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Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise ρ̃-mixing random variables. Some strong law of large
numbers for arrays of rowwise ρ̃-mixing random variables is studied under some simple andweak
conditions.

1. Introduction

Let {X,Xn, n ≥ 1} be a sequence of independent and identically distributed random vari-
ables. The Marcinkiewicz-Zygmund strong law of large numbers states that

1
nα

n
∑

i=1

(Xi − EXi) −→ 0 a.s. for 1 ≤ α < 2,

1
nα

n
∑

i=1

Xi −→ 0 a.s. for 0 < α < 1
(1.1)

if and only if E|X|α < ∞. In the case of independence, Hu and Taylor [1] proved the following
strong law of large numbers.

Theorem 1.1. Let {Xni : 1 ≤ i ≤ n, n ≥ 1} be a triangular array of rowwise independent random
variables. Let {an, n ≥ 1} be a sequence of positive real numbers such that 0 < an ↑ ∞. Let g(t)
be a positive, even function such that g(|t|)/|t|p is an increasing function of |t| and g(|t|)/|t|p+1 is a
decreasing function of |t|, respectively, that is,

g(|t|)
|t|p

↑,
g(|t|)
|t|p+1

↓, as |t| ↑ (1.2)
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for some nonnegative integer p. If p ≥ 2 and

EXni = 0,

∞
∑

n=1

n
∑

i=1

E
g(|Xni|)
g(an)

< ∞,

∞
∑

n=1

(

n
∑

i=1

E

(

Xni

an

)2
)2k

< ∞,

(1.3)

where k is a positive integer, then

1
an

n
∑

i=1

Xni −→ 0 a.s. as n −→ ∞. (1.4)

Zhu [2] generalized and improved the result of Hu and Taylor [1] for triangular arrays
of rowwise independent random variables to the case of arrays of rowwise ρ̃-mixing random
variables as follows.

Theorem 1.2. Let {Xni : i ≥ 1, n ≥ 1} be an array of rowwise ρ̃-mixing random variables. Let
{an, n ≥ 1} be a sequence of positive real numbers such that 0 < an ↑ ∞. Let g(t) be a positive, even
function such that g(|t|)/|t| is an increasing function of |t| and g(|t|)/|t|p is a decreasing function of
|t|, respectively, that is,

g(|t|)
|t| ↑,

g(|t|)
|t|p

↓, as |t| ↑ (1.5)

for some nonnegative integer p. If p ≥ 2 and

EXni = 0,

∞
∑

n=1

n
∑

i=1

E
g(|Xni|)
g(an)

< ∞,

∞
∑

n=1

(

n
∑

i=1

E

(

Xni

an

)2
)v/2

< ∞,

(1.6)

where v is a positive integer, v ≥ p, then

∀ε > 0,
∞
∑

n=1

P

(

max
1≤j≤n

∣

∣

∣

∣

∣

1
an

j
∑

i=1

Xni

∣

∣

∣

∣

∣

> ε

)

< ∞. (1.7)

In the following, we will give the definitions of a ρ̃-mixing sequence and the array of
rowwise ρ̃-mixing random variables.
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Let {Xn, n ≥ 1} be a sequence of random variables defined on a fixed probability space
(Ω,F, P). Write FS = σ(Xi, i ∈ S ⊂ N). For any given σ-algebras B, R in F, let

ρ(B,R) = sup
X∈L2(B),Y∈L2(R)

|EXY − EXEY |
(VarXVarY )1/2

. (1.8)

Define the ρ̃-mixing coefficients by

ρ̃(k) = sup
{

ρ(FS,FT) : S, T are finite subsets of N such that dist(S, T) ≥ k
}

, k ≥ 0.
(1.9)

Obviously, 0 ≤ ρ̃(k + 1) ≤ ρ̃(k) ≤ 1 and ρ̃(0) = 1.

Definition 1.3. A sequence {Xn, n ≥ 1} of random variables is said to be a ρ̃-mixing sequence
if, there exists k ∈ N such that ρ̃(k) < 1.

An array of random variables {Xni, i ≥ 1, n ≥ 1} is called rowwise ρ̃-mixing if for every
n ≥ 1, {Xni, i ≥ 1} is a ρ̃-mixing sequence of random variables.

The ρ̃-mixing random variables were introduced by Bradley [3], and many applica-
tions have been found. ρ̃-mixing is similar to ρ-mixing, but both are quite different. Many
authors have studied this concept providing interesting results and applications. See, for
example, Zhu [2], An and Yuan [4], Kuczmaszewska [5], Bryc and Smoleński [6], Cai [7], Gan
[8], Peligrad [9, 10], Peligrad and Gut [11], Sung [12], Utev and Peligrad [13], Wu and Jiang
[14], and so on. When these are compared with the corresponding results of independent
random variable sequences, there still remains much to be desired.

The main purpose of this paper is to further study the strong law of large numbers for
arrays of rowwise ρ̃-mixing random variables. We will introduce some simple conditions to
prove the strong law of large numbers. The techniques used in the paper are inspired by Zhu
[2].

2. Main Results

Throughout the paper, let I(A) be the indicator function of the set A. C denotes a positive
constant which may be different in various places.

The proofs of the main results of this paper are based upon the following lemma.

Lemma 2.1 (Utev and Peligrad [13, Theorem 2.1]). Let {Xn, n ≥ 1} be a ρ̃-mixing sequence of
random variables, EXi = 0, E|Xi|p < ∞ for some p ≥ 2 and for every i ≥ 1. Then, there exists a
positive constant C depending only on p such that

E

⎛

⎝max
1≤j≤n

∣

∣

∣

∣

∣

j
∑

i=1

Xi

∣

∣

∣

∣

∣

p
⎞

⎠ ≤ C

⎧

⎨

⎩

n
∑

i=1

E|Xi|p +
(

n
∑

i=1

EX2
i

)p/2
⎫

⎬

⎭

. (2.1)



4 Discrete Dynamics in Nature and Society

As for arrays of rowwise ρ̃-mixing random variables {Xni : i ≥ 1, n ≥ 1}, we assume
that the constant C from Lemma 2.1 is the same for each row throughout the paper. Our main
results are as follows.

Theorem 2.2. Let {Xni : i ≥ 1, n ≥ 1} be an array of rowwise ρ̃-mixing random variables and let
{an, n ≥ 1} be a sequence of positive real numbers. Let {gn(t), n ≥ 1} be a sequence of positive, even
functions such that gn(|t|) is an increasing function of |t| and gn(|t|)/|t| is a decreasing function of |t|
for every n ≥ 1, respectively, that is,

gn(|t|) ↑,
gn(|t|)
|t| ↓, as |t| ↑ . (2.2)

If

∞
∑

n=1

n
∑

i=1

Egn(|Xni|)
gn(an)

< ∞, (2.3)

then, for any ε > 0,

∞
∑

n=1

P

(

max
1≤j≤n

∣

∣

∣

∣

∣

1
an

j
∑

i=1

Xni

∣

∣

∣

∣

∣

> ε

)

< ∞. (2.4)

Proof. For fixed n ≥ 1, define

X
(n)
i = XniI(|Xni| ≤ an), i ≥ 1,

T
(n)
j =

1
an

j
∑

i=1

(

X
(n)
i − EX

(n)
i

)

, j = 1, 2, . . . , n.
(2.5)

It is easy to check that for any ε > 0,

(

max
1≤j≤n

∣

∣

∣

∣

∣

1
an

j
∑

i=1

Xni

∣

∣

∣

∣

∣

> ε

)

⊂
(

max
1≤i≤n

|Xni| > an

)

⋃

(

max
1≤j≤n

∣

∣

∣

∣

∣

1
an

j
∑

i=1

X
(n)
i

∣

∣

∣

∣

∣

> ε

)

, (2.6)

which implies that

P

(

max
1≤j≤n

∣

∣

∣

∣

∣

1
an

j
∑

i=1

Xni

∣

∣

∣

∣

∣

> ε

)

≤ P

(

max
1≤i≤n

|Xni| > an

)

+ P

(

max
1≤j≤n

∣

∣

∣

∣

∣

1
an

j
∑

i=1

X
(n)
i

∣

∣

∣

∣

∣

> ε

)

≤
n
∑

i=1

P(|Xni| > an) + P

(

max
1≤j≤n

∣

∣

∣T
(n)
j

∣

∣

∣ > ε −max
1≤j≤n

∣

∣

∣

∣

∣

1
an

j
∑

i=1

EX
(n)
i

∣

∣

∣

∣

∣

)

.

(2.7)
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Firstly, we will show that

max
1≤j≤n

∣

∣

∣

∣

∣

1
an

j
∑

i=1

EX
(n)
i

∣

∣

∣

∣

∣

−→ 0, as n −→ ∞. (2.8)

Actually, by conditions gn(|t|)/|t| ↓ as |t| ↑ and (2.3), we have that

max
1≤j≤n

∣

∣

∣

∣

∣

1
an

j
∑

i=1

EX
(n)
i

∣

∣

∣

∣

∣

= max
1≤j≤n

∣

∣

∣

∣

∣

1
an

j
∑

i=1

EXniI(|Xni| ≤ an)

∣

∣

∣

∣

∣

≤ 1
an

n
∑

i=1

E|Xni|I(|Xni| ≤ an)

≤
n
∑

i=1

Egn(|Xni|)I(|Xni| ≤ an)
gn(an)

≤
n
∑

i=1

Egn(|Xni|)
gn(an)

−→ 0, as n −→ ∞,

(2.9)

which implies (2.8). It follows from (2.7) and (2.8) that for n large enough,

P

(

max
1≤j≤n

∣

∣

∣

∣

∣

1
an

j
∑

i=1

Xni

∣

∣

∣

∣

∣

> ε

)

≤
n
∑

i=1

P(|Xni| > an) + P

(

max
1≤j≤n

∣

∣

∣T
(n)
j

∣

∣

∣ >
ε

2

)

. (2.10)

Hence, to prove (2.4), we only need to show that

∞
∑

n=1

n
∑

i=1

P(|Xni| > an) < ∞, (2.11)

∞
∑

n=1

P

(

max
1≤j≤n

∣

∣

∣T
(n)
j

∣

∣

∣ >
ε

2

)

< ∞. (2.12)

The conditions gn(|t|) ↑ as |t| ↑ and (2.3) yield that

∞
∑

n=1

n
∑

i=1

P(|Xni| > an) ≤
∞
∑

n=1

n
∑

i=1

Egn(|Xni|)
gn(an)

< ∞, (2.13)

which implies (2.11).
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By Markov’s inequality, Lemma 2.1 (for p = 2), Cr ’s inequality, gn(|t|)/|t| ↓ as |t| ↑ and
(2.3), we can get that

∞
∑

n=1

P

(

max
1≤j≤n

∣

∣

∣T
(n)
j

∣

∣

∣ >
ε

2

)

≤ C
∞
∑

n=1

E

(

max
1≤j≤n

∣

∣

∣T
(n)
j

∣

∣

∣

2
)

≤ C
∞
∑

n=1

1
a2
n

n
∑

i=1

E
∣

∣

∣X
(n)
i − EX

(n)
i

∣

∣

∣

2

≤ C
∞
∑

n=1

1
a2
n

n
∑

i=1

E
∣

∣

∣X
(n)
i

∣

∣

∣

2

= C
∞
∑

n=1

n
∑

i=1

E|Xni|2I(|Xni| ≤ an)
a2
n

≤ C
∞
∑

n=1

n
∑

i=1

E|Xni|I(|Xni| ≤ an)
an

≤ C
∞
∑

n=1

n
∑

i=1

Egn(|Xni|)I(|Xni| ≤ an)
gn(an)

≤ C
∞
∑

n=1

n
∑

i=1

Egn(|Xni|)
gn(an)

< ∞,

(2.14)

which implies (2.12). This completes the proof of the theorem.

Corollary 2.3. Under the conditions of Theorem 2.2,

1
an

n
∑

i=1

Xni −→ 0 a.s. as n −→ ∞. (2.15)

Theorem 2.4. Let {Xni : i ≥ 1, n ≥ 1} be an array of rowwise ρ̃-mixing random variables and let
{an, n ≥ 1} be a sequence of positive real numbers. Let {gn(t), n ≥ 1} be a sequence of nonnegative,
even functions such that gn(|t|) is an increasing function of |t| for every n ≥ 1. Assume that there
exists a constant δ > 0 such that gn(t) ≥ δt for 0 < t ≤ 1. If

∞
∑

n=1

n
∑

i=1

Egn

(

Xni

an

)

< ∞, (2.16)

then for any ε > 0, (2.4) holds true.

Proof. We use the same notations as that in Theorem 2.2. The proof is similar to that of
Theorem 2.2.
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Firstly, we will show that (2.8) holds true. In fact, by the conditions gn(t) ≥ δt for
0 < t ≤ 1 and (2.16), we have that

max
1≤j≤n

∣

∣

∣

∣

∣

1
an

j
∑

i=1

EX
(n)
i

∣

∣

∣

∣

∣

= max
1≤j≤n

∣

∣

∣

∣

∣

1
an

j
∑

i=1

EXniI(|Xni| ≤ an)

∣

∣

∣

∣

∣

≤
n
∑

i=1

E

( |Xni|
an

I(|Xni| ≤ an)
)

≤ 1
δ

n
∑

i=1

Egn

(

Xni

an

)

I(|Xni| ≤ an)

≤ 1
δ

n
∑

i=1

Egn

(

Xni

an

)

−→ 0, as n −→ ∞,

(2.17)

which implies (2.8).
According to the proof of Theorem 2.2, we only need to prove that (2.11) and (2.12)

hold true.
When |Xni| > an > 0, we have gn(Xni/an) ≥ gn(1) ≥ δ, which yields that

P(|Xni| > an) = EI(|Xni| > an) ≤
1
δ
Egn

(

Xni

an

)

. (2.18)

Hence,

∞
∑

n=1

n
∑

i=1

P(|Xni| > an) ≤
1
δ

∞
∑

n=1

n
∑

i=1

Egn

(

Xni

an

)

< ∞, (2.19)

which implies (2.11).
By Markov’s inequality, Lemma 2.1 (for p = 2), Cr ’s inequality, gn(t) ≥ δt for 0 < t ≤ 1

and (2.16), we can get that

∞
∑

n=1

P

(

max
1≤j≤n

∣

∣

∣T
(n)
j

∣

∣

∣ >
ε

2

)

≤ C
∞
∑

n=1

n
∑

i=1

E|Xni|2I(|Xni| ≤ an)
a2
n

≤ C
∞
∑

n=1

n
∑

i=1

E|Xni|I(|Xni| ≤ an)
an

≤ C
∞
∑

n=1

n
∑

i=1

Egn

(

Xni

an

)

I(|Xni| ≤ an)

≤ C
∞
∑

n=1

n
∑

i=1

Egn

(

Xni

an

)

< ∞,

(2.20)

which implies (2.12). This completes the proof of the theorem.
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Corollary 2.5. Under the conditions of Theorem 2.4,

1
an

n
∑

i=1

Xni −→ 0 a.s. as n −→ ∞. (2.21)

Corollary 2.6. Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise ρ̃-mixing random variables and let
{an, n ≥ 1} be a positive real numbers. If there exists a constant β ∈ (0, 1] such that

∞
∑

n=1

n
∑

i=1

E

(

|Xni|β

|an|β + |Xni|β

)

< ∞, (2.22)

then (2.4) holds true.

Proof. In Theorem 2.4, we take

gn(t) =
|t|β

1 + |t|β
, 0 < β ≤ 1, n ≥ 1. (2.23)

It is easy to check that {gn(t), n ≥ 1} is a sequence of nonnegative, even functions such that
gn(|t|) is an increasing function of |t| for every n ≥ 1. And

gn(t) ≥
1
2
tβ ≥ 1

2
t, 0 < t ≤ 1, 0 < β ≤ 1. (2.24)

Therefore, by Theorem 2.4, we can easily get (2.4).
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