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A Leslie-Gower predator-prey model incorporating harvesting is studied. By constructing a
suitable Lyapunov function, we show that the unique positive equilibrium of the system is globally
stable, which means that suitable harvesting has no influence on the persistent property of the
harvesting system. After that, detailed analysis about the influence of harvesting is carried out, and
an interesting finding is that under some suitable restriction, harvesting has no influence on the
final density of the prey species, while the density of predator species is strictly decreasing function
of the harvesting efforts. For the practical significance, the economic profit is considered, sufficient
conditions for the presence of bionomic equilibrium are given, and the optimal harvesting policy
is obtained by using the Pontryagin’s maximal principle. At last, an example is given to show that
the optimal harvesting policy is realizable.

1. Introduction

Leslie [1, 2] introduced the following predator-prey model, where the “carrying capacity” of
the predator’s environment is proportional to the number of prey:

dH

dt
= (r1 − a1P − b1H)H,

dP

dt
=
(
r2 − a2

P

H

)
P, (1.1)

whereH and P are the density of prey species and the predator species at time t, respectively.
The above system admits an unique coexisting fixed point

H∗ =
r1a2

a1r2 + a2b1
, P∗ =

r1r2
a1r2 + a2b1

. (1.2)
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Recently, by constructing a suitable Lyapunov function, Korobeinikov [3] showed the
positive equilibrium is globally stable; consequently, the system could not admits limit cycle.
Such an finding is very interesting, since for predator-prey system incorporating Holling-
type II or III functional response, limit cycle exists [4, 5]. After the work of Korobeinikov,
many scholars have done works on Leslie-type predator prey ecosystem. Aguirre et al. [6]
showed that Leslie-Gower predator-prey model with additive Allee effect is possible to
admit two limit cycles; Aziz-Alaoui and Daher Okiye [7] argued that a suitable predator
prey model should incorporate some kind of functional response, they proposed a predator-
prey model with modified Leslie-Gower and Holling-type II schemes, they investigated
the boundedness and global stability of the system; Nindjin et al. [8] further incorporated
the time delay to the system considered in [7], and they showed that time delay plays
important role on the dynamic behaviors of the system; Yafia et al. [9] studied the limit cycle
bifurcated from time delay; Nindjin and Aziz-Alaoui [10], and Aziz-Alaoui [11] studied the
dynamic behaviors of three Leslie-Gower-type species food chain system; Chen et al. [12]
incorporated a prey refuge to system (1.1) and showed that the refuge has no influence on the
persistent property of the system; Some scholars argued that nonautonomous case are more
realistic if one consider the influence of seasonal effect of the environment. Huo and Li [13]
studied the periodic solution of the nonautonomous case Leslie-Gower predator-prey system;
Gakkhar and Singh [14] studied a Leslie-Gower predator-prey system with seasonally
varying parameters; Song and Li [15] further considered the influence of impulsive effect.
For more works on predator-prey ecosystem, one could refer to [4–27] and the references
cited therein.

As was pointed out by Makinde [28]: “From the point of view of human needs, the
exploitation of biological resources and harvesting of populations are commonly practiced
in fishery, forestry, and wildlife management. There is a wide range of interest in the use of
bioeconomic models to gain insight into the scientific management of renewable resources
like fisheries and forestries.” Though there are numerous works on predator-prey system
incorporating the harvesting, to this day, still no scholar studies the system (1.1) under the
assumption of the harvesting on prey and predator species. In this paper, we assume that
the predator and prey species in the model is both of commercial importance and they are
subjected to constant effort harvesting with c1 and c2, two parameters that measures the effort
being spent by a harvesting agency. Thus, we formulating the system as follows:

dH

dt
= (r1 − a1P − b1H)H − c1H,

dP

dt
=
(
r2 − a2

P

H

)
P − c2P, (1.3)

whereH and P are the density of prey species and the predator species at time t, respectively.
To ensure the sustainable development, which means that we try to control the prey and
predator species densities in a controllable range, but not to perish the species, it’s natural to
assume that 0 < ci < ri, i = 1, 2.

The rest of the paper is arranged as follows: we will study the stability property of
positive equilibrium of system (1.3) in Section 2 and discuss the influence of the harvesting in
Section 3. Bionomic equilibrium and optimal harvesting policy for system (1.3) are discussed
in Section 4 and 5, respectively. An example of system (1.3) is given in Section 6 to show the
feasibility of our results. We end this paper by a briefly discussion.



Discrete Dynamics in Nature and Society 3

2. Stability Property of Positive Equilibrium

By simple computation, under the assumption 0 < ci < ri, i = 1, 2, system (1.3) admits an
unique positive equilibrium

H1∗ =
(r1 − c1)a2

a1(r2 − c2) + a2b1
, P1∗ =

(r1 − c1)(r2 − c2)
a1(r2 − c2) + a2b1

. (2.1)

Obviously, (H1∗, P1∗) satisfies the equalities

r1 − c1 − b1H1∗ − a1P1∗ = 0, r2 − c2 = a2
P1∗
H1∗

. (2.2)

Our result about the local stability property of this equilibrium is stated as follows.

Theorem 2.1. The positive equilibrium (H1∗, P1∗) of system (1.3) is locally asymptotically stable.

Proof. The variational matrix J∗(H,P) of the system (1.3) is given by

⎛
⎜⎝

r1 − c1 − a1P − 2b1H −a1H

a2
P 2

H2 r2 − c2 − 2a2
P

H

⎞
⎟⎠. (2.3)

So, the characteristic equation for J∗(H∗, P ∗) is given by λ2 + aλ + b = 0, where

a =
a2b1(r1 − c1)

a1(r2 − c2 + a2b1)
+ r2 − c2(> 0), b = (r1 − c1)(r2 − c2)(> 0). (2.4)

It is clear that the roots of the characteristic equation are negative or have negative real parts.
Hence, the unique positive equilibrium of system (H1∗, P1∗) is stable. This completes the proof
of the Theorem 2.1.

Concerned with the global stability property of the positive equilibrium, we have the
following.

Theorem 2.2. The positive equilibrium (H1∗, P1∗) of system (1.3) is globally stable.

Definition 2.3. System (1.3) is called permanent if for any positive solution (H(t), P(t))T of
system (1.3) there exist positive constants mi, Mi, i = 1, 2, which are independent of the
solution of the system, such that

m1 ≤ lim inf
t→+∞

H(t) ≤ lim sup
t→+∞

H(t) ≤ M1,

m2 ≤ lim inf
t→+∞

P(t) ≤ lim sup
t→+∞

P(t) ≤ M2.
(2.5)
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Theorem 2.2 shows that

lim
t→+∞

H(t) = H1∗ > 0, lim
t→+∞

P(t) = P1∗ > 0. (2.6)

Noticing that H1∗ and P1∗ are only dependent on the coefficients of the system (1.3) and
independent of the solution of system (1.3). Thus, (2.6) clearly shows that suitable harvesting
(more precisely,with restriction 0 < ci < ri, i = 1, 2) has no influence on the persistent property
of the system.

Proof of Theorem 2.2. We will adapt the idea of Korobeinikov [3] to prove Theorem 2.2. More
precisely, we construct the following Lyapunov function:

V (H,P) = ln
H

H1∗
+
H1∗
H

− 1 +
a1H1∗
a2

(
ln

P

P1∗
+
P1∗
P

− 1
)
. (2.7)

Obviously, V (H,P) is well defined and continuous for all H,P > 0. By simple computation,
we have

∂V

∂H
=

1
H

(
1 − H1∗

H

)
,

∂V

∂P
=
a1H1∗
a2P

(
1 − P1∗

P

)
. (2.8)

Equation (2.8) shows that the positive equilibrium (H1∗, P1∗) is the only extremum of the
function V (H,P) in the positive quadrant. Noting that

∂2V

∂H2 =
1
H2

(
−1 + 2H1∗

H

)
,

∂2V

∂P∂H
= 0,

∂2V

∂P 2 =
a1H1∗
a2P 2

(
−1 + 2P1∗

P

)
. (2.9)

Therefore,

d2V |(H1∗,P1∗) =
1

H1∗
dH2 +

a1H1∗
a2P1∗

dP 2 > 0. (2.10)

Above analysis shows that (H1∗, P1∗) is the only minimum extremum of the function V (H,P)
in the positive quadrant. One could easily verify that

lim
H→ 0

V (H,P) = lim
P → 0

V (H,P) = lim
H→+∞

V (H,P) = lim
P →+∞

V (H,P) = +∞. (2.11)
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From(2.8) and (2.11), we can see that the positive equilibrium (H1∗, P1∗) is the global
minimum, that is,

V (H,P) > V (H1∗, P1∗) = 0, (2.12)

for all H,P > 0.
Calculating the derivative of V along the solution of the system (1.3), by using

equalities (2.2), we have

dV

dt
=

1
H

(
1 − H1∗

H

)
(r1 − c1 − b1H − a1P)H +

a1H1∗
a2P

(
1 − P1∗

P

)
·
(
r2 − c2 − a2

P

H

)
P

=
H −H1∗

H
(b1H1∗ + a1P1∗ − b1H − a1P) +

a1H1∗
a2

·
(
1 − P1∗

P

)
·
(
a2

P1∗
H1∗

− a2
P

H

)

= − b1
H

(H −H1∗)2 − a1

P
(P − P1∗)2.

(2.13)

Obviously, (dV/dt) < 0 strictly for all H,P > 0 except the positive equilibrium (H1∗, P1∗),
where (dV/dt) = 0. Thus, V (H,P) satisfies Lyapunov’s asymptotic stability theorem, and
the positive equilibrium (H1∗, P1∗) of system (1.3) is globally stable. This ends the proof of
Theorem 2.2.

Remark 2.4. With the restriction 0 < ci < ri, i = 1, 2, system (1.3) always admits an unique
positive equilibrium and from Theorems 2.1 and 2.2 we can see that this equilibrium is
globally attractive, since it’s stability property is not changed with the variation of parameter
ci, the system could not undergoes Hopf’s bifurcation and there is no limit cycle of system
(1.3) in R2

+. In fact, we can also prove this declare by using Bendixson-Dulac theorem.

Let

F(H,P) .= (r1 − a1P − b1H)H − c1H,

G(H,P) .=
(
r2 − a2

P

H

)
P − c2P,

B(H,P) .=
1

HP
.

(2.14)

Obviously, F(H,P), G(H,P), and B(H,P) ∈ C1(R2
+).

Calculating from above equations we get

∂BF

∂H
+
∂BG

∂P
= −b1

P
− a2

H2 < 0, (H,P) ∈ R2
+. (2.15)

According to Bendixson-Dulac theorem, we know that there is no limit cycle of system
(1.3) in R2

+.
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3. The Influence of Harvesting

We will discuss this topic on three aspects.

(1) The case of only harvesting prey species

In this case,

H1∗ =
(r1 − c1)a2

a1r2 + a2b1
, P1∗ =

(r1 − c1)r2
a1r2 + a2b1

. (3.1)

Obviously, H1∗, P1∗ are all continuous differentiable function of parameter c1 and

dH1∗
dc1

=
−a2

a1r2 + a2b1
< 0,

dP1∗
dc1

=
−r2

a1r2 + a2b1
< 0. (3.2)

The above inequalities show that H1∗ and P1∗ are both the strictly decreasing function of c1,
that is, increasing the capture rate of prey species leads to the decreasing of the density of
both prey and predator species.

(2) The case of only harvesting predator species

In this case,

H1∗ =
r1a2

a1(r2 − c2) + a2b1
, P1∗ =

r1(r2 − c2)
a1(r2 − c2) + a2b1

. (3.3)

that is, H1∗, P1∗ are all continuous differentiable function of parameter c2. Noticing that

dH1∗
dc2

=
r1a2a1

(a1(r2 − c2) + a2b1)2
> 0,

dP1∗
dc2

=
−r1a2b1

(a1(r2 − c2) + a2b1)2
< 0. (3.4)

It is easy to see that H1∗ is the strictly increasing function of parameter c2, while P1∗ is the
strictly decreasing function of c2, that is, increasing the capture rate of predator species leads
to the increasing the density of prey species and the decreasing of predator species.

(3) The case of harvesting predator and prey species together

In this case, it follows from (2.1) that H1∗ and P1∗ are all continuous differential functions of
parameters ci, i = 1, 2. Though we had made the assumption 0 < ci < ri, it still not an easy
thing to give an detailed analysis of all of the cases. Here, we only investigate the following
problem, which seems very interesting.

Problem 3.1. Is it possible to choose some suitable parameters ci such that after the harvesting of
predator and prey, the densities of prey species as t → +∞ still has no change? That is, H1∗ = H∗. If
this is possible, what about the dynamic behaviors of predator species in this case?
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The first part of the question is equivalent to say that in what caseH1∗ = H∗, that is,

(r1 − c1)a2

a1(r2 − c2) + a2b1
=

r1a2

a1r2 + a2b1
. (3.5)

Solving the above equality, we obtain

c2 =
a1r2 + a2b1

r1a1
· c1. (3.6)

It means that with the suitable capture efforts (ci which satisfy the equality (3.6)), prey species
will converge toH∗ as t → +∞.

Now substituting (3.6) into the second equality of (2.1), we have

P1∗ =
r21a1r2 − r1c1(a1r2 + a2b1)
a1(r1 − c1)(a1r2 + a2b1)

. (3.7)

Obviously, P1∗ is the continuous differential function of parameter c1 and

dP1∗
dc1

= − b1a2r
2
1

a1(r1 − c1)2(a1r2 + a2b1)
< 0, (3.8)

that is, if the capture rate of predator and prey species satisfies (3.6), then increasing the
harvesting of prey (and of predator) will lead to the finally decreasing of predator densities
(P1∗).

4. Bionomic Equilibrium

This section is devoted to study the bionomic equilibrium of system (1.3) since it has the
practical significance.

The term bionomic equilibrium is an amalgamation concepts of biological equilibrium
and economic equilibrium. As we know, a biological equilibrium is given by (dH/dt) =
(dP/dt) = 0. And the economic equilibrium is said to be achieved when the TR (total revenue
obtained by selling the harvested predatorsH and P) equals TC (the total cost for the effort
devoted to harvesting).

Some symbols should be given at first.
Let

p1 is the price per unit biomass of the preyH ,

p2 is the price per unit biomass of the predator P ,

q1 is the fishing cost per unit effort of the preyH ,

q2 is the fishing cost per unit effort of the predator P .

Then, the economic rent (revenue at any time) is given by

N = TR − TC =
(
p1H − q1

)
c1 +

(
p2P − q2

)
c2

def= N1 +N2, (4.1)
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where N1
def= (p1H − q1)c1, N2

def= (p2P − q2)c2, that is, N1 and N2 represent the net revenues
for the populationH and P , respectively.

For convenience, we take the price per unit biomass of the predators and the fishing
cost per unit effort of the predators to be constant. So, the bionomic equilibrium is given by
the following simultaneous equations

dH

dt
= (r1 − a1P − b1H)H − c1H, (4.2)

dP

dt
=
(
r2 − a2

P

H

)
P − c2P, (4.3)

N =
(
p1H − q1

)
c1 +

(
p2P − q2

)
c2 = 0. (4.4)

Since the price and the cost of the predators are not sure, wewill consider the following
cases in order to determine the bionomic equilibrium.

Case 4.1. If

q1
p1

> H, (4.5)

that is,

p1H − q1 < 0 (4.6)

holds, that is to say the total cost exceed the total revenue for the harvesting of prey, obviously,
the prey harvesting will be stopped (i.e., c1 = 0) and the predator harvesting remains
operational if p2P − q2 > 0.

Then, from (4.4), we have

P1∞ =
q2
p2

. (4.7)

Substituting it into (4.3), it follows that

H1∞ =
r1p2 − a1q2

b1p2
. (4.8)

Again, substituting (4.7) and (4.8) into (4.2) leads to

c2∞ = r2 − a2
p1∞
H1∞

= r2 −
a2b1q2

r1p2 − a1q2
. (4.9)

So, if r1 > a2(q2/p2) and r2 > (a2b1q2/r1p2 − a1q2) hold together, we have the bionomic
equilibrium [H1∞, P1∞, 0, c2∞].
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Case 4.2. If

q2
p2

> P, (4.10)

that is,

p2P − q2 < 0 (4.11)

holds, that is to say the total cost exceeds the total revenue for the harvesting of predator
obviously, the prey harvesting will be stopped (i.e., c2 = 0) and the predator harvesting
remains operational if p1H − q1 > 0.

Then, it follows from (4.4) that

H1∞ =
q1
p1

. (4.12)

Substituting (4.12) into (4.3), we obtain

P1∞ =
r2q1
a2p1

. (4.13)

Again, substituting (4.12) and (4.13) into (4.2) leads to

c1∞ = r1 − a1P1∞ − b1H1∞ = r1 −
(a1r2 − a2b1)q1

a2p1
. (4.14)

So, if r1 > ((a1r2 − a2b1)q1/a2p1) hold, we have the bionomic equilibrium [H1∞, P1∞, c1∞, 0].

Case 4.3. If

q2
p2

> P,
q1
p1

> H, (4.15)

that is,

p2P − q2 < 0, p1H − q1 < 0 (4.16)

hold, then it is equivalent to say that the total cost exceeds the total revenue for two
populations.

Obviously, the harvesting will be stopped, that is, c1 = 0, c2 = 0. In this case, there is
no bionomic equilibrium.

Case 4.4. If

q2
p2

< P,
q1
p1

< H, (4.17)
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that is,

p2P − q2 > 0, p1H − q1 > 0 (4.18)

hold. In this case, the total revenue exceeds the total cost for two populations and the
harvesting is in operational because it can bring profit for fishery.

From (4.4), we have

H1∞ =
q1
p1

, P1∞ =
q2
p2

. (4.19)

Substituting above equalities into (4.2) and (4.3), it is easy to obtain

c1∞ = r1 −
(
a1p2q1 − b1p1q2

)
p1p2

, c2∞ = r2 −
a2p1q2
p2q1

. (4.20)

So, if

r1 >

(
a1p2q1 − b1p1q2

)
p1p2

,

r2 >
a2p1q2
p2q1

(4.21)

hold together, we have the bionomic equilibrium [H1∞, P1∞, c1∞, c2∞].

It is obviously that the bionomic equilibrium may exist if the intrinsic growth rates of
two species exceed some value.

5. Optimal Harvesting Policy

In order to determine the optimal harvesting policy, we consider the present value J of a
continuous time-stream of revenue

J =
∫∞

0
e−δt

{(
p1H − q1

)
c1(t) +

(
p2P − q2

)
c2(t)

}
dt, (5.1)

where δ denotes the instantaneous annual rate of discount and ci(t) (i = 1, 2) are the control
variables, which are subject to the assumption 0 < ci(t) < ri, i = 1, 2.

Now, our objective is to maximize J subject to the state equations (1.3) by invoking
Pontryagin’s maximal principle.

The Hamiltonian for the problem is given at first

H = e−δt
{(
p1H − q1

)
c1(t) +

(
p2P − q2

)
c2(t)

}
+ λ1[(r1 − a1P − b1H)H − c1H]

+ λ2

[(
r2 − a2

P

H

)
P − c2P

]
,

(5.2)

where λ1(t) and λ2(t) are the adjoint variables.
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Obviously, the control variables c1 and c2 appear linearly in the Hamiltonian function
H . So, the conditions

∂H

∂ci
= 0, i = 1, 2 (5.3)

are necessary for the singular control to be optimal.
Then, we have

λ1 = e−δt
(
p1 −

q1
H

)
, λ2 = e−δt

(
p2 −

q2
P

)
, (5.4)

that is

λ1e
δt = p1 −

q1

H
, λ2e

δt = p2 −
q2

P
. (5.5)

Therefore, the shadow prices eδtλi(t) do not vary with time in the optimal equilibrium. Hence
they remain bounded as t → ∞.

By the maximal principle, the adjoint variables satisfy dλ1/dt = −∂H/∂H and
dλ2/dt = −(∂H/∂P), for all t ≥ 0, that is.

dλ1

dt
= −

{
e−δtp1c1 + λ1

(
r1 − c1a1p1 − 2b1H

) − λ2a2
P

H2

}
,

dλ2

dt
= −

{
e−δtp2c2 + λ2

(
r2 − c2 − 2a2P

H

)
− λ1a1H

}
.

(5.6)

Substituting (5.4) and (5.5) into (5.6), we get

2a2p2P
2 + a1p1H

2P +
(
p2δ − r2p2 − a1q1

)
HP − a2q2P − q2δH = 0,

2b1p1H3 + a1p1PH
2 +

(
p1δ − r1p1 − b1q1

)
H2 − q1δH − a2p2P + a2q2 = 0.

(5.7)

From (5.7), we may find the positive values of (Hδ, Pδ).
Substituting (Hδ, Pδ) into (1.3), we get the equations as follows:

c1δ = r1 − a1Pδ − b1Hδ,

c2δ = r2 − a2
Pδ

Hδ
.

(5.8)

Then, we may have the optimal equilibrium effort levels c1δ and c2δ, if

r1 > a1Pδ + b1Hδ, r2 > a2
Pδ

Hδ
. (5.9)
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It means that, under the harvesting for both prey and predator species, the optimal
harvesting policy can be obtained only under the assumption that the intrinsic growth rates
of two species exceed some values.

The optimal harvesting policy means the economic rent for harvesting will be the
maximal in the future time, with the populations of the system are permanent.

6. Numerical Example

Let

r1 = 1.6, a1 = 0.7, b1 = 0.3, p1 = 0.4, q1 = 0.2,

r2 = 1, a2 = 0.25, δ = 1.25, p2 = 0.5, q2 = 0.2.
(6.1)

From Section 6, we know that the optimal harvesting policy can be obtained by
substituting the result of (5.7) into (1.3). So, the corresponding equations of (5.7) are

0.25P 2 + 0.28H2P − 0.015HP − 0.05P − 0.25H = 0,

0.24H3 + 0.28PH2 − 0.2H2 − 0.25H − 0.125P + 0.05 = 0.
(6.2)

Solving (6.2) by using Maple, we get the results as follow:

{H = 0.03875658339, P = 0.3212762700},
{H = 0.3442951974, P = −0.5444632570},
{H = 1.121042647, P = 0.6323992784},

{H = 0.8269704200+ 1.125716729I, P = 0.1137766719− 1.326783285I},
{H = 0.8269704200− 1.125716729I, P = 0.1137766719+ 1.326783285I},

{H = −0.7529121920+ 0.04647885793I, P = −0.2550446252− 0.7947461329I}.

(6.3)

From the above results, one could easily see that there is only one result (Hδ =
1.121042647, Pδ = 0.6323992784)meeting the condition

Hδ >
q1

p1
(= 0.5), Pδ >

q2

p2
(= 0.4). (6.4)

In this case, the corresponding system of (1.3) is as follows:

dH

dt
= (1.6 − 0.7P − 0.3H)H − c1H,

dP

dt
=
(
1 − 0.25

P

H

)
P − c2P. (6.5)
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Substituting (Hδ = 1.121042647, Pδ = 0.6323992784) into (6.5), we obtain the optimal
harvesting efforts

c1δ = 0.821008 < r1(= 1.6), c2δ = 0.858971 < r2(= 1). (6.6)

7. Conclusion

A Leslie-Gower predator-prey model incorporating harvesting is studied in this paper.
We first show that suitable harvesting has no influence on the persistent property of the
harvesting system. After that, we try to give the detail analysis of harvesting on the dynamic
behaviors of the system. Our study shows that for the system having both harvesting on
predator and prey species, it admits some interesting phenomenon; maybe such a finding
could be applied to help human improving the scientific management of renewable resources
such as fisheries and forest trees. Then, for the practical significance, we consider the
economic profit of the harvesting. The bionomic equilibrium and optimal harvesting policy
are studied. The results show that the optimal harvesting policy may exist. Finally, an
example is given to show that the optimal harvesting policy of system (1.3) is realizable.
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