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An N-firm production game known as oligopoly will be examined with isoelastic price function
and linear cost under al Cournot competition. After the best responses of the firms are determined,
a dynamic system with adaptive expectations is introduced. It is first shown that the local
asymptotic behavior of the system is identical with that of the adaptive adjustment process in
which the firms cautiously determine their outputs. Dynamic analysis is confined to two special
cases, one in which N is divided into two groups and the other in which N is divided into three
groups. Then stability conditions will be derived and the global behavior of the equilibria will be
illustrated including chaos control. Lastly the two- and three-group models are compared with
two-firm (duopoly) and three-firm (triopoly) models to shed light on roles of the number of the
firms.

1. Introduction

The state sequence of discrete dynamic systems will be considered as time series, with
a deterministic rule to obtain the consecutive state variables. Among the large variety
of dynamic economic systems the oligopoly models have a very special place, since
the long-term behavior of the state trajectories has many different possibilities including
global asymptotic stability, limit cycles with increasing number of periods and even chaos.
Following Cournot [1] many researchers worked on developing more realistic models and
on examining their properties. The existence and uniqueness of the equilibriumwas the main
focus in earlier studies, and later the researchers turned their focus to the dynamic extensions
of these models. A comprehensive summary of earlier results is given in Okuguchi [2],
and their multiproduct extensions with different model variants are discussed in Okuguchi
and Szidarovszky [3]. Most studies considered concave oligopolies with monotonic best
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responses. Puu [4] replaces a linear demand function (the most popular form) with an
isoelastic demand function (the second popular form), which can be derived by assuming
a Cobb-Douglas type utility function of the market. In this case the best responses are
unimodal, making equilibrium and stability analyses more complicated and more different
from those under monotonic best responses. In particular, chaotic dynamics emerges through
a Neimark-Sacker bifurcation when inherited nonlinearities becomes stronger. Agiza and
Elsadany [5] have investigated discrete-time Cournot duopolies with heterogeneous players.
Richter and Stolk [6] have introduced a new method of controlling coexisting chaotic
attractors in Cournot triopolies by means of steering the systems dynamics from one attractor
to another. See Puu and Sushko [7], Puu [8] and Bischi et al. [9] for comprehensive summary
of recent developments in the theory of nonlinear oligopolies.

This work continues an earlier paper of Matsumoto [10], where chaos control for
nonlinear duopolies was examined. The number of the firms is generalized to N ≥ 2. After
determining best responses of the firms and giving detailed equilibrium analysis, it constructs
an adjustment process with adaptive expectations in which the expectations are adaptively
updated. To simplify dynamic analysis, attentions are confined to two special cases, one in
which the N firms are divided into two groups (i.e., two-group model) and the other in
which the N firms are divided into three groups (i.e., three-group model). It is shown that
these models generate complex dynamics involving chaos. It is further shown that complex
dynamics could be stabilized by proper selection of the speeds of adjustment.

The paper develops as follows. In Section 2 the general model will be introduced, the
best responses of the firms and the Cournot equilibrium will be determined. In Section 3
we will show that the local stability properties of the adjustment process with adaptive
expectations are identical with those of the adaptive adjustment process in which the firms
cautiously adjust their outputs in the next period. In Section 4 two special cases, two-
and three-group models, will be analyzed both theoretically and numerically in which the
dynamics is two- and three-dimensional, respectively. The stability regions, where chaos is
controlled, will be shown and their dependence on the number of firms will be illustrated.
Section 5 will conclude the paper.

2. Nonlinear Oligopoly Models

It is assumed that a homogeneous market is supplied by N firms. For the sake of
mathematical simplicity only one product is considered. Let xi denote the production output
of firm i, then Si =

∑
j /= i xj is the output of the rest of the industry and S =

∑N
i=1 xi is the total

output of the industry. We assume isoelastic price function p = 1/S and linear cost functions
Ci(xi) = cixi as in the duopoly model of Puu [8]. Since the firms make decisions about their
production levels simultaneously, the firms do not know the outputs of the rivals when their
decisions are made. Each firm i can have only an expectation (prediction) of the output of the
rest of the industry, Se

i . So the expected profit of firm i can be given as

Πe
i =

xi

xi + Se
i

− cixi (i = 1, 2, . . . ,N). (2.1)

Notice that this function is strictly concave in xi.
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The strict concavity ofΠe
i implies that with any given value of Se

i the profitmaximizing
output level of firm i can be computed as

xi = fi
(
Se
i

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√
Se
i

ci
− Se

i if 0 < Se
i <

1
ci
,

0 if
1
ci

≤ Se
i .

(2.2)

This function is continuous, piecewise differentiable, and in interval [0, 1/ci] it is strictly
concave in Se

i . Then the best response dynamic process is

xi(t + 1) = fi
(
Se
i (t + 1)

)
for i = 1, 2, . . . ,N. (2.3)

Dynamic characteristics are sensitive to the expectation formation. In this study we first
consider naive expectation in which the firms assume that the output of the rest of the
industry remains the same as in the previous period:

Se
i (t + 1) =

∑

j /= i

xj(t), (2.4)

and call it a naive system. It is well known that the naive system is a special case of the
best reply dynamics with adaptive expectations. In the appendix, local stability conditions
for dynamic systems with adaptive expectations are derived. It is, as will be seen, useful to
determine the stability of not only naive systems but also that of the controlled systems.

Without losing generality we may assume that at the equilibrium all firms have
positive outputs, otherwise we can ignore the firms with zero equilibrium output values and
decrease the value ofN. Assuming a positive equilibrium, then, from the definitions of naive
expectations and the reaction function of firm i, we get

Se
i =
∑

j /= i

xj , xi =

√
Se
i

ci
− Se

i . (2.5)

Since the total industry output is S = xi + Se
i , from the second equation we have

Se
i = ciS

2, (2.6)

that is,

xi = S − ciS
2. (2.7)

Adding this equation for all values of i and denoting the sum of the marginal costs by C =
∑N

i=1 ci gives

S = NS − CS2. (2.8)
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Therefore there is a trivial equilibrium with S = x1 = · · · = xN = 0, and a nontrivial positive
equilibrium with

Sc =
N − 1
C

, (2.9)

where the Cournot output of firm i becomes

xc
i =

(N − 1)(C − ci(N − 1))
C2

. (2.10)

The superscript “c” is attached to variables to indicate that they are computed at the
Cournot equilibrium. Our concern is on the nontrivial point, (xc

i )i=1,2,...,N , and thus no further
considerations will be given to the trivial point. For a positive Cournot output, the following
inequality has to be satisfied:

C − ci(N − 1) > 0 or ci <
C

N − 1
. (2.11)

This always holds for N = 2, and necessarily holds for N > 2 if the marginal costs, ci, are
sufficiently close to each other. In the rest of this paper, we assume that this condition is
satisfied. We also need to guarantee that in (2.2) the first case applies. Substituting ciS2 for Se

i

and arranging terms yield C > ci(N − 1). Thus the condition Se
i < 1/ci can be reduced to the

nonnegativity condition (2.11).
Adaptive expectations are generalizations of naive expectation where the expected

output of the rest of the industry is computed as

Se
i (t + 1) = (1 − αi)Se

i (t) + αi

∑

j /= i

xj(t). (2.12)

Notice that in the case of αi = 0, the expectation Se
i (t) of firm i remains constant and therefore

the same best response is chosen at all time periods t, which is not equilibrium strategy in
general. If αi = 1, then this formula reduces to naive expectation. The best response dynamic
process with adaptive expectations is a 2N-dimensional system with state variables xi and
Se
i (i = 1, 2, . . . ,N). It is easy to see that the steady state xi, Si of the system and the Cournot

equilibrium of the static N-firm oligopoly coincide: xi = xc
i and Si = Sc

i . In the appendix
the local stability conditions for system with adaptive expectations are derived. Combining
inequalities (2.11) and (A.15) from the appendix with αi = 1 gives

C

4(N − 1)
< ci <

C

N − 1
for i = 1, 2, . . . ,N, (2.13)

and the eigenvalue equation (A.16) of the appendix reduces to the following:

N∑

i=1

γi

γi + λ
= 1, where γi ≡

∂fi
(
Se
i

)

∂Se
i

at the equilibrium. (2.14)
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It can be written as the quadratic and cubic equations,

λ2 − γ1γ2 = 0 for N = 2,

−λ3 +
(
γ1γ2 + γ1γ3 + γ2γ3

)
λ + 2γ1γ2γ3 = 0 for N = 3.

(2.15)

3. General Stability Conditions

In this section, we first consider the dynamic process in which firms cautiously adjust their
outputs, that is, the output in the next period is a weighted average of the current output and
the best reply with naive expectations:

xi(t + 1) = αifi
(
Se
i (t + 1)

)
+ (1 − αi)xi(t) for i = 1, 2, . . . ,N, (3.1)

or, equivalently,

xi(t + 1) = αi

⎛

⎝

√∑
j /= i xj(t)

ci
−
∑

j /= i

xj(t)

⎞

⎠ + (1 − αi)xi(t). (3.2)

This is commonly known as the adaptive adjustment process. Here we assume that firm i
moves into the direction toward its profit maximizing output, and reaches it only for αi = 1.
Since this adjustment process describes the best reply dynamics with inertia, we call it the
inertia control system. Here αi is the inertia or control parameter of firm i and assumed to be
positive and not greater than unity. It is easy to see that the fixed point of the inertia control
system is the same as that of the naive system. The Jacobian of the system has the form

Hc =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 − α1 γ1α1 · γ1α1

γ2α2 1 − α2 · γ2α2

· · · ·
γNαN γNαN · 1 − αN

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (3.3)

In the appendix, we show that the nonzero eigenvalues of the Jacobian of the system
with adaptive expectations are the eigenvalues of matrix

H =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 − α1 γ2α1 · γNα1

γ1α2 1 − α2 · γNα2

· · · ·
γ1αN γ2αN · 1 − αN

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (3.4)

It is easy to see that the characteristic polynomials of matrices H and Hc are identical since
R−1HcR = H with the diagonal matrix

R = diag
(
γ1, γ2, . . . , γN

)
. (3.5)
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If any or more γi = 0, then the continuity of the characteristic polynomial coefficients in
the matrix elements implies the result. Hence the local stability conditions of dynamics with
adaptive expectations and with inertia control are identical. So in the rest of this paper we
will consider only inertia control which also contains models with best response dynamics as
special case with αi = 1.

In the case of concave oligopolies (see, e.g., Szidarovszky and Chiarella [11], Bischi
et al. [9]) it is proved that −1 < γi ≤ 0, all eigenvalues are real and they are inside the unit
circle if and only if for all i,

αi <
2

1 + γi
,

N∑

i=1

αiγi

2 − αi

(
1 + γi

) > −1.
(3.6)

These conditions are clearly satisfied if the speeds αi of adjustments are sufficiently small.
However in the case of isoelastic inverse demand functions there is the possibility of complex
eigenvalues, so no such simple general stability conditions can be derived. In the next section
stability in two special cases will be examined both theoretically and numerically.

4. Stability Conditions in Special Models

In this section we will focus on two cases: one case where the industry consists of two groups
of identical firms and the other case with three groups of identical firms. Our aim is to see
whether the unstable naive system can be stabilized by the inertia control method.

4.1. Two Groups of Firms

Assume there are two groups of firms in a sense that firms of the same group produce the
same output with the same marginal cost and have the same speed of adjustment. So the
N firms are divided into two groups. Without loss of generality, we can assume that the
first Na firms are in the first group and the remaining Nb firms in the second group, where
Na +Nb = N and Na = (1/w)N with w > 1. By assuming N/N − 1 < w < N, we will not
consider the extreme division in whichN is divided into 1 andN − 1. We denote the outputs
produced by the firms of the two groups by x and y, so

x1 = · · · = xNa = x, xNa+1 = · · · = xN = y, (4.1)

the two kinds of marginal costs are denoted by a and b, so

c1 = · · · = cNa = a, cNa+1 = · · · = cN = b. (4.2)

It is also assumed that the firms use adaptive output adjustments (3.2)with naive expectation
with the two values of speeds of adjustment

α1 = · · · = αNa = α, αNa+1 = · · · = αN = β. (4.3)
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We further assume, without any losses of generality, that the firms in the first group are more
efficient than the ones in the second in a sense that

a < b. (4.4)

Accordingly, the marginal cost ratio of b over a, which we denote by h, is greater than unity,

h =
b

a
> 1. (4.5)

The sum of the marginal costs and the derivatives of the reaction functions evaluated at the
Cournot equilibrium are, respectively,

C = Naa +Nbb,

γa =
C

2a(N − 1)
− 1, γb =

C

2b(N − 1)
− 1.

(4.6)

From (2.10), the equilibrium outputs of the firms are

xc =
(N − 1)(C − a(N − 1))

C2 ,

yc =
(N − 1)(C − b(N − 1))

C2
,

(4.7)

where

C − a(N − 1) = a(Nb(h − 1) + 1) > 0,

C − b(N − 1) = a(Na − 1)
(

N

N −w
− h

)

.
(4.8)

The first inequality is always true because h > 1, so xc is always positive. The second equation
indicates that yc is positive if Na > 1 and the marginal cost ratio is bounded from above:

h < hN ≡ N

N −w
=

Na

Na − 1
. (4.9)

Notice that Na > 1 implies that the denominator of the marginal cost ratio, hN , is positive. It
can be seen that hN decreases in N and is approaching unity asN converges to infinity with
fixed values of w or Na converges to infinity regardless of the value of w. Since the ratio h is
assumed to be greater than unity, this implies that it becomes more difficult to have a positive
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Cournot equilibrium as the number of the firms in the industry increases. Similarly, condition
(A.15) for each group can be written as

h <
4(N − 1) − αNa

αNb
for the first group,

h >
βNa

4(N − 1) − βNb
for the second group.

(4.10)

However neither inequality is effective, since forN ≥ 3 and α, β ∈ (0, 1],

βNa

4(N − 1) − βNb
< 1 ≤ N

N −w
<
4(N − 1) − αNa

αNb
, (4.11)

which indicates that if h fulfills (4.9), then it also satisfies (A.15).
In this case, (A.16) assumes the form

1 +Na
αγa

1 − α
(
1 + γa

) − λ
+Nb

βγb

1 − β
(
1 + γb

) − λ
= 0, (4.12)

since Na and Nb firms have identical parameters, in which case αi = α, γi = γa (1 ≤ i ≤ Na)
and αi = β, γi = γb (Na+1 ≤ i ≤ Na+Nb). Notice that with notation Ra = 1+γa and Rb = 1+γb,
the above equation reads

(1 − αRa − λ)
(
1 − βRb − λ

)
+Naαγa

(
1 − βRb − λ

)
+Nbβγb(1 − αRa − λ) = 0. (4.13)

This is a quadratic equation in λ,

λ2 + pλ + q = 0 (4.14)

with coefficients

p = α(Ra(1 −Na) +Na) + β(Rb(1 −Nb) +Nb) − 2,

q = −α(Ra(1 −Na) +Na) − β(Rb(1 −Nb) +Nb)

+ αβ(RaRb(1 −N) + RaNb + RbNa) + 1.

(4.15)

It is well-known that the roots of the quadratic equation (4.14) are inside the unit circle
if and only if

q − 1 < 0,

q + p + 1 > 0,

q − p + 1 > 0.

(4.16)
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The left hand side of the second stability condition can be rewritten as

q + p + 1 =
(Na + hNb)2αβ

4h(N − 1)
, (4.17)

which is always positive. This indicates that the characteristic equation (4.14) does not have
a root equal to unity. The other two conditions are hard to be simplified and explained in
general. Therefore we make a specializing assumption that the speeds of adjustment are the
same for the two groups.

Assumtion 4.1 (α = β). The feasible region in terms of the adjustment speeds and the marginal
cost ratios for which the Cournot equilibrium is positive is

PN = {(α, h) | 0 < α ≤ 1, 1 < h < hN}, (4.18)

where hN is the upper bound of the marginal cost ratio defined in (4.9). Since it is determined
by N and w, the feasible region is presented by a rectangular, PN = (0, 1] × (1, hN) which
decreases in N (i.e., PN+1 ⊂ PN).

The locus of q − 1 = 0 is the Neimark-Sacker boundary on which the Cournot
equilibrium changes stability through a pair of complex conjugates and a closed invariant
curve is born. We first examine the possibility of the Neimark-Sacker bifurcation. Under α = β
and h = hN , the left hand side of the first stability condition, q − 1, has the form

q − 1 =
α(N − 1)

4h

(
N

N −w

)2(

α − 2(1 +N)(N −w)
N(N − 1)

)

. (4.19)

It is natural to confine our analysis to the case where N, Na and Nb are integers. In
consequence, the relation N ≥ 2w must hold to have that Na = N/w is an integer, since
N > w has already been assumed. Then substituting N/2 for w yields

2(1 +N)(N −w)
N(N − 1)

≥ N + 1
N − 1

> 1. (4.20)

It then follows from the assumption α ≤ 1 that q − 1 < 0. In other words, the q − 1 = 0 locus
does not cross the h = hN locus. We may go from this to the conclusion that the first stability
condition q − 1 < 0 is always satisfied for any (α, h) ∈ PN , givenw and N. Our first result on
Cournot dynamics is summarized as follows.

Theorem 4.2. If α = β, N/(N − 1) < w < N and all of N, Na and Nb are integers, then the
Neimark-Sacker bifurcation does not occur in the feasible region PN .

We then examine the possibility of flip bifurcation. The locus of 1 − p + q = 0 is the
flip boundary on which at least one of the eigenvalues is equal to −1. Crossing this boundary
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the equilibrium point goes through a period-doubling cascade to chaos. Solving 1 − p + q = 0
for α under α = β and h = hN yields

α =
2

N(N − 1)

(

(N −w)(N + 1) −
√

(N −w)2(N + 1)2 − 4N(N −w)(N + 1)
)

. (4.21)

Given w and N, the above equation determines a threshold value of α at which the flip
boundary crosses the h = hN locus. It, however, still has a complicated expression. So,
instead of analytic study, we will consider an important special case and perform numerical
simulations. For further simplification, we setw = 2 (i.e., the industry consists of two groups
with equal size) and increase the number of the firms by two from N = 4 to N = 10 to find
the threshold value of α when the number of the firms in the industry increases:

α4 =
4
3

when N = 4,

α6 =
4
(
7 −√

19
)

15
� 0.704 when N = 6,

α8 =

(
27 − √

393
)

14
� 0.513 when N = 8,

α10 =
8
(
11 − 2

√
19
)

45
� 0.406 when N = 10.

(4.22)

For N = 4, the threshold value α4 is greater than unity. This implies that the flip boundary
and the h = hN locus do not intersect. Thus we see that the Cournot equilibrium is stable in
the feasible region PN when N = 4. On the other hand, the threshold value αi for i = 6, 8, 10
is less than unity. This implies that the flip boundary with N ≥ 6 intersects the h = hN locus
and then divides the corresponding feasible region PN into two parts, stability region and
instability region. Figure 1 illustrates three intersections (denoted by three dots) of the flip
boundaries and the h = hi locus for i = 6, 8, 10 and the separation of the feasible regions.
When N = 6, the corresponding feasible region P6 is a rectangular having the h = h6 locus as
its upper boundary. The locus denoted by F6 is the flip boundary withN = 6 and divides the
feasible region P6 into two regions: the stability region is the largest rectangular with light-
gray in the left of the flip boundary and the instability region is the white region in the right
of the flip boundary and below the h = h6 locus. In the same way, it is shown in Figure 1 that
the flip boundaries with N = 8 and N = 10 denoted by F8 and F10 divide the corresponding
feasible regions into two parts. The smallest rectangular with dark-gray is the stability region
with N = 10 and the remaining middle rectangular is the one with N = 8. Since the h = hN

locus and the flip boundary shift downward and leftward, respectively, the feasible and stable
region becomes smaller as the number of firmsN increases.

Our extension from the two-firm (i.e., duopoly)model to the two-groupmodel reveals
interesting features of the nonlinear oligopoly. See Puu [8] for a theoretical and numerical
analysis of the two-firm (duopoly) and three-firm (triopoly)models. To see them, we perform
numerical simulations in two models and compare the results. To this end, in the two-group
model, we take the set of parametersN = 6,w = 2 and choose the two bifurcation parameters:
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F10

F8

F6

0 2
5

1
2

2
3

1
1

1.75

h6

h8

h

α

h10

Figure 1: Stability and instability regions forN = 6, 8, 10.

one is the common adjustment coefficient α and the other is the cost ratio h = b/a between
the two groups where a = 1 is taken for simplicity. The dynamic system (3.2) with the two
groups has now the special form:

x(t + 1) = (1 − α)x(t) + α

(√
2x(t) + 3y(t)

a
− (2x(t) + 3y(t)

)
)

,

y(t + 1) = (1 − α)y(t) + α

(√
3x(t) + 2y(t)

b
− (3x(t) + 2y(t)

)
)

.

(4.23)

On the other hand, in the two-firm model, replacing N = 6 with N = 2 reduces the above
dynamic system to

x(t + 1) = (1 − α)x(t) + α

(√
y(t)
a

− y(t)

)

,

y(t + 1) = (1 − α)y(t) + α

(√
x(t)
b

− x(t)

)

.

(4.24)

Changing α from 0.6 to 1.0 and h (actually b) from 1 to 1.5(= h6) generates the two-
parameter bifurcation diagram shown as the left part of Figure 2 while changing α from 0.9
to 1.0 and h from 3 + 2

√
2 to 6.5 yields the two-parameter bifurcation diagram, the right

part of Figure 2. Different colors in the (α, h) plane indicate different periods of cycles up
to 16. Periodic points with a period larger than 16 and aperiodic points are colored in gray.
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0.6 0.7 0.8 0.9 1

α

1.1

1.2

1.3

1.4

1.5

h

0.92 0.94 0.96 0.98 1

α

5.9

6

6.1

6.2

6.3

6.4

6.5

h

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 <

Figure 2: Bifurcation diagrams in the (α, h) plane for the two-group model (a) and for the two-firmmodel
(b).

The solution becomes infeasible if the parameter values are selected from the white region.
The upward sloping black curve in the left diagram and the downward sloping black curve
in the right diagram are the flip boundary of the two-group model and the Neimark-Sacker
boundary of the two-firm (i.e., duopoly) model, respectively. As the destabilizing scenario
is concerned, the comparison shows two issues. First, the stationary state is destabilized
through a flip bifurcation in the two-groupmodel and by a Neimark-Sacker bifurcation in the
two-firm model. Even though both models can generate complex dynamics involving chaos,
the rout to chaos is different. In particular, the Cournot equilibrium goes through a period-
doubling cascade to chaos in the two-group model while the Cournot equilibrium bifurcates
to periodic cycles, quasiperiodic cycle and then to chaotic fluctuation in the two-firm model.
Second, the loss of stability occurs for a relatively low production cost ratio in the two-group
model and for a high ratio in the two-firm model. Furthermore, the left diagram indicates
that the value of the adjustment speed seems to be a main source of flip bifurcation since the
almost similar bifurcation takes place as α increases regardless of the value of h. This implies
that the adjustment speed can be an effective control variable in the two-groupmodel. For any
value ofw, we have qualitatively the same result. Our second result on Cournot dynamics in
the two-group model is summarized as follows.

Theorem 4.3. If α = β, w = 2 and N = 6, then the flip boundary divides the feasible region
into two parts, stability region and instability region in which chaos emerges via the period-doubling
bifurcation.

4.2. Three Groups of Firms

Assume that the industry consists of three groups withNa,Nb andNc firms whereNa+Nb+
Nc = N andNa = (1/wa)N and Nb = (1/wb)N with wa > andwb > 1.The common outputs
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of the three groups of firms are denoted by x, y and z,

x1 = · · · = xNa = x, xNa+1 = · · · = xNa+Nb = y, xNa+Nb+1 = · · · = xN = z, (4.25)

the marginal costs are a, b and c with

c1 = · · · = cNa = a, cNa+1 = · · · = cNa+Nb = b, cNa+Nb+1 = · · · = cN = c, (4.26)

and the speeds of adjustment are denoted by α, β and γ ,

α1 = · · · = αNa = α, αNa+1 = · · · = αNa+Nb = β, αNa+Nb+1 = · · · = αN = γ. (4.27)

As in the previous section, we assume that the firms use adaptive output adjustments with
naive expectations, and the firms in the first group are the most efficient in a sense that their
marginal cost is the smallest,

a < min{b, c}. (4.28)

The marginal cost ratios are denoted by h and k,

h =
b

a
> 1, k =

c

a
> 1. (4.29)

The Cournot outputs are obtained from (2.10),

xc =
N − 1
C2 (C − a(N − 1)),

yc =
N − 1
C2 (C − b(N − 1)),

zc =
N − 1
C2 (C − c(N − 1))

(4.30)

with C = Naa+Nbb+Ncc. Then it can be seen that left hand sides of the positivity conditions
(2.11) have the forms

C − a(N − 1) = a{Nb(h − 1) +Nc(k − 1) + 1} > 0,

C − b(N − 1) = a{Nck − (Na +Nc − 1)h +Na},

C − c(N − 1) = a{−(Na +Nb − 1)k +Nbh +Na}.

(4.31)
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The first inequality is always true. In order to have yc, zc > 0, we have to assume that

k >
Nc +Na − 1

Nc
h − Na

Nc
,

k <
Nb

Na +Nb − 1
h +

Na

Na +Nb − 1
.

(4.32)

Let the right hand sides of the first and the second inequalities be denoted by fb(h) and
fc(h). There is no guarantee that fb(h) > 1, but fc(h) > 1 always for h > 1. Then the set of the
marginal cost ratios that generate positive Cournot equilibrium can be defined by

NN =
{
(h, k) | max

{
1, fb(h)

}
< k < fc(h), h > 1

}
. (4.33)

Characteristic equation (A.16) now can be written in the form

1 +Na
αγa

1 − α
(
1 + γa

) − λ
+Nb

βγb

1 − β
(
1 + γb

) − λ
+Nc

γγc

1 − γ
(
1 + γc

) − λ
= 0. (4.34)

Introducing notation Ra = 1 + γa, Rb = 1 + γb and Rc = 1 + γc, it is reduced to a cubic equation,

−λ3 + pλ2 + qλ + r = 0, (4.35)

where the coefficients are

p = (−Na + (Na − 1)Ra)α + (−Nb + (Nb − 1)Rb)β + (−Nc + (Nc − 1)Rc)γ + 3,

q = −2{(−Na + (Na − 1)Ra)α + (−Nb + (Nb − 1)Rb)β + (−Nc + (Nc − 1)Rc)γ
}

+ (−NbRa −NaRb + (Na +Nb − 1)RaRb)αβ

+ (−NcRa −NaRc + (Na +Nc − 1)RaRc)αγ

+ (−NcRb −NbRc + (Nb +Nc − 1)RbRc)βγ − 3,

r = (−Na + (Na − 1)Ra)α + (−Nb + (Nb − 1)Rb)β + (−Nc + (Nc − 1)Rc)γ

− (−NbRa −NaRb + (Na +Nb − 1)RaRb)αβ

− (−NcRa −NaRc + (Na +Nc − 1)RaRc)αγ

− (−NcRb −NbRc + (Nb +Nc − 1)RbRc)βγ

+ (−NcRaRb −NbRaRc −NaRbRc − (Na +Nb +Nc − 1))αβγ.

(4.36)
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The Cournot equilibrium is locally asymptotically stable if all eigenvalues are less than unity
in absolute value. The most simplified form of the necessary and sufficient conditions for the
cubic equation to have roots only inside the unit circle is

1 − p +
(−q) − r > 0,

1 + p +
(−q) + r > 0,

1 + q + pr − r2 > 0

(4.37)

as it has been proved in Farebrother [12] and Okuguchi and Irie [13]. It is easy to show that

1 − p +
(−q) − r =

(N − 1)(Na + hNb + kNc)3αβγ

8hk(N − 1)3
> 0, (4.38)

which implies that unity is not a root of the cubic equation.
It seems tedious to examine the remaining two conditions in general, instead we

numerically confirm the stability region in the special case with N = 6 and w1 = w2 = 3. The
qualitatively same results can be obtained for any N(> 4), w1 and w2. In this case we have
three groups with two firms in each of them. The region for positive Cournot equilibrium is
surrounded by the k = fa(h) and k = fb(h) loci. Substituting Na = Nb = Nc = 2 into these
functions determines the nonnegativity region

N6 =
{

(h, k) | 2
3
h +

2
3
> k >

3
2
h − 1, h > 1, k > 1

}

. (4.39)

The positivity and stability regions under naive expectation (with α = 1) and those
under adaptive adjustment (with α = 0.7) are given in Figures 3(a) and 3(b). In each figure,
the outer curve is the Neimark-Sacker boundary, the inner curve is the flip boundary and the
two straight lines are the k = fb(h) and the k = fc(h) loci where the former is steeper than the
latter. The light gray area bounded by the two straight lines is the positivity region and the
dark gray area illustrates the stability region. Their intersection is the feasible and stability
region. It is seen in Figure 3(a) that the positivity region is completely outside the stability
region when the expectations are naively formed. This implies that the positive Cournot
equilibrium is always unstable under naive expectation. This result reminds us the classical
result of Theocharis [14] that the stability of a nondifferentiated Cournot equilibrium can be
confirmed only in the duopoly framework if the expectations are naively formed and the
price and cost functions are linear. It is, in turn, seen in Figure 3(b) that about half of the
positivity region is included in the stability region for adaptive adjustment, which implies
that an unstable Cournot equilibrium under naive expectations could be stabilized by the
adaptive adjustment system.

Figure 4 is an enlargement of the south-west corner of Figure 3(b). It shows how the
flip boundary shifts if the value of α changes. In the current example, solving 1+p+(−q)+r = 0
for α yields 0.8, given k = h = 2. This implies that the flip boundary with α = 0.8 passes
through the point (2, 2), the vertex of the triangular part of the stable region. Thus if α ≥ 0.8,
then the positivity region is completely outside the stability region for adaptive adjustment,
so no positive equilibrium becomes stable. On the other hand, solving 1+p+(−q)+r = 0 for α
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Figure 3: Stability and feasible regions of the naive and adaptive systems.
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Figure 4: Dependency of the stability region on α.

yields 2/3, given k = h = 1. This implies that the flip boundary with α = 2/3 passes through
the point (1, 1). If α ≤ 2/3, then the positivity region is entirely inside the stability region, in
which case all nonnegative equilibria become stable. If 2/3 < α < 0.8, then only a certain part
of the nonnegativity region belongs to the stability region, and this part becomes larger if the
value of α decreases. In particular, for α = 0.7, the stability region is horizontally-striped and is
the triangle with a base of the flip boundary with α = 0.7, the most outer circle-wise curve. In
the remaining light-gray area of the positivity region, the Cournot output is locally unstable.
When the adaptive parameter α decreases, the flip boundary shifts inside accordingly. As
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a consequence, the stability region enlarges and the unstable region shrinks. Our third result
on Cournot dynamics is numerically confirmed and then summarized as follows.

Theorem 4.4. In the special case of the three-groupmodel where α = β = γ, N = 6 andw1 = w2 = 2,
the Cournot equilibrium is locally unstable if α ≥ 4/5, locally asymptotically stable if α ≤ 2/3
while the feasible region is divided into the stability and instability regions by the flip boundary if
4/5 > α > 2/3.

As the comparison of the three-group and the three-firm (triopoly) models, we, again,
perform numerical simulations for these two models. The dynamic system in the three-group
model becomes

x(t + 1) = (1 − α)x(t) + α

⎛

⎝

√
x(t) + 2y(t) + 2z(t)

a
− (x(t) + 2y(t) + 2z(t)

)
⎞

⎠,

y(t + 1) =
(
1 − β

)
y(t) + β

⎛

⎝

√
2x(t) + y(t) + 2z(t)

b
− (2x(t) + y(t) + 2z(t)

)
⎞

⎠,

z(t + 1) =
(
1 − γ

)
z(t) + γ

⎛

⎝

√
2x(t) + 2y(t) + z(t)

c
− (2x(t) + 2y(t) + z(t)

)
⎞

⎠,

(4.40)

where for simplicity, we assume that α = β = γ , h = k, and a = 1 implying b = c. The
dynamic system in the three-firmmodel (i.e., triopoly) can be constructed similarly. Selecting
α and h (in particular b) as the bifurcation parameters, Figure 5 illustrates the bifurcation
diagrams in the (α, h) plane. The numerical investigations clearly reveal qualitatively the
same issues as the ones we saw in Figure 2. Namely, first of all, the destabilizing process goes
to chaos through a flip bifurcation with a lower production ratio in the three-group model
and a Neimark-Sacker bifurcation with a higher ratio in the three-firm model. Second, the
adjustment speed can be used to control unstable trajectories in the two- and three-group
models. Comparing the bifurcation diagram of the two-group model and that of the three-
group model shows the similarity of the destabilizing process in which period-doubling
bifurcation takes place.

In Figure 6, we present the bifurcation diagram in the (h, k) plane to draw attention
to the feasibility of the solutions of the three-group model. The value α = 0.8 is fixed. As
already explored in Figure 4, h and k range from 1 to 2 and the stationary state is unstable
for any combination of h and k from this region. Color has the same meanings as before. The
feasible region of the three-group model is defined by two upward sloping curves, k = fb(h)
and k = fc(h). Notice that although the area outside the feasible region is colored in the same
way as the feasible region, the stationary point defined in that area becomes negative and
thus economically meaningless. Bifurcation makes sense only in the feasible region from an
economic point of view. Notice further that a trajectory that oscillates around the stationary
point periodically or aperiodically may take negative values and thus become economically
meaningless. One way is to confine the parameter choice in such a way that the resultant
dynamics does not become infeasible. The other way is to reconstruct the dynamic system
by taking into account the nonnegativity constraint explicitly. However, the former has the
difficulty of deriving the confinement conditions in the currently considered model as many
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Figure 5: Bifurcation diagrams in the (α, h) plane for the three-group model (a) and for the three-firm
model (b).
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Figure 6: 2-parameter bifurcation diagram.

parameters are involved, and the latter makes the asymptotic behavior of the dynamic system
significantly different and more difficult to analyze. Since our main concern is to control the
unstable trajectories and our main conclusion is that the adjustment speed is an effective
control parameter, which is supposed to hold in those models, we used the model without
such modifications at the expense of some economic precision.
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5. Conclusion

Discrete dynamic systems always generate time series. The asymptotic behavior of them is a
fundamental research issue. In this paper a special class of economic models was examined.
For the sake of mathematical simplicity we selected N-firm Cournot oligopolies without
product differentiation, and with isoelastic price function. The reaction functions and the
equilibrium were determined first, and then the asymptotic behavior of the equilibrium was
illustrated in two special caseswith two or three groups of identical firms. Stability conditions
could be derived analytically in the first case, and the dependence of the asymptotic
properties of the equilibrium on the number of firms was illustrated by computer simulation
in the second case. The results of the nonlinear duopoly and triopoly models show that
the Cournot equilibrium can be destabilized through a Neimark-Sacker bifurcation. We also
found the following new dynamic phenomenon. In the multigroup models, the stationary
state is destabilized through the Feigenbaum period doubling sequence, furthermore a
Neimark-Sacker bifurcation can occur only in the infeasible regions in which the stationary
state is negative. For N > 4, the multigroup models are unstable if α is close to one and
become stable if α is below a certain threshold, regardless of the production cost ratios. This
implies that the main source of instability is the speeds of adjustment and thus the stationary
state could be stabilized by selecting sufficiently small speeds of adjustment. That is, the
multigroup models with N firms are unstable under naive expectations but are controllable
under adaptive adjustment process in which the speed of adjustment is the control parameter.

Appendix

In this appendix, we derive the stability conditions of the adaptive system in which the
expectation is adaptively formulated,

ye
i (t + 1) = (1 − αi)ye

i (t) + αi

∑

j /= i

xj(t). (A.1)

Here αi ∈ (0, 1] is the speed of adjustment of firm i in assuming the expected aggregate output
of the other firms. The stability conditions are also useful to determine the local dynamic
behavior of the naive system as well as that of the inertia system, that is, the system where
the firms with naive expectations adaptively adjust toward the best reply solution.

We consider the adjustment processwith adaptive expectations first, since the one with
naive expectations can be obtained by selecting the speeds of adjustment equal to unity (i.e.,
αi = 1, i = 1, 2, . . . ,N). For i = 1, 2, . . . ,N,

xi(t + 1) =

√
αi
∑

j /= i xj(t) + (1 − αi)ye
i (t)

ci
−
⎛

⎝αi

∑

j /= i

xj(t) + (1 − αi)ye
i (t)

⎞

⎠,

ye
i (t + 1) = αi

∑

j /= i

xj(t) + (1 − αi)ye
i (t).

(A.2)
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The Jacobian at the equilibrium has the form

J =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 γ1α1 · γ1α1 γ1(1 − α1) 0 · 0

γ2α2 0 · γ2α2 0 γ2(1 − α2) · 0

· · · · · · · ·
γNαN · γNαN 0 0 · 0 γN(1 − αN)

0 α1 · α1 1 − α1 0 · 0

α2 0 · α2 0 1 − α2 · 0

· · · · · · · ·
αN · αN 0 0 · 0 1 − αN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (A.3)

where

γi ≡
∂fi
(
ye
i

)

∂ye
i

=
C

2ci(N − 1)
− 1. (A.4)

Notice that condition (2.11) implies that γi > −1/2 for all i.
The eigenvalue equation has the form

Jx = λx with x = (u1, . . . , uN, v1, . . . , vN)T , (A.5)

or equivalently,

γiαi

∑

j /= i

uj + γi(1 − αi)vi = λui, 1 ≤ i ≤ N,

αi

∑

j /= i

uj + (1 − αi)vi = λvi, 1 ≤ i ≤ N.
(A.6)

Subtracting the γi-multiple of the second equation from the first one gives

λ
(
ui − γivi

)
= 0. (A.7)

The value λ = 0 cannot destroy stability, so we may assume λ/= 0. Then ui = γivi, and by
substituting it into the second equation, we have

αi

∑

j /= i

γjvj + (1 − αi)vi = λvi, 1 ≤ i ≤ N. (A.8)



Discrete Dynamics in Nature and Society 21

This is the usual eigenvalue problem of the N ×N matrix

H =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 − α1 γ2α1 · γNα1

γ1α2 1 − α2 · γNα2

· · · ·
γ1αN γ2αN · 1 − αN

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (A.9)

Notice that

H = D + abT , (A.10)

with

aT = (α1, α2, . . . , αN), bT =
(
γ1, γ2, . . . , γN

)
,

D = diag
(
1 − α1

(
1 + γ1

)
, 1 − α2

(
1 + γ2

)
, . . . , 1 − αN

(
1 + γN

))
.

(A.11)

The characteristic polynomial of H can be decomposed by using the simple fact that if x, y ∈
RN , then

det
(
I + xyT

)
= 1 + yTx, (A.12)

where I is the N ×N identity matrix. So we have

det(H − λI) = det
(
D + abT − λI

)

= det(D − λI)det
(
I + (D − λI)−1abT

)
.

(A.13)

The roots of the first factor are 1 − αi(1 + γi) which are inside the unit circle if and only if

−1 < 1 − αi

(
1 + γi

)
< 1, (A.14)

which occurs if and only if

ci >
αiC

4(N − 1)
. (A.15)

The other eigenvalues are the roots of

1 +
N∑

i=1

αiγi

1 − αi

(
1 + γi

) − λ
= 0. (A.16)
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The Cournot equilibrium is locally asymptotically stable if all eigenvalues are less than unity
in absolute value and is unstable if at least one eigenvalue is outside the unit circle. However,
since parameters α1, α2, . . . , aN can be selected arbitrarily in interval (0, 1], there is a large
flexibility in the location of the eigenvalues.
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