥⎥⎦

N×N

(3.7)

Note that UG = GU =NG. For any matrix H with appropriate dimension, one obtains

(U ⊗H)(G ⊗ Γ) = (UG) ⊗ (HΓ) = (NG) ⊗ (HΓ). (3.8)

Calculating the delta derivative VΔ(t) along the trajectories of the network (2.1) (or (2.18)),
one has

VΔ
1 (t) = xT (t)(U ⊗ P)xΔ(t) + xσ

T

(t)(U ⊗ P)TxΔ(t)

= [x(t) + xσ(t)]T (U ⊗ P)xΔ(t)

= [x(t) + xσ(t)]T (U ⊗ P)

× [(IN ⊗A)x(t) + (IN ⊗ B)F(x(t)) + (IN ⊗ Bτ)F(x(t − τ1)) + (G ⊗ Γ)x(t − τ2) + Λ]
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= [x(t) + xσ(t)]T [(U ⊗ (PA))x(t) + (U ⊗ (PB))F(x(t))

+(U ⊗ (PBτ))F(x(t − τ1)) + ((NG) ⊗ (PΓ))x(t − τ2) + (U ⊗ P)Λ]

=
∑

1≤i<j≤N

{(
xi(t) − xj(t)

)T (PA)
(
xi(t) − xj(t)

)
+
(
xi(t) − xj(t)

)T (PB)

×
(
f(xi(t)) − f

(
xj(t)

))
+
(
xi(t) − xj(t)

)T (PBτ)
(
f(xi(t − τ1)) − f

(
xj(t − τ1)

))

−
(
xi(t) − xj(t)

)T(
NGij(PΓ)

)(
xi(t − τ2) − xj(t − τ2)

)}

+
∑

1≤i<j≤N

{(
xσi (t) − x

σ
j (t)

)T
(PA)

(
xi(t) − xj(t)

)
+
(
xσi (t) − x

σ
j (t)

)T
(PB)

×
(
f(xi(t)) − f

(
xj(t)

))
+
(
xσi (t) − x

σ
j (t)

)T
(PBτ)

×
(
f(xi(t − τ1)) − f

(
xj(t − τ1)

))

−
(
xσi (t) − x

σ
j (t)

)T(
NGij(PΓ)

)(
xi(t − τ2) − xj(t − τ2)

)}
.

(3.9)

And synchronously,

VΔ
1 (t) = xΔT

(t)(U ⊗ P)Tx(t) + xΔT

(t)(U ⊗ P)xσ(t)

= xΔT

(t)(U ⊗ P)[x(t) + xσ(t)]

=
[
xT (t)(IN ⊗A)T + F(x(t))T (IN ⊗ B)T + F(x(t − τ1))T (IN ⊗ Bτ)T

+xT (t − τ2)(G ⊗ Γ)T + ΛT
]
(U ⊗ P)[x(t) + xσ(t)]

=
[
xT (t)(U ⊗ (PA)) + F(x(t))T (U ⊗ (PB)) + F(x(t − τ1))T (U ⊗ (PBτ))

+xT (t − τ2)((NG) ⊗ (PΓ)) + ΛT (U ⊗ P)
]
[x(t) + xσ(t)]

=
∑

1≤i<j≤N

{(
xi(t) − xj(t)

)T (PA)
(
xi(t) − xj(t)

)
+
(
f(xi(t)) − f

(
xj(t)

))T

× (PB)
(
xi(t) − xj(t)

)
+
(
f(xi(t − τ1)) − f

(
xj(t − τ1)

))T

× (PBτ)
(
xi(t) − xj(t)

)

−
(
xi(t − τ2) − xj(t − τ2)

)T(
NGij(PΓ)

)(
xi(t) − xj(t)

)}
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+
∑

1≤i<j≤N

{(
xi(t) − xj(t)

)T (PA)
(
xσi (t) − x

σ
j (t)

)
+
(
f(xi(t)) − f

(
xj(t)

))T

× (PB)
(
xσi (t) − x

σ
j (t)

)
+
(
f(xi(t − τ1)) − f

(
xj(t − τ1)

))T

× (PBτ)
(
xσi (t) − x

σ
j (t)

)

−
(
xi(t − τ2) − xj(t − τ2)

)T(NGij(PΓ)
)(
xσi (t) − x

σ
j (t)

)}
,

(3.10)

VΔ
2 (t) = τ1y

T (t)(U ⊗ P1)y(t) −
∫ t

t−τ1

yT (s)(U ⊗ P1)y(s)Δs

≤ hyT (t)(U ⊗ P1)y(t) −
∫ t

t−τ1

yT (s)(U ⊗ P1)y(s)Δs

≤ hyT (t)(U ⊗ P1)y(t) −
1
τ1

(∫ t

t−τ1

y(s)ds

)T

(U ⊗ P1)

(∫ t

t−τ1

y(s)Δs

)

≤ h
∑

1≤i<j≤N

(
yi(t) − yj(t)

)T
P1
(
yi(t) − yj(t)

)

− 1
h

∑

1≤i<j≤N

(∫ t

t−τ1

(yi(s) − yj(s))Δs
)T

P1

(∫ t

t−τ1

(
yi(s) − yj(s)

)
Δs

)

= h
∑

1≤i<j≤N

(
yi(t) − yj(t)

)T
P1
(
yi(t) − yj(t)

)

− 1
h

∑

1≤i<j≤N

(
Y

(1)
i − Y (1)

j

)T
P1

(
Y

(1)
i − Y (1)

j

)
,

(3.11)

where

Y
(1)
i (t) =

∫ t

t−τ1

yi(s)Δs. (3.12)

Similarly, one has

VΔ
3 (t) = τ2y

T (t)(U ⊗ P2)y(t) −
∫ t

t−τ2

yT (s)(U ⊗ P2)y(s)Δs

≤ h
∑

1≤i<j≤N

(
yi(t) − yj(t)

)T
P2
(
yi(t) − yj(t)

)

− 1
h

∑

1≤i<j≤N

(
Y

(2)
i − Y (2)

j

)T
P2

(
Y

(2)
i − Y (2)

j

)
,

(3.13)



12 Discrete Dynamics in Nature and Society

where

Y
(2)
i (t) =

∫ t

t−τ2

yi(s)Δs,

VΔ
4 (t) = xT (t)(U ⊗Q1)x(t) − xT (t − τ1)(U ⊗Q1)x(t − τ1)

=
∑

1≤i<j≤N

(
xi(t) − xj(t)

)T
Q1
(
xi(t) − xj(t)

)

−
∑

1≤i<j≤N

(
xi(t − τ1) − xj(t − τ1)

)T
Q1
(
xi(t − τ1) − xj(t − τ1)

)
.

(3.14)

Similarly, one has

VΔ
5 (t) = xT (t)(U ⊗Q2)x(t) − xT (t − τ2)(U ⊗Q2)x(t − τ2)

=
∑

1≤i<j≤N

(
xi(t) − xj(t)

)T
Q2
(
xi(t) − xj(t)

)

−
∑

1≤i<j≤N

(
xi(t − τ2) − xj(t − τ2)

)T
Q2
(
xi(t − τ2) − xj(t − τ2)

)
,

(3.15)

VΔ
6 (t) = FT (x(t))(U ⊗ R)F(x(t)) − FT (x(t − τ1))(U ⊗ R)F(x(t − τ1))

=
∑

1≤i<j≤N

(
f(xi(t)) − f

(
xj(t)

))T
R
(
f(xi(t)) − f

(
xj(t)

))

−
∑

1≤i<j≤N

(
f(xi(t − τ1)) − f

(
xj(t − τ1)

))T
R
(
f(xi(t − τ1)) − f

(
xj(t − τ1)

))
.

(3.16)

By formula (2.18), for any matrices M1, the following equality is satisfied

2xT (t)(U ⊗M1)

[
x(t) − x(t − τ1) −

∫ t

t−τ1

y(s)Δs

]
= 0, (3.17)

which can be rewritten as

2
∑

1≤i<j≤N

(
xi(t) − xj(t)

)T
M1

[(
xi(t) − xj(t)

)
−
(
xi(t − τ1) − xj(t − τ1)

)
−
(
Y

(1)
i − Y (1)

j

)]
= 0.

(3.18)

Similarly, for any matrices M2, one has

2
∑

1≤i<j≤N

(
xi(t) − xj(t)

)T
M2

[(
xi(t) − xj(t)

)
−
(
xi(t − τ2) − xj(t − τ2)

)
−
(
Y

(2)
i − Y (2)

j

)]
= 0.

(3.19)
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In addition, for any matrix S, the following equality is always true:

2yT (t)(U ⊗ S)[(IN ⊗A)x(t) + (IN ⊗ B)F(x(t))

+(IN ⊗ Bτ)F(x(t − τ1)) + (G ⊗ Γ)x(t − τ2) − y(t)
]

= 2yT (t)[(U ⊗ (SA))x(t) + (U ⊗ (SB))F(x(t))

+(U ⊗ (SBτ))F(x(t − τ1)) + (NG ⊗ (SΓ))x(t − τ2) − (U ⊗ S)y(t)
]
= 0,

(3.20)

that is,

∑

1≤i<j≤N

[(
xi(t) − xj(t)

)T(2ATST
)
+
(
f(xi(t)) − f

(
xj(t)

))T(2BTST
)

+
(
f(xi(t − τ1)) − f

(
xj(t − τ1)

))T(2BTτ S
T
)
−
(
xi(t − τ2) − xj(t − τ2)

)T(2NGijΓTST
)

−
(
yi(t) − yj(t)

)T(
S + ST

)](
yi(t) − yj(t)

)
= 0.

(3.21)

Moreover, from Assumption 2.2, for ε1 > 0, one obtains

ε1

[
xi(t) − xj(t)

f(xi(t)) − f(xj(t))

]T[
L̂ −L̆
−L̆T 2I

][
xi(t) − xj(t)

f(xi(t)) − f
(
xj(t)

)

]
≤ 0, (3.22)

where L̂ = LTfL
f + LfTLf and L̆ = LTf + L

fT .
Applying

∑
1≤i<j≤N on both sides of the above inequality, the following formula can be

obtained

∑

1≤i<j≤N

{(
xi(t) − xj(t)

)T[2
(
ε1L̆

)(
f(xi(t)) − f

(
xj(t)

))
−
(
ε1L̂

)(
xi(t) − xj(t)

)]

−
(
f(xi(t)) − f

(
xj(t)

))T (2ε1In)
(
f(xi(t)) − f

(
xj(t)

)) }
≥ 0.

(3.23)

Similarly, for ε2 > 0, one has

ε2

[
xi(t − τ1) − xj(t − τ1)

f(xi(t − τ1)) − f
(
xj(t − τ1)

)

]T[
L̂ −L̆
−L̆T 2I

][
xi(t − τ1) − xj(t − τ1)

f(xi(t − τ1)) − f
(
xj(t − τ1)

)

]
≤ 0, (3.24)
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and then

∑

1≤i<j≤N

{(
xi(t − τ1) − xj(t − τ1)

)T

×
[
2
(
ε2L̆

)(
f(xi(t − τ1)) − f

(
xj(t − τ1)

))
−
(
ε2L̂

)(
xi(t − τ1) − xj(t − τ1)

)]

−
(
f(xi(t − τ1)) − f

(
xj(t − τ1)

))T (2ε2In)
(
f(xi(t − τ1)) − f

(
xj(t − τ1)

))}
≥ 0.

(3.25)

From (3.9)–(3.23), we have

VΔ(t) ≤
∑

1≤i<j≤N

{(
xi(t) − xj(t)

)T[2(PA)Q1 +Q2 + 2M1 + 2M2 −
(
ε1L̂

)](
xi(t) − xj(t)

)

+
(
xi(t) − xj(t)

)T[(PB) + 2
(
ε1L̆

)](
f(xi(t)) − f

(
xj(t)

))

+
(
xi(t) − xj(t)

)T (PBτ)
(
f(xi(t − τ1)) − f

(
xj(t − τ1)

))

−
(
xi(t) − xj(t)

)T[(
NGij(PΓ)

)
+ 2M2

](
xi(t − τ2) − xj(t − τ2)

)

+
(
xσi (t) − x

σ
j (t)

)T
(PA)

(
xi(t) − xj(t)

)
+
(
xσi (t) − x

σ
j (t)

)T
(PB)

×
(
f(xi(t)) − f

(
xj(t)

))

+
(
xσi (t) − x

σ
j (t)

)T
(PBτ)

(
f(xi(t − τ1)) − f

(
xj(t − τ1)

))

−
(
xσi (t) − x

σ
j (t)

)T(
NGij(PΓ)

)(
xi(t − τ2) − xj(t − τ2)

)

+
(
f(xi(t)) − f

(
xj(t)

))T (PB)
(
xi(t) − xj(t)

)

+
(
f(xi(t − τ1)) − f

(
xj(t − τ1)

))T (PBτ)
(
xi(t) − xj(t)

)

−
(
xi(t − τ2) − xj(t − τ2)

)T(NGij(PΓ)
)(
xi(t) − xj(t)

)

+
(
xi(t) − xj(t)

)T (PA)
(
xσi (t) − x

σ
j (t)

)
+
(
f(xi(t)) − f

(
xj(t)

))T (PB)

×
(
xσi (t) − x

σ
j (t)

)
+
(
f(xi(t − τ1)) − f

(
xj(t − τ1)

))T (PBτ)
(
xσi (t) − x

σ
j (t)

)

−
(
xi(t − τ2) − xj(t − τ2)

)T(NGij(PΓ)
)(
xσi (t) − x

σ
j (t)

)

+
(
yi(t) − yj(t)

)T(
hP1 + hP2 − S − ST

)(
yi(t) − yj(t)

)

− 1
h

(
Y

(1)
i − Y (1)

j

)T
P1

(
Y

(1)
i − Y (1)

j

)
− 1
h

(
Y

(2)
i − Y (2)

j

)T
P2

(
Y

(2)
i − Y (2)

j

)
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−
(
xi(t − τ1) − xj(t − τ1)

)T[
Q1 +

(
ε2L̂

)](
xi(t − τ1) − xj(t − τ1)

)

−
(
xi(t − τ2) − xj(t − τ2)

)T
Q2
(
xi(t − τ2) − xj(t − τ2)

)

+
(
f(xi(t)) − f

(
xj(t)

))T [R − 2ε1In]
(
f(xi(t)) − f

(
xj(t)

))

−
(
f(xi(t − τ1)) − f

(
xj(t − τ1)

))T [R + 2ε2In]

×
(
f(xi(t − τ1)) − f

(
xj(t − τ1)

))

− 2(xi(t) − xj(t))TM1

[(
xi(t − τ1) − xj(t − τ1)

)
+
(
Y

(1)
i − Y (1)

j

)]

− 2
(
xi(t) − xj(t)

)T
M2

(
Y

(2)
i − Y (2)

j

)

+
[(
xi(t) − xj(t)

)T(2ATST
)
+
(
f(xi(t)) − f

(
xj(t)

))T(2BTST
)

+
(
f(xi(t − τ1)) − f

(
xj(t − τ1)

))T(2BTτ S
T
)

−
(
xi(t − τ2) − xj(t − τ2)

)T(2NGijΓTST
)](

yi(t) − yj(t)
)

+
(
xi(t − τ1) − xj(t − τ1)

)T(2ε2L̆
)(
f(xi(t − τ1)) − f

(
xj(t − τ1)

))}

=
∑

1≤i<j≤N
σTij(t)Dijσij(t) < 0,

(3.26)

where

σij(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xi(t) − xj(t)
xσi (t) − x

σ
j (t)

xi(t − τ1) − xj(t − τ1)

xi(t − τ2) − xj(t − τ2)

f(xi(t)) − f
(
xj(t)

)

f(xi(t − τ1)) − f
(
xj(t − τ1)

)

yi(t) − yj(t)

Y
(1)
i (t) − Y (1)

j (t)

Y
(2)
i (t) − Y (2)

j (t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.27)

and Dij is as defined in (3.1).
From condition (3.1), it is guaranteed that all the subsystems in (2.1) are globally

synchronized for any fixed time delays τi ∈ (0, h] (i = 1, 2). The proof is completed.

Specially, in the case of system (2.5) with continuous time, the following corollary can
be obtained.
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Corollary 3.2. Suppose Assumptions 2.1 and 2.2 hold. The global synchronization of system (2.5) is
achieved if there exist n × n positive matrices P > 0, P1 > 0, P2 > 0, Q1 > 0, Q2 > 0, R > 0, and
matricesM1,M2, S, and positive scalars ε1, ε2, such that the following LMI holds for all 1 ≤ i < j ≤
N:

Dij = D1 +D2 +DT
2 +D3 +DT

3 < 0, (3.28)

where

D1 = diag
{

2PA +Q1 +Q2 + 2M1 + 2M2 − ε1L̂,−Q1 − ε2L̂,−Q2, R − 2ε1In,

−R − 2ε2In, hP1 + hP2 − S − ST ,−
1
h
P1,−

1
h
P2

}
,

D2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

On×n −M1 −M2 On×n On×n ATST −M1 −M2

On×n

−NGijΓTST

O7n×5n BTST O7n×2n

BTτ S
T

O3n×n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

D3 =

⎡
⎢⎢⎣

−NGij(PΓ) PB + ε1L̆ PBτ

O8n×2n On×n On×n ε2L̆ O8n×3n

O6n×n O6n×n O6n×n

⎤
⎥⎥⎦

(3.29)

with

L̂ = LTfL
f + Lf

T
Lf , L̆ = LTf + L

fT . (3.30)

4. A Numerical Example

In this part, a numerical example is given to verify the theoretical result.
Consider the following complex networks (4.1) with time delays on time scale T:

xΔ
i (t) = Axi(t) + Bf(xi(t)) + Bτf(xi(t − τ1)) +

10∑

j=1

GijΓxj(t − τ2) + Λi, i = 1, 2, . . . , 10, (4.1)
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Figure 1: Synchronization error of system (4.1).

where xi(t) = (xi1(t), xi2(t))
T (i = 1, 2, . . . , 10) is the state vector of the ith subsystem. Choose

the coupling matrix G and the linking matrix Γ as

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0 0 0 0 1

0 −1 0 0 0 0 0 0 0 1

0 0 −1 0 0 0 0 0 0 1

0 0 0 −1 0 0 0 0 0 1

0 0 0 0 −1 0 0 0 0 1

0 0 0 0 0 −1 0 0 0 1

0 0 0 0 0 0 −1 0 0 1

0 0 0 0 0 0 0 −1 0 1

0 0 0 0 0 0 0 0 −1 1

1 1 1 1 1 1 1 1 1 −9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Γ =

[
0.35 0.2

0.2 0.4

]
, Λi = (1, 1)T .

(4.2)

The other parameters are as follows:

A =

[
−12 0.2

0.2 −10

]
, B =

[
2 −0.1

−5 3

]
, Bτ =

[
−1.5 −0.1

−0.2 −2.5

]
, τ1 = τ2 = 2. (4.3)

The nonlinear function is given by f(xi(t)) = (f1(xi1(t)), f2(xi2(t)))
T , with fj(xij(t)) =

tanh(xij(t))(j = 1, 2). It is easy to see that the nonlinear functions satisfy all the assumptions.
By using the Matlab LMI Toolbox, LMI (3.1) is feasible. According to Theorem 3.1, one
concludes that the complex networks (4.1) with delays on time scale T can achieve global
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synchronization. The synchronization errors of the complex networks (4.1) are plotted in
Figure 1.

5. Conclusions

In this paper, we have investigated the global synchronization of a kind of delayed complex
networks on time scales. Utilizing the theory of calculus on time scales and the properties
of Kronecker product, the synchronization conditions have been derived through a suitably
Lyapunov functional. The obtained synchronization criterion which is expressed in the form
of LMIs can be easily verified by the standard numerical software such as Matlab LMI
toolbox. The obtained results are novel since there are few works about the synchronization
of delayed complex networks on time scales. In addition, the approach utilized in this paper
can be considered as a universal framework for the study of other complex systems on time
scales.
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