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New stability and robust stability results are given based on weaker conservative assumptions.
First, new boundary condition is designed. It is less conservative and has broader application
range than that has been given. Then, we derive the results which have the same form, but under
a weaker conservative assumption. Meanwhile, the process of the proofs has been simplified.
Finally, an example is given to illustrate our results. Our results can be extended to the fields of
stabilization, filtering and state estimation, and so forth.

1. Introduction

Over the past decades, Fornasini-Marchesini (FM)model has been applied in many practical
problems, for example, the control of sheet-forming processes [1], circuits, signal processing,
and discrimination of some partial differential equations with initial-boundary conditions
[2–6]. Asymptotic stability for 2D deterministic systems based on FM models also has been
developed quite successfully. Several methods have been proposed, for example, using
Lyapunov function [7, 8], using LMI technique [9], and using the nonnegative matrices
theory [10–12]. For linear 2D model in general case, stability has been discussed in [13].
However, very few effort has been made toward the analysis and synthesis of 2D stochastic
systems (2DSSs) with stochastic system matrices. The mean-square stability of 2DSS has
been discussed in [14, 15]. The state estimation problem has been discussed in [16]. The H∞
filtering problem has been discussed in [17]. But all of them are based on the conservative
assumption which is listed as follows.
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Assumption 1.1. The boundary condition of (2.1) is independent of v(i, j) and is assumed to
satisfy

lim
N→∞

�

{
N∑
k=1

(
‖x(0, k)‖2 + ‖x(k, 0)‖2

)}
< ∞. (1.1)

The main goal of the present paper is to find stability and robust stability criteria for
two dimensional stochastic systems based on weaker conservative assumptions. First, new
boundary condition is designed. It is less conservative and has broader application range
than Assumption 1.1. Then, we derive the results which have the same form, but under a
weaker conservative assumption. Meanwhile, the process of the proofs has been simplified.
At last, an example is given to illustrate our results.

The following notation is used in this paper. For an n-dimensional vector of real
elements x ∈ �

n , ‖x‖ = (xTx)1/2 denotes the 2-norm, where the superscript T stands for
matrix transposition. �{x} denotes the expected value of x. In symmetric block matrices
or long matrix expressions, we use an asterisk (∗) to represent a term that is induced
by symmetry. Matrices, if their dimensions are not explicitly stated, are assumed to be
compatible for algebraic operations.

2. 2D Stochastic System Model

First, we rewrite the 2D stochastic system model as follows:

x
(
i + 1, j + 1

)
=
[
A1 +M1v

(
i, j
)]
x
(
i, j + 1

)
+
[
A2 +M2v

(
i, j
)]
x
(
i + 1, j

)
, (2.1)

where A1, A2 are system matrices with compatible dimensions, M1, M2 are appropriately
dimensioned matrices, and v(i, j) is a standard random scalar signal satisfying �{v(i, j)} = 0
and

�
{
v
(
i, j
)
v(m,n)

}
=

⎧⎨
⎩
1
(
i, j
)
= (m,n),

0
(
i, j
)
/= (m,n).

(2.2)

We make the following assumption on the boundary condition which is less conservative.

Assumption 2.1. The boundary condition is independent of v(i, j) and is assumed to satisfy

lim
k→∞

�

{
‖x(0, k)‖2

}
= 0, lim

k→∞
�

{
‖x(k, 0)‖2

}
= 0,

�

{
‖x(k, 0)‖2

}
< ∞, E

{
‖x(k, 0)‖2

}
< ∞ for any k ≥ 1.

(2.3)

Remark 2.2. Assumption 2.1 does not yield any loss of generality since the 2DDS (2.1) is
not asymptotically stable if the initial states do not satisfy Assumption 2.1. We can see that
Assumption 2.1 is necessary if the 2DDS (2.1) is asymptotically stable.

Remark 2.3. Assumption 2.1 is less conservative and has broader application range than
Assumption 1.1.
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For example, we assume the boundary state of system (2.1) satisfies �{‖x(0, k)‖2} =
�{‖x(k, 0)‖2} = 1/k, where k = 1, 2, . . . ,∞. So, we have

lim
k→∞

�

{
‖x(0, k)‖2

}
= 0,

lim
k→∞

�

{
‖x(k, 0)‖2

}
= 0.

(2.4)

Clearly, the above boundary state does not meet Assumption 1.1, so the results in [14–17] can
not be used on system (2.1) with Assumption 1.1. Although the above-boundary state meets
Assumption 2.1, we can use our conclusions on system (2.1) with Assumption 2.1.

Similar to [14], we give the following definition which will be used throughout the
paper.

Definition 2.4. The two-dimensional discrete stochastic system (2.1) with Assumption 2.1 is
said to be mean-square asymptotically stable if under the zero input and for every initial
condition �{‖x(0, 0)‖2} < ∞,

lim
i+j→∞

�

{∥∥x(i, j)∥∥2} = 0. (2.5)

Remark 2.5. Definition 2.4 is more general and has broader application range than Definition
2 given in [14].

3. Asymptotic Stability and Robust Stability

In this section, we discuss mean-square asymptotic stability for 2D discrete stochastic systems
(2.1). Then, we extend the result into the fields of robust stability.

Lemma 3.1 (Schur’s Complement [18]). Given constant matrices C, L, and D of appropriate
dimensions where C and D are symmetric and D > 0, then the inequality C + LTDL < 0 holds if
and only if [

C LT

L −D−1

]
< 0 or

[−D−1 L

LT C

]
< 0. (3.1)

3.1. Asymptotic Stability

Theorem 3.2. The 2D discrete stochastic system (2.1) is mean-square asymptotically stable if there
exist two positive-definite matrices P1 and P2 satisfying

⎡
⎢⎢⎢⎣

−P1 0 AT
1P MT

1P
∗ −P2 AT

2P MT
2P

∗ ∗ −P 0
∗ ∗ ∗ −P

⎤
⎥⎥⎥⎦ < 0, (3.2)

where P = P1 + P2.
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Proof. Let

C =

[−P1 0

0 −P2

]
, LT =

[
AT

1P MT
1P

MT
2P MT

2P

]
, D =

[
P−1 0

0 P−1

]
, (3.3)

by Lemma 3.1, and LMI (3.2) is equivalent to

Ψ =

[
AT

1PA1 +MT
1PM1 − P1 AT

1PA2 +MT
1PM2

∗ AT
2PA2 +MT

2 PM2 − P2

]
< 0. (3.4)

Let

ΔV
(
i + 1, j + 1

)
= V
(
i + 1, j + 1

) − V1
(
i, j + 1

) − V2
(
i + 1, j

)
, (3.5)

where

V1
(
i, j
)
= �

{
xT(i, j)P1x

(
i, j
)}

,

V2
(
i, j
)
= �

{
xT
(
i, j
)
P2x
(
i, j
)}

.

(3.6)

Substitute (2.1) into (3.5) and let x̃ :=
[
x(i,j+1)
x(i+1,j)

]
, then we have

ΔV
(
i + 1, j + 1

)
= �

{
xT(i + 1, j + 1

)
P1x
(
i + 1, j + 1

)}
+ �
{
xT(i + 1, j + 1

)
P2x
(
i + 1, j + 1

)}

− �
{
xT(i, j + 1

)
P1x
(
i, j + 1

)} − �{xT(i + 1, j
)
P2x
(
i + 1, j

)}

= �

{
xT(i + 1, j + 1

)
[P1 + P2]x

(
i + 1, j + 1

)}

− �
{
xT(i, j + 1

)
P1x
(
i, j + 1

)} − �{xT(i + 1, j
)
P2x
(
i + 1, j

)}

= �

⎧⎨
⎩
([
A1 +M1v

(
i, j
)]
x
(
i, j + 1

)
+
[
A2 +M2v

(
i, j
)]
x
(
i + 1, j

))T
P

([
A1 +M1v

(
i, j
)]
x
(
i, j + 1

)
+
[
A2 +M2v

(
i, j
)]
x
(
i + 1, j

))
⎫⎬
⎭

− �
{
xT(i, j + 1

)
P1x
(
i, j + 1

)}
+ �
{
xT(i + 1, j

)
P2x
(
i + 1, j

)}

=
(
A1x
(
i, j + 1

)
+A2x

(
i + 1, j

))T
P
(
A1x
(
i, j + 1

)
+A2x

(
i + 1, j

))
+
(
M1x

(
i, j + 1

)
+M2x

(
i + 1, j

))T
P
(
M1x

(
i, j + 1

)
+M2x

(
i + 1, j

))
− �
{
xT(i, j + 1

)
P1x
(
i, j + 1

)}
+ �
{
xT(i + 1, j

)
P2x
(
i + 1, j

)}
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= x̃T

[
AT

1

AT
2

]
P[A1 A2]x̃ + x̃T

[
MT

1

MT
2

]
P[M1 M2]x̃ − x̃T

[
P1 0

0 P2

]
x̃

= �

{
x̃TΨx̃

}
.

(3.7)

Hence, for any x̃ /= 0, we have

ΔV
(
i + 1, j + 1

)
= �

{
x̃TΨx̃

}
< 0. (3.8)

From Assumption 2.1, we have �{‖x(i, 0)‖2} → 0 and �{‖x(0, i)‖2} → 0 as i → ∞.
From Definition 2.4, we can see that, to show mean-square asymptotically stable, we

only need to prove that limi+j→∞�{‖x(i, j)‖2} = 0, that is, to prove that �{‖x(i, 0)‖2} →
0, �{‖x(i, 1)‖2} → 0, . . . , �{‖x(i,∞)‖2} → 0, and �{‖x(0, i)‖2} → 0, �{‖x(1, i)‖2} →
0, . . . , �{‖x(∞, i)‖2} → 0 as i → ∞. So, we only need to prove that for any natural number
k ≥ 1, �{‖x(i, k)‖2} → 0 and �{‖x(k, i)‖2} → 0 as i → ∞. To prove this, we need the
following two steps.

Step 1. Let k = 1, to prove �{‖x(i, 1)‖} → 0 and �{‖x(1, i)‖} → 0 as i → ∞.

Step 2. Let k = 2, . . . ,∞, to prove �{‖x(i, k)‖} → 0 and �{‖x(k, i)‖} → 0 as i → ∞.

Now, we prove that �{‖x(i, 1)‖} → 0 as i → ∞. From (3.5) and (3.8), we have

V1
(
i + 1, j + 1

)
+ V2
(
i + 1, j + 1

) − V1
(
i, j + 1

) − V2
(
i + 1, j

)
< 0, (3.9)

which implies

V1
(
i + 1, j + 1

)
< V1
(
i, j + 1

)
or V2

(
i + 1, j + 1

)
< V2
(
i + 1, j

)
if �{‖x(i, 1)‖} > 0.

(3.10)

Clearly, let i → ∞ and j = 0, and substitute them into (3.10), then we get

V1(∞, 1) < V1(∞, 1) or V2(∞, 1) < V2(∞, 0) = 0 if �{‖x(∞, 1)‖} > 0. (3.11)

Since both V1(∞, 1) < V1(∞, 1) and V2(∞, 1) < 0 are false, (3.11) is false. Hence, the condition
�{‖x(∞, 1)‖} > 0 in (3.11) is false. Thus, it yields �{‖x(∞, 1)‖} = 0. Similarly, we can get that
�{‖x(1,∞)‖} = 0.

Continue this procedure, and we can obtain that �{‖x(i, k)‖2} → 0 and
�{‖x(k, i)‖2} → 0 as i → ∞ for any natural number k ≥ 2. It implies that
limi+j→∞�{‖x(i, j)‖2} = 0. Therefore, from Definition 2.4, the system (2.1) is mean-square
asymptotically stable. The proof is completed.

Remark 3.3. Theorem 3.2 gives a sufficient condition for the mean-square asymptotical
stability of system (2.1). It is equivalent to [14, Theorem 2] in the form. However, it has
broader application range because the assumption is weaker.
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Remark 3.4. Theorem 3.2 is also equivalent to [14, Theorem 1] from [14, Theorem 3] in the
form. However, it has broader application range.

Before proceeding further, we give the following lemma which will be used in the
following proofs frequently.

Lemma 3.5 (see [15]). Given appropriately dimensioned matrices R1, R2, R3, with RT
1 = R1, then

R1 + R3Wi,jR2 + RT
2W

T
i,jR

T
3 < 0 (3.12)

holds for all Wi,j satisfyingWT
i,jWi,j ≤ I if and only if, for some δ > 0,

R1 + δ−1R3R
T
3 + δRT

2R2 < 0. (3.13)

Next, we present the robust stability result for system (2.1) with norm-bounded
uncertain matrices.

3.2. Robust Stability

The main task of this subsection is to establish the robust mean-square asymptotic stability
for two-dimensional stochastic system (2.1) with uncertain matrix data.

First, we give the following assumptions.

Assumption 3.6. Assume that the matricesA1, A2,M1,M2 of system (2.1) have the following
form:

A1 = A10 + ΔA1, M1 = M10 + ΔM1,

A2 = A20 + ΔA2, M2 = M20 + ΔM2,
(3.14)

where A10, A20, M10, M20 are known constant matrices with appropriate dimensions. ΔA1,
ΔA2, ΔM1, ΔM2 are real-valued time-varying matrix functions representing norm-bounded
parameter uncertainties satisfying

(ΔA1 ΔA2 ΔM1 ΔM2) = GΔi,j(H1 H2 H3 H4), (3.15)

where Δi,j is a real uncertain matrix function with Lebesgue measurable elements satisfying

ΔT
i,jΔi,j ≤ I, (3.16)

and G,H1,H2,H3,H4 are known real constant matrices with appropriate dimensions. These
matrices specify how the uncertain parameters in Δi,j enter the nominal matrices A10, A20,
M10,M20.

Now,we have the robust stability result for system (2.1)with norm-bounded uncertain
matrices.
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Theorem 3.7. The 2D discrete stochastic system (2.1) with Assumption 3.6 is robustly mean-square
asymptotically stable if there exist two positive-definite matrices P1, P2 and a scalar δ > 0 satisfying

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P1 + δ
(
HT

1 H1 +HT
3 H3
)

δ
(
HT

1H2 +HT
3 H4
)

AT
10P MT

10P 0 0

∗ −P2δ
(
HT

2 H2 +HT
4H4
)

AT
20P MT

20P 0 0

∗ ∗ −P 0 PG 0

∗ ∗ ∗ −P 0 PG

∗ ∗ ∗ ∗ −δI 0

∗ ∗ ∗ ∗ ∗ −δI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0,

(3.17)

where P = P1 + P2.

Proof. With the result of Theorem 3.2, substituting the norm-bounded uncertain matrices A1,
A2, M1, M2 defined in (3.14) into (3.2), we have

⎡
⎢⎢⎢⎢⎢⎣

−P1 0 (A10 + ΔA1)TP (M10 + ΔM1)TP

∗ −P2 (A20 + ΔA2)TP (M20 + ΔM2)TP

∗ ∗ −P 0

∗ ∗ ∗ −P

⎤
⎥⎥⎥⎥⎥⎦ < 0, (3.18)

where P = P1 + P2.
It can be written as (3.12) with

R1 =

⎡
⎢⎢⎢⎢⎢⎣

−P1 0 AT
10P MT

10P

∗ −P2 AT
20P MT

20P

∗ ∗ −P 0

∗ ∗ ∗ −P

⎤
⎥⎥⎥⎥⎥⎦, R2 =

[
H1 H2 0 0

H3 H4 0 0

]
, R3 =

⎡
⎢⎢⎢⎢⎢⎣

0 0

0 0

PG 0

0 PG

⎤
⎥⎥⎥⎥⎥⎦,

Wi,j =

[
Δi,j 0

0 Δi,j

]
.

(3.19)

By Lemma 3.5, we get

⎡
⎢⎢⎢⎢⎢⎣

−P1+δ
(
HT

1 H1+HT
3 H3
)

δ
(
HT

1 H2+HT
3H4
)

AT
10P MT

10P

∗ −P2+δ
(
HT

2 H2+HT
4H4
)

AT
20P MT

20P

∗ ∗ −P+δ−1PG(PG)T 0

∗ ∗ ∗ −P+δ−1PG(PG)T

⎤
⎥⎥⎥⎥⎥⎦

< 0.
(3.20)
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It can be rewritten as

C + LTDL < 0, (3.21)

with

C =

⎡
⎢⎢⎢⎢⎢⎣

−P1 + δ
(
HT

1 H1 +HT
3 H3
)

δ
(
HT

1H2 +HT
3 H4
)

AT
10P MT

10P

∗ −P2 + δ
(
HT

2 H2 +HT
4 H4
)

AT
20P MT

20P

∗ ∗ −P 0

∗ ∗ ∗ −P

⎤
⎥⎥⎥⎥⎥⎦,

LT =

⎡
⎢⎢⎢⎢⎢⎣

0 0

0 0

PG 0

0 PG

⎤
⎥⎥⎥⎥⎥⎦, D =

[
δ−1I 0

0 δ−1I

]
.

(3.22)

Using Lemma 3.1 (Schur’s Complement), we get

[
C LT

L −D−1

]
< 0, (3.23)

which is (3.17). The proof is completed.

Remark 3.8. Theorem 3.7 is equivalent to [14, Theorem 4] in the form. However, it has broader
application range.

Remark 3.9. We can get similar results correspond to [14, Theorems 5–8].

Remark 3.10. We can get similar results about robustH∞ filtering correspond to [14, Theorems
1–5].

4. Example

In this section, we illustrate our results for 2D discrete stochastic system (2.1) through an
example. All computations in this section are carried out by Matlab 7.8.0.347.

Consider two-dimensional stochastic system (2.1) with two state variables x1, x2, and
the following system matrices:

A1 =

[
0.1 0

0.5 0.15 + 0.2ρ

]
, M1 =

[
0.06 0

0 + 0.1ρ 0.05 + 0.2ρ

]
,
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A2 =

[
0.2 0 + 0.1ρ

0.3 0.2

]
, M2 =

[
0 0.05

0.05 + 0.15ρ 0

]
,

�
{
v
(
i, j
)}

= 0,

�
{
v
(
i, j
)
v(m,n)

}
=

⎧⎨
⎩
1 for

(
i, j
)
= (m,n),

0 for
(
i, j
)
/= (m,n).

(4.1)

The boundary condition is assumed to satisfy Assumption 3.6 but does not satisfy
Assumption 2.1. For example,

‖x(0, k)‖2 = ‖x(k, 0)‖2 = 1
k
. (4.2)

First, we assume that the system matrices are perfectly known, that is, ρ = 0.
We can not determine the stability of the system using the conclusions of [14] because
the boundary condition does not satisfy the assumption given in [14]. However, we can
determine the stability of the system by Theorem 3.2 because the boundary condition satisfies
our assumption. Using Matlab to solve the inequality (3.2), we get that there exist two
positive matrices P1 = P2 =

[ 0.8612 −0.0497
−0.0497 0.7026

]
, such that inequality (3.2) is true. So the system

is stable.
Figures 1 and 2 show the two state variables of the above system. It can be seen that

the system is asymptotically stable too.
Now, we assume that the uncertain parameter ρ, satisfying |ρ| ≤ 1. we have the

matrices in Assumption 3.6 as follows:

A10 =

[
0.1 0

0.5 0.15

]
, M10 =

[
0.06 0

0 0.05

]
, A20 =

[
0.2 0

0.3 0.2

]
, M20 =

[
0 0.05

0.05 0

]
,

H1 =

[
0 0

0 0.2

]
, H2 =

[
0 0.1

0 0

]
, H3 =

[
0 0

0.1 0.2

]
, H4 =

[
0 0

0.15 0

]
,

G =

[
1 0

0 1

]
, Δij =

[
ρ 0

0 ρ

]
,

�
{
v
(
i, j
)}

= 0,

�
{
v
(
i, j
)
v(m,n)

}
=

⎧⎨
⎩
1 for

(
i, j
)
= (m,n),

0 for
(
i, j
)
/= (m,n).

(4.3)
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Figure 1: State variable x1 of system (2.1).
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Figure 2: State variable x2 of system (2.1).

Similar to the case of stability, we can not determine the robust stability of the system
using the conclusions of [14]. However, we can determine the stability of the system by
Theorem 3.7 because the boundary condition satisfies our assumption. Using Matlab to solve
the inequality (3.17), we get that there exist two positive matrices

P1 =

[
2.0592 0.0717

0.0717 0.9343

]
, P2 =

[
2.2844 −0.1540
−0.1540 0.5537

]
, (4.4)

and a scalar δ = 6.5538 > 0, such that inequality (3.17) is true. So the system is robustly stable.

5. Conclusions

In this paper, new stability and robust stability results are given based onweaker conservative
assumptions. A new boundary condition is designed. It is less conservative and has broader
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application range than that has been given. Then, we derive the results which have the same
form, but under a weaker conservative assumption. Meanwhile, the process of the proofs has
been simplified. Our results can be extended to the fields of stabilization, filtering and state
estimation, and so forth.
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