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The main purpose of this paper is to investigate the stability of the functional equation f(x+y,y +

z) =2f(x/2,y/2)+2f(y/2,z/2) in normed spaces. The solutions of such functional equations are
considered.

1. Introduction

The stability of functional equations was originated from a question of Ulam in 1940, concern-
ing the stability of group homomorphism [1]. Since then, the stability problems of various
functional equations have been extensively investigated by a number of authors and there
are many investigating results concerning this problem (see [2-12]).

Throughout this paper, we study the stability of the functional equation

faryy+z)=2£(3.2) +2f(3.3), (1.1)

where X is a normed space, Y is a Banach space, and f : X x X — Y is a mapping. The solu-
tions of such functions are considered.
We recall that a mapping f : X x X — Y is called additive if

flx+z,y+w)=f(x,y)+ f(z,w). (1.2)

Throughout this paper X is a normed space and Y is a Banach space.
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2. The General Solution of the Functional Equation (1.1)
Before proceeding the proof of the main result, we shall need the following two lemmas.

Lemma 2.1. Let f : X x X — Y be a mapping satisfying (1.1) and f(-x,-y) = f(x,y) for all
x,y € X. Then f is zero.

Proof. Suppose that f : X x X — Y is a mapping satisfying (1.1) and f(-x,-y) = f(x,y). Itis
clear that f(0,0) = 0. Letting v = z = 0 and replacing x by 2x in (1.1), we obtain

£(2x,0) = 2f(x,0). (2.1)
Similarly, letting x = y = 0 and replacing z by 2x in (1.1), we obtain
£(0,2x) =2£(0, x). (2.2)

Putting v = 0 and replacing z by y in (1.1), we get
—2f(X LAN
fay) =2f(5,0) +2£(0,5) = F(x,0) + f(O.1), (2.3)

for all x, y € X, where the last equality follows from (2.1) and (2.2). It follows from (2.3) and
(1.1) that

flx+y,0)+f(0,x-y)=f(x+y,x-y)
-2£(5.3) (3 7)

(24)
—2f(¥ d X -y
- 2f<2,0> +2f(0, 2) +2f<2,0> +2f<0, 5 )
= f(y,0) + f(0,x) + f(x,0) + £(0,-y).
Replacing x and y by x/2 and x/2 in (2.4), respectively, we obtain
x x
£(x,0) =2f<0,§> +2f(§,o). (2.5)
Also, replacing y and x by —x/2 and x/2 in (2.4), respectively, we get
x x
£(0,x) :2f<§,0> +2f<0,§>. (2.6)

It follows from (2.5) and (2.6) that

f(x,0) = £(0,x). (2.7)
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Consequently, by (2.4), we obtain
fx+y,0)+ f(x~y,0) = 2f(x,0) + 2f (,0). (2.8)
Replacing y by x in (2.8), we get
£(2x,0) = 4f (x,0). (2.9)
By (2.1) and (2.9), we have
f(x,0)=0. (2.10)
The equalities (2.7) and (2.10) imply that
f(0,x) =0. (2.11)
Now, it follows from (2.3), (2.10), and (2.11) that
f(x,y)=0. (2.12)
This completes the proof. O

Lemma 2.2. Let f : X x X — Y be a mapping satisfying (1.1) and f(-x,-y) = —f(x,y) for all
x,y € X. Then f is additive.

Proof. 1t is easy to show that f(0,0) = 0. Putting y = z = 0 and replacing x by 2x in (1.1), we
obtain

£(2x,0) = 2f (x,0). (2.13)

Again, putting x = y = 0 and replacing z by 2x in (1.1), we obtain

f(0,2x) =2£(0,x). (2.14)
Putting v = 0 and replacing z by y in (1.1), we get

fy) =2£(5,0) +2£(0,3) = f(x,0) + £(0,), (2.15)
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for all x, y € X, where the last equality follows from (2.13) and (2.14). It follows from (2.13),

(2.14), and (2.15) that

fx+y,0)-f(0,x-y) =f(x+y,0)+ f(0,y - x)

=f(x+y,y-x)
= f(xy) + f(y,—x).

Replacing y by -y in (2.16), we obtain

fx=y,0)-f(0,x+y) = f(x,~y) + f(-y,—x).

Also, we have

flx+y,0)+f(0,x-y) = f(x+y,x~-y)

= f(x,-y) + f(y,x).

Replacing y by -y in (2.18), we get

f(x=y,0) +f(0,x+y) = f(xy) + f (-, %)

Now, by (2.16), (2.17), (2.18), and (2.19), we have
fle+y,0) = f(x~v,0) =2f(y,0).
Replacing x with x + i in the above equality, we get
f(x+2y,0) = f(x,0) = 2f (,0).
Now, replacing y by /2 in the previous equality, we obtain
f(x+y,0) = f(x,0)+ f(y,0).
Similarly, one can prove that
f0,z+w) = f(0,z) + f(0,w).
By (2.22) and (2.23), we conclude that
f(x+y,z+w) = flx,2)+ f(y,w),

which shows that f is additive. This completes the proof.

Now, we are ready to present the general solution of (1.1).

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)
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Theorem 2.3. Every mapping f : X x X — Y satisfying (1.1) is additive.

Proof. One can write
fy) = f (xy) + f(xy), (2.25)

where f¢(x,y) = (f(x,y) + f(-x,-y))/2 and f° = (f(x,y) — f(=x,—-Yy))/2. Since f satisfies
(1.1), f¢ and f° satisfy (1.1). Further, we have f°(-x,-y) = f°x,y) and f°(-x,-y) =
—-f°x,y) for all x,y € X. By Lemmas 2.1 and 2.2, f°(x,y) is zero and f°(x,y) is additive,
respectively. It follows that f is additive. This completes the proof. O

3. The Stability of the Functional Equation (1.1)

Throughout this section, we prove the stability of the functional equation (1.1).

Theorem 3.1. Let f : X x X — Y be a mapping such that
|G+ +2)-2£(5.2) -2f(%.5)] < ¢ xw.2), (3.1)

where ¢ : X x X x X — [0, 00) satisfies 32,2'Pp(x/2',y/2',z/2") < oo for all x,y,z € X. Then
there exists a mapping F : X x X — Y satisfying (1.1),

I£Ge) - Feell = 32(#(5,00) +6(00.5) ) + 4 0),

(3.2)
coong( X YN
Jim 2" (55 55) =Fxy),
forallx,y € X.
Proof. Letting x = y = z = 0, we have f(0,0) = 0. Putting y = z = 0, we obtain
x
| £x.0)-2£(3.0)] < $(x,0,0). (33)

By induction, we conclude that

£ 0 - 2*7(%,0) | < 22@(%,0,0). (3.4)
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Put K,y = |27 f (x/2",0) — 2" £ (x/2",0)|.. Then

Km,n < Km,n+1 + Kn+1,n

= Ky +2" 2f<2n—x+1,0> —f(zin,0>“ (3.5)
< Kot +279(5;,0,0),
for all m,n € N with m > n. By induction, we get
2 () -2 G0 < o (5.00) <. o0
i=n

which implies that {2” f (x/2",0)} is a Cauchy sequence in Y for all x € X. Since Y is complete,
there exists h(x) such that

2"f<2in,o) - h(x)” —0, (3.7)
asn — oo forall x € X. Since

fror-2n()] < oo -2 (Z 0

2(50)-a@)] ~o o

asn — oo, h(x) =2h(x/2) for all x € X.
Similarly, we can prove that there exists a mapping g : X — Y such that

2'£(0,2:) — 8| — 0, (3.9)

asn — ooand g(x) =2g(x/2) forall x € X.
Now, if

Xty y+z X y y z
dn(x/y/2)=f< o on )—2f<ﬁfzm)—2f<ﬁfﬁ)f (3.10)

and F, = |12"f((x +y)/2",y/2") — h(x + y) — g(y)|, then we get

F, =

2"d, (x+y,0,vy) +2"+1f<x2n¥,0> +2n+1f<0/ 2,{1> ~h(x+y) _g(y)H

+

<||2"dn(x +y,0,y) || +

X +
2n+1f< 2n+f/’0> - h(x+y)

2l (0, zil) -8(v) H
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<2y (x+y,0,9)| + |27 (Gt 0) - s (o) s
<2n¢< Y o 2y>+ 2n+1f<szy,0>_ . 2n+1f<0,2n+1>_
(3.11)
for all x, y € X. Thus we obtain
nlijr;g"f(x;y,z%> =h(x+y) +3(v), (3.12)

forall x,y € X. Let G, = ||12" f(x/2",y/2") — h(x + y) — g(y) + h(y)||- Then we conclude that

" w1 (XY Y ne(Y
Gn B ||_2 1dn—1(x/y/0) +2 1f< on-1 '271—1> 2 f<2_n/0> _h(x+y) _g(y) +h(y)||

2" 1d, (x,v,0) ” +

z"-1f<3;:_1y,2ny_1> —h(x+y) —g(y)“
4 ICORIOI

-1 x Yy
SZ” ¢<2n 17 on- 1’0> +

+[2 (30) -nw)])

21f<xz+i/ 2,{2) —h(x+y) —g(y)H

(3.13)
for all x, y € X. It follows from (3.12) that
lim27f (2, 2) = h(x +) +8(y) - h(y), (3.14)
forall x,y € X. Put H, = ||2" f (x/2",y/2") — h(x) — g(y)||. Since
Hy = |[27du(x,0,y) + 271 f( =X 0) +271F (0, -2 ) -k
n — n(x/ /]/)+ f 2n+1/ + f /2n+1 - (x)_g<y)
< |[2"du(x, 0, y) || + 2"”f< > 0> - + 2"”f(0 z > —g(y)H
= e on+l’ ! on+l (3'15)

<29(50.03) +

—0

2"+1f<2:+1,0> “ho)| + 2"+1f<2:+1,0) ~ h(x)

7

asn — oo,

Jim 27 f (25,25 = h@) + g (y), (3.16)
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for all x, y € X. It follows from (3.14) and (3.16) that
h(x+y) +8&(y) —h(y) = h(x) +g(y), (3.17)

forall x,y € X. So h(x +y) = h(x) + h(y) forall x,y € X.
Similarly, we can show that

g(x+y) =g(x) +g(v), (3.18)
forall x,y € X. Let F(x,y) = h(x) + g(y). Then we conclude that

F(x+y,y+z)=h(x)+h(y) +g(y) + g(z)

=n(3)+ 2h(%> +2g<%> +2g(3) (3.19)

5 3) (23

forall x,y,z € X.
Now, letting L,, = || f(x,y) = 2" f(x/2",0) = 2" f(0,y/2")||, we obtain

£ Gey) = FGeam) < || £ Gew) =27 (55.0) = 2£ (0. 5) | + L (3.20)
Since
27f(5,0) +27£(0, %) - F(x,y) || — 0, (3.21)
asn — oo, it is sufficient to show that
L, snizl'(d)(%,o,o) +¢<o,o,%>> +¢(x,0,). (3.22)
A

We have
ozt 21(5) -0 D] s Goo) -2 (2
+[|2r (0, %) -2'f (O%> | (3.23)

< 22ﬁ(¢<§,0,0> - ¢(0,0, %)) + ¢ (x,0,y).




Discrete Dynamics in Nature and Society 9

Asn — oo, we have
5y -Feonll < 32(9(5.00) +9(00.5)) +ox0m). G20

This completes the proof. O

Corollary 3.2. Suppose that f : X x X — Y is a mapping such that

|fGevyy+2)-27(5.2) -2£(3. )] < el + Iyl +1217),  (3.25)

where p > 1 and € > 0. Then there exists a mapping F : X x X — Y satisfying (1.1),

I1fGey) - F(x )l < zp e(llxll” vl

hm2"f< y) F(x,y),

n—oo

(3.26)

orall x,y € X.
f y

Corollary 3.3. Suppose that f : X x X — Y is a mapping such that
[fGrvy+2)-2£(5.5) -2F(5.5) || < QP Iyl + I 1= + 1217 1), 3:27)

where p > 1/2 and € > 0. Then there exists a mapping F : X x X — Y satisfying (1.1),

1f Gey) = FGxo )|l < ellxlPlll”,

lim2”f<23il é/n> =F(x,y),

n—oo

(3.28)

forall x,y € X.

Example 3.4. Let X =Y = C[a, b] with the norm ||x|| = sup,[,,[x(t)|, where b > a > 0. Define
f:Cla,b] xCla,b] — Cla,b] by

floy) () = x(t) +ty(t)*, (3.29)
forallt € [a,b],and ¢ : X x X x X — Rby

$(x,y,2) = b(llxl + [ly])* (3.30)
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It is not difficult to show that ¢ satisfies Theorem 3.1 since

|frvy 2 -2£(5.5) -2f(5.3)]

= sup |fx+yy+2)0 -2 (3, 2o -2£(%.2) )

telab

(3.31)

= sup éx(t)2+ éy(t)2+2tx(t)y(t)|

te[a,b]
< bllxlP + bly||* + 2blx ] |w]| = b(lx] + |ly])?
=¢(x,y,2),

for all x, y, z € X. Theorem 3.1 implies that there exists a mapping F : X x X — Y satisfying
(1.1) and

If (x,y) = F(x, y)Il < 2b]|x]]%, (3.32)

forall x,y € X.

Example 3.5. Let X be a normed space. Define the function ¢ : X x X — [0, o) by

P
> , (3.33)

where By is the closed unit ball of the dual space X' and p > 1. Then one can show that the
function ¢ : X x X x X — [0, o0), defined by

fx) f(y)

folxy) = ( vebe|2(X) 8(y)

f,gGBX/

¢(x,y,2) = do(x,y) + o (v, 2), (3.34)

satisfies Theorem 3.1.

Example 3.6. Define ¢(x,y,z) = €F x &P x ¢V — [0, 00) by
P(x,y,2) = D el + D ml” + Dlal, (3.35)
i=1 i=1 i=1

where x = (¢&1,¢&,...), ¥y = (q1,1M2,...), and z = (1,82, ...). It is obvious that ¢ satisfies
Theorem 3.1.

Theorem 3.7. Suppose that f : X xX — Y isamappingand ¢ : X x X xX — [0, 00) is a function
such that

||f(x+ Y,y +z) —2f<%: %) —2f<%, g) ” <¢(x,y,2), (3.36)
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$(0,0,0) = 0and 33, (1/2)¢(2'x,2'y,2'z) < oo for all x,y,z € X. Then there exists a mapping
F: X xX — Y satisfying (1.1),

1 Gew) ~ Byl < 3 (#(2%,0,0) + 9(0,0,29)) + 9(x,0,9),

=2 (3.37)
s ]' n n
Jim 57 f (2", 2"y) = F(x,y),

forall x,y € X.

Proof. 1t is clear that f(0,0) = 0. Now, letting iy = z = 0, we obtain

”%f (2x,0) = f(x,0)f < %¢(2x, 0,0). (3.38)
By induction, we have
1. |
5 f(@2"%,0) - f(x,0)| < 1;54)( x, 0,0). (3.39)

It follows that, for any € > 0, there exists N € N such that, for all n,m € Nwithm >n > N,

”_ (27x,0) - _f(znx O)H Z 4,( x,0,0) <e. (3.40)

i= n+1

Thus {(1/2") f(2"x,0)} is a Cauchy sequence in Y. The completeness of Y implies that there
exists h(x) such that

hm ||—f(2"x 0) - h(x)| = (3.41)
Since
1 1 1 ... 1
Hh(x) - Eh(Zx) < ' h(x) - 2—nf(2" , 2—nf(2 x,0) - Eh(Zx)H —0, (3.42)
asn — oo, h(x) = (1/2)h(2x).
Similarly, we conclude that there exists a mapping g : X — Y such that
. 1
lim H 2_”f(0’ 2"z) - g(z) (3.43)

and g(z) = (1/2)g(2z). Let

dn(x,y,2) = (2’”1 (x+y), 2" (y + z)> f(2"x,2"y) - f(2"y,2"z), (3.44)
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and F, = [|(1/2"1) f 2" (x + y),2""'y) — h(x + y) — g(v)||- Then we have

Fo = || e e+ 9,0.9) + 30 F @ 9),0) + 5 £(0.2°0) = hx +w) = 5(0)|

1 1., 1 iy
Frdn(x 9,0, 2—nf(2 5/ 0.29) =)
1 n 1 n
< nlldn(x+y,0,9) || + 2n e |5 £(0.2"y) - g(y)
1 n n 1 n 1 n+1
< 592" (x +y),0.2"y) + | 5 £ (2 Z—nf(OrZ v)-
(3.45)
for all x, y € X. By hypothesis, (3.41) and (3.43), we get
sim s F (2 (x4 ), 27Ty) = h(x ) + 8(3), (3.46)

forall x,y € X.
Now, let L,, = [|(1/2" 1) f(2"'x,2" 'y) — h(x + y) — g(y) + h(y)]. Then we obtain

Lo = | g (w00 + 3o @), 29) = 3 F@,0) = b+ ) = 5(0) + b

1
Fdn—l (X, Y,

/@), 2) = h(x+y) - 5|

23_1f(z"-1y,o) -h(»)|

<5 —$(2"x,2"y,0) +

/(@G ),27y) =) -0

oo/ (29.0) - h) |
(3.47)

where the last inequality follows from (3.46). By (3.41) and (3.43), we conclude

lim (27,2 y) = h(x + ) + g(v) - h(y), (3.48)

for all x,y € X. Put M,, = ||(1/2"}) f (2" x, 2" y) — h(x) — g(y)||. Since

M, =

el (60,9) + 22 2'%,0) + 22 £(0,2°) =) - 50|

1 n
5 f(2"%,0) = h(x)

2nf (0,2"y) - &(y) ||

1
2_"n
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1
on+l

n 1 n
< (271x,0,2" 1y ) + 5/ (2"x,0) = h(x)

+

%f (0.2"y) - g(v) ”

— 0,

asn — oo, where the last inequality follows from (3.41) and (3.43). So we have

: 1 n+ n+
lim 1f<2 x,2 1y> =h(x)+g(y),

n— oo 2N+
for all x, y € X. By (3.48) and (3.50), we have
h(x+y) +g(y) ~h(y) = h(x) +g(v),

for all x,y € X. It follows that h(x + y) = h(x) + h(y).
Similarly, we obtain g(x + y) = g(x) + g(vy).

13

(3.49)

(3.50)

(3.51)

Now, define the mapping F : X x X — Y by F(x,y) = h(x) + g(y). Then we have

F(x+y,y+z)=h(x)+h(y) +g(y) + g(z)

a(3) () 2(3) ()
(50 ear(L)
Now, we have

17 =Pyl <[ £ o) - or@rx 0 - r02)|

+

1 1
@00+ 2 F02') (x|
Let H, = || f(x,y) - (1/2") f(2"x,0) — (1/2") f (0,2"y)]||. Since we know that
. 1 1
lim H 2—nf(2"x, 0) + Z—nf(O, 2"y) - F(x,y) || =0,
to prove (3.37), it is sufficient to show that

H, < g%@(zix,o,o) +¢(0,0,2"y)> +¢(x,0,y),

(3.52)

(3.53)

(3.54)

(3.55)
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for all n € N. We have

Ho< | f (o) - 3/ @x,0) - 5

0~ 5 f@x,0)

- zl—nf (0,2"y) ” (3.56)

i%( (2x,0,0) + $(0,0,2y) ) + ¢ (x,0,3),

forall x,y € X. Asn — oo, we conclude

I Gow) - Fl < 30 (#(2,0,0) + 4(0,02)) + p(x.0y), G57)

i=2

for all x, y € X. This completes the proof. O

Corollary 3.8. Suppose that € > 0and f : X x X — Y is a mapping satisfying
|f vy y+2)- 2f< ) 2f( >|| <e(llx|P + ||y|]” + I1=IP), (3.58)

for some p < 1. Then there exists a mapping F : X x X — Y satisfying (1.1),

2 2P 4221
I () = Fey)ll < =5—5—<(lxll + |y ],
(3.59)
lim —f(Z"x 2"y) = F(x,y),

n—oo

orall x,y € X.
f y

Example 3.9. (1) Let (X, (-,-)) be an inner product space. Then one can show that the function
¢: X xXxX — R, defined by

¢(xy.2) = ()" + (v 2" (p<1), (3.60)

satisfies Theorem 3.7.
(2) Suppose that (X, | - ||) is a normed space. Then the function ¢ : X x X x X — R,
defined by ¢(x, y, z) = ||x||||ly|l||z]|, satisfies Theorem 3.7.

4. A Fixed Point Approach to the Stability

In this section, we apply the fixed point method to prove the stability of the functional equa-
tion (1.1).
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Let X be a set. A functiond : X x X — [0, 00] is called a generalized metric on X if d
satisfies the following conditions:

(1) d(x,y) =0forall x,y € X if and only if x = y;

(2)d(x,y) =d(y,x) forallx,y € X;

(3)d(x,z) <d(x,y)+d(y,z) forall x,y,z € X.

We now introduce one of the fundamental results of fixed point theory.

Theorem 4.1 (see [13]). Let (X, d) be a complete generalized metric space and let J : X — X bea
contractive mapping with constant L. Then for each x € X, either

d< J'x, ]"+1x> = oo, (4.1)

for all n € N or there exists an ng € N such that
(@) d(J"x, J"*'x) < oo for all n > ny;
(b) the sequence { J"x} converges to fixed point xq of J;
(c) xo is the unique fixed point of | in theset Y = {y € X : d(J™x,y) < oo},
(d) d(y,yo) < (1/(1-L))d(y,Jy) forally € Y.

In 1996, Isac and Rassias [14] were the first to provide applications of stability theory
of functional equations for the proof of new fixed point theorems with applications. By
using fixed point methods, the stability problems of several functional equations have been
extensively investigated by a number of authors (see [15-22]).

Theorem 4.2. Suppose that X is a vector space and Y is a Banach space. Let f : X x X — Y bea
mapping and let ¢ : X x X x X — [0, 00) be a function satisfying the following conditions:

@ If(x+y,y+2)=2f(x/2,y/2) =2f(y/2,2/2)| < §(x, y, 2);
(b) ¢(0/010) =0;
(c) forall x,y € X,

lim zlnd)(Z"x, 2"y,2"z) =0; (4.2)

n— oo

(d) there exists a number L € [0,1) such that
XYy /x Yy
d(x,y,0(x,y)) S2L¢<E'§’G<E’§>>’ (4.3)

where 0 : X x X — X is a mapping such that o(x,0) = 0 for all x € X.
Then there exists a unique mapping F : X x X — Y satisfying (1.1) and

1 (o) - EGey)l € 557 (a0 (), (@4

orall x,y € X.
f y
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Proof. Consider the set
S={g:XxX—Y}, (4.5)
and define the generalized metric on S by
d(g,h) =inf{C: [|g(x,y) ~h(x,y)| <CP(x,y,0(x,y)), ¥(x,y) eXxX}.  (46)

It is easy to show that (S, d) is complete.
Now, we consider the linear mapping ] : S — S such that

Jg(xy) = %8(2x12y)f (47)
for all x, y € X. The definition of ] implies that
d(Jg Jh) < Ld(g h), (4.8)
for all g, h € S. Replacing x by 2x and putting y = z = 0 in the first statement, we get
||lf (2x,0) = 2f (x,0)|| < ¢(x,0,0) = $(2x,0,0(2x,0)), (4.9)
forall x € X. So

“f(x,O) - %f(Zx,O) < %¢(2x, 0,0(2x,0)), (4.10)

for all x € X. Hence d(f, Jf) < 1/2. By Theorem 4.1, there exists a mapping F : X x X — Y
such that F is a fixed point of J, that is,

F(2x,2y) =2F(x,y), (4.11)
for all x, y € X. The mapping F is a unique fixed point of J in the set
S ={geS8:d(f,g) <o} (4.12)
This implies that there exists a C < oo such that
IEGey) = f ()]l < Cp(x y, (), (413)

for all x,y € X. Also, we have

d(J"f,F) — 0, (4.14)
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asn — oo. It follows that
o1
lim 2—nf(2nx/2ny) = F(x,y)/ (415)

for all x, y € X. By the third statement of Theorem 4.1, we have d(f,F) < (1/(1-L))d(f, Jf).
This implies that

d(f,F) < ﬁ (4.16)
Thus, by the definition of d(-, -), we conclude
1£Gey) - Fom) |l € = b .0 (o y), @.17)
forall x,y € X. Let
Dr=F(x+y,y+z)-2F(3,3) —2F<%, ) (4.18)

It follows from (4.15) that

. 1
|IDE|l = nlglgoz—n

f@(x+y),2"(y+2)) -2 (205,272 ) -2 (25,22 )|

. (4.19)
< lim z—nd)(Z”x, 2"y,2"z) = 0.
So we have
_or(X Y yz
F(x+y,y+z)—2F<2,2>+2F<2,2>, (4.20)
for all x,y,z € X. So F satisfies (1.1). This completes the proof. O
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