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Suppose that K is nonempty closed convex subset of a uniformly convex and smooth Banach
space E with P as a sunny nonexpansive retraction and F := F(T1) ∩ F(T2) = {x ∈ K : T1x =
T2x = x}/= ∅. Let T1, T2 : K → E be two weakly inward nonself asymptotically nonexpansive
mappings with respect to P with two sequences {k(i)

n } ⊂ [1,∞) satisfying
∑∞

n=1(k
(i)
n − 1) < ∞(i =

1, 2), respectively. For any given x1 ∈ K, suppose that {xn} is a sequence generated iteratively by
xn+1 = (1−αn)(PT1)

nyn +αn(PT2)
nyn, yn = (1−βn)xn +βn(PT1)

nxn, n ∈ �, where {αn} and {βn} are
sequences in [a, 1 − a] for some a ∈ (0, 1). Under some suitable conditions, the strong and weak
convergence theorems of {xn} to a common fixed point of T1 and T2 are obtained.

1. Introduction

Let E be a real Banach space with K, its nonempty subset. Let T : K → K be a mapping.
A point x ∈ K is called a fixed point of T if and only if Tx = x. In this paper, � stands for
the set of natural numbers. We will also denote by F(T) the set of fixed points of T , that is,
F(T) = {x ∈ K : Tx = x} and by F := F(T1) ∩ F(T2), the set of common fixed points of two
mappings T1 and T2. T is called asymptotically nonexpansive if for a sequence {kn} ⊂ [1,∞)
with limn→∞kn = 1, ‖Tnx−Tny‖ ≤ kn‖x−y‖ for all x, y ∈ K and all n ∈ �. T is called uniformly
L-Lipschitzian if for some L > 0, ‖Tnx−Tny‖ ≤ L‖x−y‖ for all n ∈ � and all x, y ∈ K. T is said
to be nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ K. Let P : E → K be a nonexpansive
retraction of E into K. A nonself-mapping T : K → E is called asymptotically nonexpansive
(according to Chidume et al. [1]) if for a sequence {kn} ⊂ [1,∞) with limn→∞kn = 1, we
have ‖T(PT)n−1x − T(PT)n−1y‖ ≤ kn‖x − y‖ for all x, y ∈ K and n ∈ �. T is called uniformly
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L-Lipschitzian if for some L > 0, ‖T(PT)n−1x − T(PT)n−1y‖ ≤ L‖x − y‖ for all n ∈ � and all
x, y ∈ K.

In what follows, we fix x1 ∈ K as a starting point of the process under consideration,
and take {αn}, {βn} sequences in (0, 1).

Agarwal et al. [2] recently introduced the iteration process

xn+1 = (1 − αn)Tnxn + αnT
nyn,

yn =
(
1 − βn

)
xn + βnT

nxn, n ∈ �.
(1.1)

They showed that their process is independent of Mann and Ishikawa and converges faster
than both of these. See Proposition 3.1 [2].

Obviously the above process deals with one self-mapping only. The case of two
mappings in iteration processes has also remained under study since Das and Debata [3]
gave and studied a two mappings scheme. Also see, for example, Takahashi and Tamura
[4] and Khan and Takahashi [5]. Note that two mappings case, that is, approximating the
common fixed points, has its own importance as it has a direct link with the minimization
problem, see, for example, Takahashi [6].

Being an important generalization of the class of nonexpansive self-mappings, the
class of asymptotically nonexpansive self-mappings was introduced by Goebel and Kirk [7]
whereas the concept of asymptotically nonexpansive nonself-mappings was introduced by
Chidume et al. [1] in 2003 as a generalization of asymptotically nonexpansive self-mappings.
Actually they studied the iteration process

xn+1 = P
(
(1 − αn)xn + αnT(PT)n−1xn

)
, n ∈ �. (1.2)

Nonself asymptotically nonexpansive mappings have been studied by many authors
[8–11]. Wang [10] studied the process

xn+1 = P
(
(1 − αn)xn + αnT1(PT1)n−1yn

)
,

yn = P
((

1 − βn
)
xn + βnT2(PT2)n−1xn

)
, n ∈ �.

(1.3)

Very recently, Thianwan [12] considered a new iterative scheme (called projection type
Ishikawa iteration) as follows:

xn+1 = P
(
(1 − αn)yn + αnT1(PT1)n−1yn

)
,

yn = P
((

1 − βn
)
xn + βnT2(PT2)n−1xn

)
, n ∈ �.

(1.4)

As a matter of fact, if T is a self-mapping, then P is an identity mapping. In addition, if
T : K → E is asymptotically nonexpansive and P : E → K is a nonexpansive retraction, then
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PT : K → K is asymptotically nonexpansive. Indeed, for all x, y ∈ K and n ∈ �, it follows
that

∥
∥(PT)nx − (PT)ny

∥
∥ =

∥
∥
∥PT(PT)n−1x − PT(PT)n−1y

∥
∥
∥

≤
∥
∥
∥T(PT)n−1x − T(PT)n−1y

∥
∥
∥

≤ kn
∥
∥x − y

∥
∥.

(1.5)

The converse, however, may not be true. Therefore, Zhou et al. [13] introduced the following
generalized definition recently.

Definition 1.1 (see [13]). Let K be a nonempty subset of real normed linear space E. Let P :
E → K be the nonexpansive retraction of E intoK.

(i) A nonself-mapping T : K → E is called asymptotically nonexpansive with respect
to P if there exists sequences {kn} ∈ [1,∞)with kn → 1 as n → ∞ such that

∥
∥(PT)nx − (PT)ny

∥
∥ ≤ kn

∥
∥x − y

∥
∥, ∀x, y ∈ K, n ∈ �. (1.6)

(ii) A nonself-mapping T : K → E is said to be uniformly L-Lipschitzian with respect
to P if there exists a constant L ≥ 0 such that

∥
∥(PT)nx − (PT)ny

∥
∥ ≤ L

∥
∥x − y

∥
∥, ∀x, y ∈ K, n ∈ � . (1.7)

Futhermore, by studying the following iterative process

x1 ∈ K, xn+1 = αnxn + βn(PT1)nxn + γn(PT2)nxn, n ∈ �, (1.8)

where {αn}, {βn}, and {γn} are three sequences in [a, 1 − a] for some a ∈ (0, 1), satisfying
αn + βn + γn = 1, Zhou et al. [13] obtained some strong and weak convergence theorems for
common fixed points of nonself asymptotically nonexpansive mappings with respect to P in
uniformly convex Banach spaces. As a consequence, the main results of Chidume et al. [1]
were deduced.

Incorporating the ideas of Agarwal et al. [2], Thianwan [12], and Zhou et al. [13],
a new two-step iterative scheme for two nonself asymptotically nonexpansive mappings is
introduced and studied in this paper. Our process reads as follows.

Let K be a nonempty closed convex subset of a real normed linear space E with
retraction P . Let T1, T2 : K → E be two nonself asymptotically nonexpansive mappings
with respect to P :

x1 ∈ K,

xn+1 = (1 − αn) (PT1)nyn + αn(PT2)nyn,

yn =
(
1 − βn

)
xn + βn(PT1)nxn, n ∈ �,

(1.9)
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where {αn} and {βn} are sequences in [0, 1]. Following the method of Agarwal et al. [2], it is
not difficult to see that our process is able to compute common fixed points at a rate better
than (1.3) and (1.4).

Under suitable conditions, the sequence {xn} defined by (1.9) can also be generalized
to iterative sequence with errors. Thus all the results proved in this paper can also be proved
for the iterative process with errors. In this case our main iterative process (1.9) looks like

x1 ∈ K,

xn+1 = αn(PT1)nyn + βn(PT2)nyn + γnun,

yn = α′
nxn + β′n(PT1)

nxn + γ ′nvn, n ∈ �,
(1.10)

where {αn}, {βn}, {γn}, {α′
n}, {β′n}, {γ ′n} are real sequences in [0, 1] satisfying αn +βn + γn = 1 =

α′
n + β′n + γ ′n and {un}, {vn} are bounded sequences in K. Observe that the iterative process

(1.10) with errors reduces to the iterative process (1.9) when γn = γ ′n = 0.

2. Preliminaries

For the sake of convenience, we restate the following concepts and results.
Let E be a Banach space with its dimension greater than or equal to 2. The modulus of

E is the function δE(ε) : (0, 2] → [0, 1] defined by

δE(ε) = inf
{

1 −
∥
∥
∥
∥
1
2
(
x + y

)
∥
∥
∥
∥ : ‖x‖ = 1,

∥
∥y

∥
∥ = 1, ε =

∥
∥x − y

∥
∥
}

. (2.1)

A Banach space E is uniformly convex if and only if δE(ε) > 0 for all ε ∈ (0, 2].
Let E be a Banach space and S(E) = {x ∈ E : ‖x‖ = 1}. The space E is said to be smooth

if

lim
t→ 0

∥
∥x + ty

∥
∥ − ‖x‖
t

(2.2)

exists for all x, y ∈ S(E).
A subset K of E is said to be a retract if there exists a continuous mapping P : E → K

such that Px = x for all x ∈ K. A mapping P : E → E is said to be a retraction if P 2 = P .
Let C and K be subsets of a Banach space E. A mapping P from C into K is called sunny if
P(Px + t(x − Px)) = Px for x ∈ C with Px + t(x − Px) ∈ C and t ≥ 0.

Note that, if P is a retraction, then Pz = z for every z ∈ R(P) (the range of P). It is
well-known that every closed convex subset of a uniformly convex Banach space is a retract.

For any x ∈ K, the inward set IK(x) is defined as follows:

IK(x) =
{
y ∈ E : y = x + λ(z − x), z ∈ K, λ ≥ 0

}
. (2.3)

A mapping T : K → E is said to satisfy the inward condition if Tx ∈ IK(x) for all x ∈ K. T
is said to be weakly inward if Tx ∈ cl IK(x) for each x ∈ K, where cl IK(x) is the closure of
IK(x).
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A Banach space E is said to satisfy Opial’s condition if, for any sequence {xn} in E,
xn ⇀ x implies that

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

∥
∥xn − y

∥
∥ (2.4)

for all y ∈ E with y /= x, where xn ⇀ x means that {xn} converges weakly to x.
Recall that the mapping T : K → Kwith F(T)/= ∅ is said to satisfy condition (A) [14] if

there is a nondecreasing function f : [0,∞) → [0,∞)with f(0) = 0, f(t) > 0 for all t ∈ (0,∞)
such that ‖x − Tx‖ ≥ f(d(x, F(T))) for all x ∈ K, where d(x, F(T)) = inf{‖x − p‖ : p ∈ F(T)}.
Khan and Fukhar-ud-din [15] modified condition (A) for two mappings as follows: Two
mappings T1, T2 : K → K are said to satisfy condition (A′) [15] if there is a nondecreasing
function f : [0,∞) → [0,∞) with f(0) = 0, f(t) > 0 for all t ∈ (0,∞) such that

1
2
(‖x − T1x‖ + ‖x − T2x‖) ≥ f(d(x, F)) (2.5)

for all x ∈ K, where d(x, F) = inf{‖x − p‖ : p ∈ F := F(T1) ∩ F(T2)}.
Note that condition (A′) reduces to condition (A) when T1 = T2. It is also well-known

that condition (A) is weaker than demicompactness or semicompactness, see [14].
A mapping T with domain D(T) and range R(T) in E is said to be demiclosed at p

if whenever {xn} is a sequence in D(T) such that {xn} converges weakly to x∗ ∈ D(T) and
{Txn} converges strongly to p, then Tx∗ = p.

We need the following lemmas for our main results.

Lemma 2.1 (see [16]). If {rn}, {tn} are two sequences of nonnegative real numbers such that

rn+1 ≤ (1 + tn)rn, n ∈ � (2.6)

and
∑∞

n=1 tn < ∞, then limn→∞rn exists.

Lemma 2.2 (see [17]). Suppose that E is a uniformly convex Banach space and 0 < p ≤ tn ≤ q < 1
for all n ∈ �. Also, suppose that {xn} and {yn} are sequences of E such that

lim sup
n→∞

‖xn‖ ≤ r, lim sup
n→∞

∥
∥yn

∥
∥ ≤ r, lim

n→∞
∥
∥(1 − tn)xn + tnyn

∥
∥ = r (2.7)

hold for some r ≥ 0. Then limn→∞‖xn − yn‖ = 0.

Lemma 2.3 (see [18]). Let E be real smooth Banach space, let K be nonempty closed convex subset
of E with P as a sunny nonexpansive retraction, and let T : K → E be a mapping satisfying weakly
inward condition. Then F(PT) = F(T).

Lemma 2.4 (see [1]). Let E be a uniformly convex Banach space and let C be a nonempty closed
convex subset of E. Let T be a nonself asymptotically nonexpansive mapping. Then I −T is demiclosed
with respect to zero, that is, xn ⇀ x and xn − Txn → 0 imply that Tx = x.
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3. Main Results

3.1. Convergence Theorems in Real Banach Spaces

In this section, we prove the strong convergence of the iteration scheme (1.9) to a common
fixed point of nonself asymptotically nonexpansive mappings T1 and T2 with respect to P
in real Banach spaces. Let T1, T2 : K → E be two nonself asymptotically nonexpansive
mappings with respect to P with sequences {k(i)

n } ⊂ [1,∞) satisfying
∑∞

n=1(k
(i)
n − 1) < ∞(i =

1, 2), respectively. Put kn = max{k(1)
n , k

(2)
n }, then obviously

∑∞
n=1(kn − 1) < ∞. From now on

we will take this sequence {kn} for both T1 and T2.
We first prove the following lemmas.

Lemma 3.1. Let E be a real normed linear space and K a nonempty closed convex subset of E which
is also a nonexpansive retract of E. Let T1, T2 : K → E be two nonself asymptotically nonexpansive
mappings with respect to P with sequence {kn} ⊂ [1,∞) satisfying

∑∞
n=1(kn − 1) < ∞. Suppose that

{xn} is defined by (1.9) and F /= ∅. Then,
(i) limn→∞‖xn − p‖ exists for all p ∈ F;

(ii) there exists a constant M > 0 such that ‖xn+m − p‖ ≤ M‖xn − p‖ for all m,n ∈ � and
p ∈ F.

Proof. (i) Let p ∈ F. From (1.9), we have

∥
∥yn − p

∥
∥ =

∥
∥
(
1 − βn

)
xn + βn(PT1)nxn − p

∥
∥

≤ (
1 − βn

)∥
∥xn − p

∥
∥ + βn

∥
∥(PT1)nxn − p

∥
∥

≤ (
1 − βn

)∥
∥xn − p

∥
∥ + βnkn

∥
∥xn − p

∥
∥

=
(
1 + βn(kn − 1)

)∥
∥xn − p

∥
∥

≤ (1 + (kn − 1))
∥
∥xn − p

∥
∥

= kn
∥
∥xn − p

∥
∥.

(3.1)

By (3.1) and (1.9), we obtain

∥
∥xn+1 − p

∥
∥ =

∥
∥(1 − αn)(PT1)nyn − αn( PT2)nyn − p

∥
∥

=
∥
∥(1 − αn)

(
( PT1)nyn − p

) − αn

(
( PT2)nyn − p

)∥
∥

≤ (1 − αn)kn
∥
∥yn − p

∥
∥ + αnkn

∥
∥yn − p

∥
∥

= kn
∥
∥yn − p

∥
∥

≤ k2
n

∥
∥xn − p

∥
∥

=
(
1 +

(
k2
n − 1

))∥
∥xn − p

∥
∥.

(3.2)

Note that
∑∞

n=1(kn − 1) < ∞ is equivalent to
∑∞

n=1(k
2
n − 1) < ∞. Thus, by (3.2) and Lemma 2.1,

limn→∞‖xn − p‖ exists for all p ∈ F(T).
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(ii) From (3.2), we have

∥
∥xn+1 − p

∥
∥ ≤ k2

n

∥
∥xn − p

∥
∥. (3.3)

It is well known that 1 + x ≤ ex for all x ≥ 0. Using it for the above inequality, we have

∥
∥xn+m − p

∥
∥ ≤

(
1 +

(
k2
n+m−1 − 1

))∥
∥xn+m−1 − p

∥
∥

≤ ek
2
n+m−1−1

∥
∥xn+m−1 − p

∥
∥

≤ ek
2
n+m−1−1

[(
1 +

(
k2
n+m−2 − 1

))∥
∥xn+m−2 − p

∥
∥
]

≤ ek
2
n+m−1−1+k2

n+m−2−1
∥
∥xn+m−2 − p

∥
∥

...

≤ e
∑n+m−1

j=n (k2
j −1)∥∥xn − p

∥
∥

≤ M
∥
∥xn − p

∥
∥,

(3.4)

where M = e
∑n+m−1

j=n (k2
j −1). That is, ‖xn+m − p‖ ≤ M‖xn − p‖ for allm,n ∈ � and p ∈ F.

Theorem 3.2. Let E be a real Banach space and K a nonempty closed convex subset of E which is
also a nonexpansive retract of E. Let T1, T2 : K → E be two nonself asymptotically nonexpansive
mappings with respect to P with sequence {kn} ⊂ [1,∞) satisfying

∑∞
n=1(kn − 1) < ∞. Suppose that

{xn} is defined by (1.9) and F /= ∅. Then, {xn} converges strongly to a common fixed point of T1 and
T2 if and only if lim infn→∞d(xn, F) = 0, where d(xn, F) = inf{‖x − p‖ : p ∈ F}.

Proof. The necessity of the conditions is obvious. Thus, we need only prove the sufficiency.
Suppose that lim infn→∞d(xn, F) = 0. From (3.2), we have

d(xn+1, F) ≤
(
1 +

(
k2
n − 1

))
d(xn, F). (3.5)

As
∑∞

n=1(kn − 1) < ∞, therefore limn→∞d(xn, F) exists by Lemma 2.1. But by hypothesis
lim infn→∞d(xn, F) = 0, therefore we must have limn→∞d(xn, F) = 0.

Next we show that {xn} is a Cauchy sequence. Let ε > 0. Since limn→∞d(xn, F) = 0,
therefore there exists a constant n0 such that for all n ≥ n0, we have

d(xn, F) <
ε

4M
, (3.6)

where M > 0 is the constant in Lemma 3.1(ii). So we can find p′ ∈ F such that

∥
∥xn0 − p′

∥
∥ <

ε

2M
. (3.7)
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Using Lemma 3.1(ii), we have for all n ≥ n0 andm ∈ � that

‖xn+m − xn‖ ≤
∥
∥xn+m − p′

∥
∥ +

∥
∥xn − p′

∥
∥

≤ M
∥
∥xn0 − p′

∥
∥ +M

∥
∥xn0 − p′

∥
∥

= 2M
∥
∥xn0 − p′

∥
∥

< ε.

(3.8)

Hence {xn} is a Cauchy sequence in a closed subset K of a Banach space E, therefore it must
converge to a point in K. Let limn→∞xn = q. Now, limn→∞d(xn, F) = 0 gives that d(q, F) = 0.
Since the set of fixed points of asymptotically nonexpansive mappings is closed, we have
q ∈ F. This completes the proof of the theorem.

On the lines similar to this theorem, we can also prove the following theorem which
addresses the error terms.

Theorem 3.3. Let E be a real Banach space andK a nonempty closed convex subset of E which is also
a nonexpansive retract of E. Let T1, T2 : K → E be two asymptotically nonexpansive mappings with
respect to P with sequence {kn} ⊂ [1,∞) satisfying

∑∞
n=1(kn−1) < ∞. Suppose that {xn} is defined by

(1.10) with
∑∞

n=1 γn < ∞,
∑∞

n=1 γ
′
n < ∞ and F /= ∅, Then, {xn} converges strongly to a common fixed

point of T1 and T2 if and only if lim infn→∞d(xn, F) = 0, where d(xn, F) = inf{‖x − p‖ : p ∈ F}.

3.2. Convergence Theorems in Real Uniformly Convex Banach Spaces

In this section, we prove the strong and weak convergence of the sequence defined by the
iteration scheme (1.9) to a common fixed point of nonself asymptotically nonexpansive
mappings T1 and T2 with respect to P in real uniformly convex and smooth Banach space.
We first prove the following lemma.

Lemma 3.4. Let K be a nonempty closed convex subset of a real uniformly convex Banach space E.
Let T1, T2 : K → E be two nonself asymptotically nonexpansive mappings with respect to P with
sequence {kn} ⊂ [1,∞) satisfying

∑∞
n=1(kn − 1) < ∞. Suppose that {xn} is defined by(1.9), where

{αn} and {βn} are sequences in [a, 1 − a] for some a ∈ (0, 1). If F /= ∅, then

lim
n→∞

‖xn − (PT1)xn‖ = lim
n→∞

‖xn − (PT2)xn‖ = 0. (3.9)

Proof. By Lemma 3.1(i), limn→∞‖xn − p‖ exists. Assume that limn→∞‖xn − p‖ = c. If c = 0, the
conclusion is obvious. Suppose c > 0. Taking lim sup on both sides in that inequality (3.1),
we have

lim sup
n→∞

∥
∥yn − p

∥
∥ ≤ lim sup

n→∞

∥
∥xn − p

∥
∥ = lim

n→∞
∥
∥xn − p

∥
∥ = c. (3.10)
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Thus ‖(PT1)nyn − p‖ ≤ kn‖yn − p‖ for all n ∈ � implies that

lim sup
n→∞

∥
∥(PT1)nyn − p

∥
∥ ≤ c. (3.11)

Similarly,

lim sup
n→∞

∥
∥(PT2)nyn − p

∥
∥ ≤ c. (3.12)

Further,

c = lim
n→∞

∥
∥xn+1 − p

∥
∥

= lim
n→∞

∥
∥(1 − αn)(PT1)nyn + αn(PT2)nyn − p

∥
∥

= lim
n→∞

∥
∥(1 − αn)

(
(PT1)nyn − p

)
+ αn

(
(PT2)nyn − p

)∥
∥

≤ lim
n→∞

[

(1 − αn)
∥
∥
∥
∥lim sup

n→∞

(
(PT1)nyn − p

)
∥
∥
∥
∥ + αn

∥
∥
∥
∥lim sup

n→∞

(
(PT2)nyn − p

)
∥
∥
∥
∥

]

≤ lim
n→∞

[(1 − αn)c + αnc]

= c

(3.13)

gives that

lim
n→∞

∥
∥(1 − αn)

(
(PT1)nyn − p

)
+ αn

(
(PT2)nyn − p

)∥
∥ = c. (3.14)

Hence, using (3.11), (3.12), (3.14), and Lemma 2.2, we obtain

lim
n→∞

∥
∥(PT2)nyn − (PT1)nyn

∥
∥ = 0. (3.15)

Noting that

∥
∥xn+1 − p

∥
∥ =

∥
∥(1 − αn)(PT1)nyn + αn(PT2)nyn − p

∥
∥

≤ ∥
∥(PT1)nyn − p

∥
∥ + αn

∥
∥(PT2)nyn − (PT1)nyn

∥
∥

≤ kn
∥
∥yn − p

∥
∥ + αn

∥
∥(PT2)nyn − (PT1)nyn

∥
∥

(3.16)

which yields that

c ≤ lim inf
n→∞

∥
∥yn − p

∥
∥. (3.17)
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By (3.10) and (3.17), we obtain

lim
n→∞

∥
∥yn − p

∥
∥ = c. (3.18)

Moreover, ‖(PT1)nxn − p‖ ≤ kn‖xn − p‖ for all n ∈ � implies that

lim sup
n→∞

∥
∥(PT1)nxn − p

∥
∥ ≤ c. (3.19)

Hence

c = lim
n→∞

∥
∥yn − p

∥
∥

= lim
n→∞

∥
∥
(
1 − βn

)
xn + βn(PT1)nxn − p

∥
∥

= lim
n→∞

∥
∥
(
1 − βn

)(
xn − p

)
+ βn

(
(PT1)nxn − p

)∥
∥

≤ lim
n→∞

[
(
1 − βn

)
∥
∥
∥
∥lim sup

n→∞

(
xn − p

)
∥
∥
∥
∥ + βn

∥
∥
∥
∥lim sup

n→∞

(
(PT1)nxn − p

)
∥
∥
∥
∥

]

≤ lim
n→∞

[(
1 − βn

)
c + βnc

]

= c

(3.20)

gives that

lim
n→∞

∥
∥
(
1 − βn

)(
xn − p

)
+ βn

(
(PT1)nxn − p

)∥
∥ = c. (3.21)

Again by Lemma 2.2, we obtain

lim
n→∞

∥
∥(PT1)nxn − xn

∥
∥ = 0. (3.22)

In addition, from yn = (1 − βn)xn + βn(PT1)
nxn, we have

∥
∥yn − xn

∥
∥ = βn

∥
∥(PT1)nxn − xn

∥
∥. (3.23)

Hence by (3.22),

lim
n→∞

∥
∥yn − xn

∥
∥ = 0. (3.24)

Also
∥
∥(PT2)nyn − xn

∥
∥ ≤ ∥

∥(PT2)nyn − (PT1)nyn

∥
∥ +

∥
∥(PT1)nyn − (PT1)nxn

∥
∥ +

∥
∥(PT1)nxn − xn

∥
∥

≤ ∥
∥(PT2)nyn − (PT1)nyn

∥
∥ + kn

∥
∥yn − xn

∥
∥ +

∥
∥(PT1)nxn − xn

∥
∥

(3.25)
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implies by (3.15), (3.22), and (3.24) that

lim
n→∞

∥
∥(PT2)nyn − xn

∥
∥ = 0. (3.26)

Using (3.24) and (3.26), we obtain

∥
∥(PT2)nxn − xn

∥
∥ ≤ ∥

∥(PT2)nxn − (PT2)nyn

∥
∥ +

∥
∥(PT2)nyn − xn

∥
∥

≤ kn
∥
∥xn − yn

∥
∥ +

∥
∥(PT2)nyn − xn

∥
∥,

(3.27)

so that

lim
n→∞

∥
∥(PT2)nxn − xn

∥
∥ = 0. (3.28)

Then

∥
∥(PT1)nyn − xn

∥
∥ ≤ ∥

∥(PT1)nyn − (PT1)nxn

∥
∥ +

∥
∥(PT1)nxn − xn

∥
∥

≤ kn
∥
∥yn − xn

∥
∥ +

∥
∥(PT1)nxn − xn

∥
∥

(3.29)

gives

lim
n→∞

∥
∥(PT1)nyn − xn

∥
∥ = 0. (3.30)

From (3.15), and (3.30), we have

‖xn+1 − xn‖ =
∥
∥(1 − αn)(PT1)nyn + αn(PT2)nyn − xn

∥
∥

≤ ∥
∥(PT1)nyn − xn

∥
∥ + αn

∥
∥(PT2)nyn − (PT1)nyn

∥
∥

−→ 0 as n −→ ∞.

(3.31)

Thus from ‖xn+1 − yn‖ ≤ ‖xn+1 − xn‖ + ‖xn − yn‖, we get

lim
n→∞

∥
∥xn+1 − yn

∥
∥ = 0. (3.32)

From (3.30), (3.31) and

∥
∥xn+1 − (PT1)nyn

∥
∥ ≤ ‖xn+1 − xn‖ +

∥
∥xn − (PT1)nyn

∥
∥, (3.33)

we have

lim
n→∞

∥
∥xn+1 − (PT1)nyn

∥
∥ = 0. (3.34)
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Now we make use of the fact that every nonself asymptotically nonexpansive mapping with
respect to P must be uniformly L-Lipschitzian with respect to P combined with (3.22), (3.32),
and (3.34), where L = supn∈�{kn} ≥ 1, to reach at

‖xn − (PT1)xn‖ ≤ ∥
∥xn − (PT1)nxn

∥
∥ +

∥
∥(PT1)nxn − (PT1)nyn−1

∥
∥ +

∥
∥(PT1)nyn−1 − (PT1)xn

∥
∥

≤ ∥
∥xn − (PT1)nxn

∥
∥ + kn

∥
∥xn − yn−1

∥
∥ + L

∥
∥
∥(PT1)n−1yn−1 − xn

∥
∥
∥.

(3.35)

Thus

lim
n→∞

‖xn − (PT1)xn‖ = 0. (3.36)

From (3.24), (3.26), and (3.31), we have

∥
∥xn+1 − (PT2)nxn

∥
∥ ≤ ‖xn+1 − xn‖ +

∥
∥xn − (PT2)nyn

∥
∥ +

∥
∥(PT2)nyn − (PT2)nxn

∥
∥

≤ ‖xn+1 − xn‖ +
∥
∥xn − (PT2)nyn

∥
∥ + kn

∥
∥yn − xn

∥
∥

−→ 0 as n → ∞,

(3.37)

and so

lim
n→∞

∥
∥xn+1 − (PT2)nxn

∥
∥ = 0. (3.38)

Again making use of the fact that every nonself asymptotically nonexpansive mapping with
respect to P must be uniformly L-Lipschitzian with respect to P and (3.28), (3.31) and (3.38),
we have

‖xn+1 − (PT2)xn+1‖ ≤
∥
∥
∥xn+1 − (PT2)n+1xn+1

∥
∥
∥ +

∥
∥
∥(PT2)n+1xn+1 − (PT2)n+1xn

∥
∥
∥

+
∥
∥
∥(PT2)n+1xn − (PT2)xn+1

∥
∥
∥

≤
∥
∥
∥xn+1 − (PT2)n+1xn+1

∥
∥
∥ + kn+1‖xn+1 − xn‖ + L

∥
∥(PT2)nxn − xn+1

∥
∥.

(3.39)

This gives,

lim
n→∞

‖xn − (PT2)xn‖ = 0. (3.40)

This completes the proof of the lemma.

Theorem 3.5. Let K be a nonempty closed convex subset of a real uniformly convex and smooth
Banach space E with P as a sunny nonexpansive retraction. Let T1, T2 : K → E be two weakly inward
and nonself asymptotically nonexpansive mappings with respect to P with sequence {kn} ⊂ [1,∞)
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satisfying
∑∞

n=1(kn − 1) < ∞. Suppose that {xn} is defined by (1.9), where {αn} and {βn} are two
sequences in [a, 1 − a] for some a ∈ (0, 1). If one of T1 and T2 is completely continuous and F /= ∅,
then{xn} converges strongly to a common fixed point of T1 and T2.

Proof. By Lemma 3.1(i), limn→∞‖xn − p‖ exists for any p ∈ F. It is sufficient to show that
{xn} has a subsequence which converges strongly to a common fixed point of T1 and T2. By
Lemma 3.4, limn→∞‖xn−(PT1)xn‖ = limn→∞‖xn−(PT2)xn‖ = 0. Suppose that T1 is completely
continuous. Noting that P is nonexpansive, we conclude that there exists subsequence
{PT1xnj} of {PT1xn} such that PT1xnj → p. Thus ‖xnj − p‖ ≤ ‖xnj − PT1xnj‖ + ‖PT1xnj − p‖
implies xnj → p as j → ∞. Again limj→∞‖xnj − (PT1)xnj‖ = 0 yields by continuity of P and
T1 that p = PT1p. Similarly p = PT2p. By Lemma 2.3, p = T1p = T2p. Since F is closed, so
p ∈ F. Thus {xn} converges strongly to a common fixed point p of T1 and T2. This completes
the proof.

Theorem 3.6. Let K be a nonempty closed convex subset of a real uniformly convex and smooth
Banach space E with P as a sunny nonexpansive retraction. Let T1, T2 : K → E be two weakly inward
and nonself asymptotically nonexpansive mappings with respect to P with sequence {kn} ⊂ [1,∞)
satisfying

∑∞
n=1(kn − 1) < ∞. Suppose that {xn} is defined by (1.9), where {αn} and {βn} are two

sequences in [a, 1 − a] for some a ∈ (0, 1). If T1 and T2 satisfy condition (A′) and F /= ∅, then {xn}
converges strongly to a common fixed point of T1 and T2.

Proof. By Lemma 3.1(i), limn→∞‖xn − p‖ exists, and so, limn→∞d(xn, F) exists for all p ∈ F.
Also, by Lemma 3.4 limn→∞‖xn − (PT1)xn‖ = limn→∞‖xn − (PT2)xn‖ = 0. It follows from
condition (A′) and Lemma 2.3 that

lim
n→∞

f(d(xn, F)) ≤ lim
n→∞

(
1
2
(‖xn − (PT1)xn‖ + ‖xn − (PT2)xn‖)

)

= 0. (3.41)

That is,

lim
n→∞

f(d(xn, F)) = 0. (3.42)

Since f : [0,∞) → [0,∞) is a nondecreasing function satisfying f(0) = 0, f(t) > 0 for all
t ∈ (0,∞), therefore we have

lim
n→∞

d(xn, F) = 0. (3.43)

From Theorem 3.2, we obtain that {xn} is a Cauchy sequence in K. Since K is a closed subset
of a complete space, there exists a q ∈ K such that xn → q as n → ∞. Then, limn→∞d(xn, F) =
0 yields that d(q, F) = 0. Further, it follows from the closedness of F that q ∈ F. This completes
the proof.

Theorem 3.7. Let K be a nonempty closed convex subset of a real uniformly convex and smooth
Banach space E satisfying Opial’s condition with P as a sunny nonexpansive retraction. Let T1, T2 :
K → E be two weakly inward and nonself asymptotically nonexpansive mappings with respect to P
with sequence {kn} ⊂ [1,∞) satisfying

∑∞
n=1(kn − 1) < ∞. Suppose that {xn} is defined by (1.9),
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where {αn} and {βn} are two sequences in [a, 1−a] for some a ∈ (0, 1). If F /= ∅, then {xn} converges
weakly to a common fixed point of T1 and T2.

Proof. Let p ∈ F. By Lemma 3.1(i), limn→∞‖xn − p‖ exists, and {xn} is bounded. Note that
PT1 and PT2 are self-mappings fromK into itself. We now prove that {xn} has a unique weak
subsequential limit in F. Suppose that subsequences {xnk} and {xnj} of {xn} converge weakly
to p1 and p2, respectively. By Lemma 3.4, we have limn→∞‖xnk − (PTi)xnk‖ = 0, (i = 1, 2).
Lemma 2.4 guarantees that (I − PT1)p1 = 0, that is, (PT1)p1 = p1. Similarly, (PT2)p1 = p1.
Again in the same way, we can prove that p2 ∈ F. Lemma 2.3 now assures that p1, p2 ∈ F. For
uniqueness, assume that p1 /= p2, then by Opial’s condition, we have

lim
n→∞

∥
∥xn − p1

∥
∥ = lim

k→∞

∥
∥xnk − p1

∥
∥

< lim
k→∞

∥
∥xnk − p2

∥
∥

= lim
j→∞

∥
∥
∥xnj − p2

∥
∥
∥

< lim
j→∞

∥
∥
∥xnj − p1

∥
∥
∥

= lim
n→∞

∥
∥xn − p1

∥
∥,

(3.44)

which is a contradiction and hence p1 = p2. As a result, {xn} converges weakly to a common
fixed point of T1 and T2.

In a way similar to the above, we can also prove the results involving error terms as
follows.

Theorem 3.8. Let K be a nonempty closed convex subset of a real uniformly convex and smooth
Banach space E with P as a sunny nonexpansive retraction. Let T1, T2 : K → E be two weakly inward
and nonself asymptotically nonexpansive mappings with respect to P with sequence {kn} ⊂ [1,∞)
satisfying

∑∞
n=1(kn − 1) < ∞. Suppose that {xn} is the sequence defined by (1.10) satisfying the

following conditions:

(i)
∑∞

n=1 γn < ∞,
∑∞

n=1 γ
′
n < ∞;

(ii) {αn} and {α′
n} are two sequences in [a, 1 − a] for some a ∈ (0, 1).

If one of T1 and T2 is completely continuous and F /= ∅, then {xn} converges strongly to a common
fixed point of T1 and T2.

Theorem 3.9. Let K be a nonempty closed convex subset of a real uniformly convex and smooth
Banach space E with P as a sunny nonexpansive retraction. Let T1, T2 : K → E be two weakly inward
and nonself asymptotically nonexpansive mappings with respect to P with sequence {kn} ⊂ [1,∞)
satisfying

∑∞
n=1(kn − 1) < ∞. Suppose that {xn} is the sequence defined by (1.10) satisfying the

following conditions:

(i)
∑∞

n=1 γn < ∞,
∑∞

n=1 γ
′
n < ∞;

(ii) {αn} and {α′
n} are two sequences in [a, 1 − a] for some a ∈ (0, 1).
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If T1 and T2 satisfy condition (A′) and F /= ∅, then {xn} converges strongly to a common fixed point of
T1 and T2.

Theorem 3.10. Let K be a nonempty closed convex subset of a real uniformly convex and smooth
Banach space E satisfying Opial’s condition with P as a sunny nonexpansive retraction. Let T1, T2 :
K → E be two weakly inward and nonself asymptotically nonexpansive mappings with respect to P
with sequence {kn} ⊂ [1,∞) satisfying

∑∞
n=1(kn − 1) < ∞. Suppose that {xn} is the sequence defined

by (1.10) satisfying the following conditions:

(i)
∑∞

n=1 γn < ∞,
∑∞

n=1 γ
′
n < ∞;

(ii) {αn} and {α′
n} are two sequences in [a, 1 − a] for some a ∈ (0, 1).

If F /= ∅, then {xn} converges weakly to a common fixed point of T1 and T2.
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