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Recently, many models are formulated in terms of fractional derivatives, such as in control
processing, viscoelasticity, signal processing, and anomalous diffusion. In the present paper, we
further study the important properties of the Riemann-Liouville (RL) derivative, one of mostly
used fractional derivatives. Some important properties of the Caputo derivative which have not
been discussed elsewhere are simultaneously mentioned. The partial fractional derivatives are also
introduced. These discussions are beneficial in understanding fractional calculus and modeling
fractional equations in science and engineering.

1. Introduction

Fractional calculus is not a new topic; in reality it has almost the same history as that of the
classical calculus [1]. Since the occurrence of fractional (or fractional-order) derivative, the
theories of fractional calculus (fractional derivative plus fractional integral) has undergone
a significant and even heated development, which has been primarily contributed by pure
but not applied mathematicians; the reader can refer to an encyclopedic book [2] and
many references cited therein. In the last few decades, however, applied scientists and
engineers realized that differential equations with fractional derivative provided a natural
framework for the discussion of various kinds of real problems modeled by the aid of
fractional derivative, such as viscoelastic systems, signal processing, diffusion processes,
control processing, fractional stochastic systems, allometry in biology and ecology ([3–17]
and huge cited references therein).

Different from classical (or integer-order) derivative, there are several kinds of
definitions for fractional derivatives. These definitions are generally not equivalent with each
other. In the following, we introduce several definitions [7, 14].
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Definition 1.1. Yα, the convolution kernel of order α ∈ R+ for fractional integrals, is defined
by

Yα(t) =
tα−1+

Γ(α)
∈ L1

loc(R
+), (1.1)

where Γ is the well-known Euler Gamma function and

tα−1+ =

⎧
⎨

⎩

tα−1, t > 0,

0, t ≤ 0.
(1.2)

Definition 1.2. The fractional integral (or the Riemann-Liouville integral) D−α
0,t with fractional

order α ∈ R+ of function x(t) is defined as

D−α
0,t x(t) = Yα ∗ x(t) = 1

Γ(α)

∫ t

0
(t − τ)α−1x(τ)dτ. (1.3)

Yα has an important convolution property (or semigroup property), that is, Yα ∗ Yβ =

Yα+β for arbitrary α > 0 and β > 0. This implies thatD−α
0,t ·D

−β
0,t = D

−α−β
0,t .

Definition 1.3. The Grünwald-Letnikov fractional derivative with fractional order α is
defined by, if x(t) ∈ Cm[0, t],

GLD
α
0,tx(t) =

m−1∑

k=0

x(k)(0)t−α+k

Γ(−α + k + 1)

+
1

Γ(m − α)

∫ t

0
(t − τ)m−α−1x(m)(τ)dτ,

(1.4)

where m − 1 ≤ α < m ∈ Z+.

This is not the original definition. The initial definition is given by a limit, that is,

GLD
α
0,tx(t) = lim

h→ 0, nh=t
h−α

n∑

k=0

(−1)k
(
p

k

)

x(t − kh). (1.5)

The limit expression is not convenient for analysis but often used for numerical approxima-
tion.
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Definition 1.4. The Riemann-Liouville derivative of fractional order α of function x(t) is
given as

RLD
α
0,tx(t) =

dm

dtm
D

−(m−α)
0,t x(t)

=
1

Γ(m − α)
dm

dtm

∫ t

0
(t − τ)m−α−1x(τ)dτ,

(1.6)

where m − 1 ≤ α < m ∈ Z+.

FromDefinitions 1.3 and 1.4, one can see that RLD
α
0,tx(t) = GL

Dα
0,t x(t) if x(t) ∈ Cm[0, t]

which can be verified via integration by parts. This fact and the original definition of GLD
α
0,t

provide a numerical method for fractional differential equation with Riemann-Liouville
derivative [18].

Definition 1.5. The Riesz fractional derivative of fractional order α of function x(t) is given
as

RD
αx(t) = − 1

2 cos(πα/2)Γ(m − α)

· dm

dtm

(∫ t

−∞
(t − τ)m−α−1x(τ)dτ + (−1)m

∫∞

t

(t − τ)m−α−1x(τ)dτ

)

,

(1.7)

in whichm − 1 ≤ α < m ∈ Z+.

This derivative was induced by the Riemann-Liouville derivative and is useful in
physics.

Definition 1.6. The Caputo derivative of fractional order α of function x(t) is defined as

C
Dα

0,t x(t) = D
−(m−α)
0,t

dm

dtm
x(t)

=
1

Γ(m − α)

∫ t

0
(t − τ)m−α−1x(m)(τ)dτ,

(1.8)

in whichm − 1 < α < m ∈ Z+.

From this definition, one can see that CD
α
0,tx

(n)(t) = CD
α+n
0,t x(t).

Comparing this definition with the Riemann-Liouville one, functions which are
derivable in the Caputo sense are much “fewer” than those which are derivable in the
Riemann-Liouville sense.

The following definition is also used in mathematical analysis.

Definition 1.7. Y−α (α ∈ R+) is the generalized function in the sense of Schwartz, as the
unique convolution inverse of Y+α in the convolution algebra D′

+(R): with the use of the
Dirac distribution, which is the neutral element of convolution; this reads Y+α ∗ Y−α = δ.
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With the notation, the generalized fractional derivative of order α of a casual function or
distribution is GD

α
0,tx(t) = Y−α ∗ x(t).

From this definition and the semigroup property of Yα, one has GD
α
0,t · GD

β
0,t = GD

α+β
0,t ,

where α > 0, β > 0. These definitions for fractional derivatives are not equivalent. There are
some discussions available, say, in [9, 14].

In the realm of the fractional differential equations, Caputo derivative and Riemann-
Liouville ones are mostly used. It seems that the former is more welcome since the initial
value of fractional differential equation with Caputo derivative is the same as that of
integer differential equation; for example, the initial value condition of fractional differential
equation CD

α
0,tx(t) = f(t, x) with α ∈ (0, 1), t > 0 is posed as x(0) = x0. But for

the fractional differential equation RLD
α
0,tx(t) = f(t, x) with α ∈ (0, 1), t > 0, its initial

value condition involves fractional integral (and/or derivative), its initial value condition
is given as [ RLD

α−1
0,t x(t)]t=0 = x0 (if α ∈ (1, 2), then its initial value conditions are given

as [ RLD
α−2
0,t x(t)]t=0 = x0, [ RLD

α−1
0,t x(t)]t=0 = x

(1)
0 ). Most people think that these fractional-

order initial values are not easy to measure. This makes an illusion; that is, RL derivative
seems to be used in less situations. But in reality, this is not the case. Physical and geometric
interpretations for RL derivative can be found in [19]. It makes it possible to observe and/or
measure values of RL integral and derivative(s).

On the other hand, besides the smooth requirement, Caputo derivative does not
coincide with the classical derivative [9], say, for α ∈ (m − 1, m),m ∈ Z+,

lim
α→ (m−1)+ C

Dα
0,t x(t) = x(m−1)(t) − x(m−1)(0),

lim
α→m+ C

Dα
0,t x(t) = xm(t),

(1.9)

while RL derivative is in-line with the classical derivative, this can be seen from the following
equations for α ∈ (m − 1, m), m ∈ Z+, for α ∈ (m − 1, m),m ∈ Z+:

lim
α→ (m−1)+

RLD
α
0,tx(t) = x(m−1)(t),

lim
α→m+ RLD

α
0,tx(t) = x(m)(t).

(1.10)

Furthermore, fractional-order initial value condition(s) for RL-type differential equation can
be given as usual. For example, the initial value condition [ RLD

α−1
0,t x(t)]t=0 = x0 for equation

RLD
α
0,tx(t) = f(t, x) with α ∈ (0, 1), t > 0 can be replaced by [t1−αx(t)]t=0 = x0/Γ(α)

[20]. Of course, for 1 < α ∈ (m − 1, m), m ∈ Z+, we can use the formula
C
Dα

0,t x(t) =

RLD
α
0,t(x(t) −

∑m−1
k=0 tkx(k)(0)/k!) [9] to change corresponding fractional-order initial values

into integer-order initial values. It has been found that RL derivative is very useful to
characterize anomalous diffusion, Lévy flights and traps [21, 22], and so forth.

Here, we have no intention of mentioning which derivative is more widely utilized,
but we must stress that every derivative has its own serviceable range. Since there are much
more studies on properties of Caputo derivative [9, 10, 14], in this paper we focus on further
studying the properties of RL derivative, which is helpful in understanding RL derivative
and modeling fractional equations by the aid of RL derivative. And some extra properties of
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Caputo derivative are also introduced. The outline of the rest paper is organized as follows.
In Section 2, we further study the important properties of RL derivative which have not
appeared elsewhere. In the following section, we generalize the RL derivative to the RL
partial derivative. The last section includes conclusions.

2. Further Properties of RL and Caputo Derivatives

We first list the known properties [9, 10, 14] just for reference.

Property 1.

(1) For α ∈ (0, 1), x(t) ∈ L1
loc(R

+),

RLD
α
0,tx(t) = GD

α
0,tx(t) − δ(t)

[

RLD
α−1
0,t x(t)

]

t=0

=
d

dt

∫ t

0
Y1−α(t − τ)x(τ)dτ.

(2.1)

(2) For n − 1 < α < n ∈ Z+, x(t) ∈ L1
loc(R

+),

RLD
α
0,tx(t) = G

Dα
0,t x(t) − δ(t)

[

RLD
α−1
0,t x(t)

]

t=0
−

n−1∑

k=1

Y−k
[

RLD
α−k−1
0,t x(t)

]

t=0

=
dn

dtn

∫ t

0
Yn−α(t − τ)x(τ)dτ.

(2.2)

(3) Assume α > 0, then (dn/dtn) RLD
α
0,tx(t) = RLD

n+α
0,t x(t); (dn/dtn) RLD

−α
0,tx(t) =

RLD
n−α
0,t x(t) if n − α > 0, and (dn/dtn) RLD

−α
0,t x(t) = Dn−α

0,t x(t) if n − α < 0, hold
for any n ∈ Z+.

(4) RLD
α
0,t ·D−α

0,t x(t) = x(t) for all α > 0. More generally, RLD
α
0,t ·D

−β
0,t x(t) = RLD

α−β
0,t x(t)

for all β > 0. If α < β, then RLD
α−β
0,t x(t) = D

α−β
0,t x(t).

(5) D−α
0,t · RLD

α
0,tx(t) = x(t) −∑n

k=1(t
α−k[ RLD

α−k
0,t x(t)]

t=0
/Γ(α − k + 1)), where n − 1 < α <

n ∈ Z+.

(6) D−n
0,t · RLD

n
0,tx(t) = x(t) −∑n−1

k=0(t
k/k!)x(k)(0).

(7) RLD
α
0,tc = (t−α/Γ(1 − α))c, where α > 0 and c is an arbitrary constant.

(8) L[ RLD
α
0,tx(t)] = sαX(s) − ∑n−1

k=0 s
k[ RLD

α−k−1
0,t x(t)]

t=0
, in which L is the Laplace

transform, and L[x(t)] = X(s).

(9)
C
Dα

0,t x(t) = RLD
α
0,t(x(t) −

∑n−1
k=0(t

k/k!)x(k)(0)), where n − 1 < α < n ∈ Z+.
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For Caputo derivative,
C
Dα

0,t ·D
−β
0,t = C

D
α−β
0,t generally does not hold for all α, β > 0.

From (4) in Property 1, one has very interesting conclusions as follows.

Conclusion 1. If x(t) is defined in the interval [a, b] and (1/Γ(α))
∫ t
a
(t − τ)α−1x(τ)dτ = 0 for

α > 0 and for all t ∈ [a, b], then x(t) ≡ 0.

Proof. The condition implies thatD−α
0,t x(t) = 0. Taking the RL derivative operator in both sides

and applying Property 1(4) yields x(t) ≡ 0 in [a, b].

Conclusion 2. The following equation

CD
α
0,tx(t) = f(x), α ∈ (0, 1), x ∈ R,

x(0) = x0,
(2.3)

does not have a periodic solution if x0 does not solve f(x) = 0, where f(x) is continuous.

Proof. The above equation is equivalent to the following Volterra integral equation [23]:

x(t) = x0 +D−α
0,t f(x(t)). (2.4)

If x(t) has a periodic solution with period T > 0, then setting t = T in the above formula and
using Conclusion 1 lead to f(x(T)) ≡ 0; that is, x0 solves f(x) = 0 due to x(T) ≡ x0, which is
contradictory to the assumption. So the result holds.

But the above conclusion is not suitable for the nonautonomous fractional system with
the Caputo derivative. The counterexample is constructed as follows:

CD
α
0,tx(t) = x(t) +

+∞∑

k=0

(−1) k
t2k+1

[
(2k + 1)!!

Γ(2k + 2 − α)
t−α +

1
(2k + 1)!!

]

, α ∈ (0, 1),

x(0) = 0,

(2.5)

and has a periodic solution x(t) = sin t.
Some discussions on the periodic solution of the Caputo-type fractional differential

equation can be referred to [24].
For the RL derivative case, the corresponding equation does not have the integer-order

initial value condition(s). Its Cauchy problem is often posed as follows [2, 20]:

RLD
α
0,tx(t) = f(x), α ∈ (0, 1), x ∈ R, t > 0,

RLD
α−1
0,t x(t)

∣
∣
∣
t=0

= x0

(

or t1−αx(t)
∣
∣
∣
t=0

=
x0

Γ(α)

)

.
(2.6)

Conclusion 3. Assume that f(x) is continuous, x is a function of t > 0 and that limt→ 0+ is not
bounded, but limt→ 0+f(x(t)) exists. Then (2.6) does not have a periodic solution.
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Proof. Equation (2.6) is equivalent to the following integral equation [2, 20]:

x(t) =
x0

Γ(α)
tα−1 +D−α

0,t f(x(t)). (2.7)

If limt→ 0+ is bounded, then the case is trivial so it is omitted here. We only show
interests in the case that limt→ 0+ is not bounded. Suppose that (2.6) has a periodic solution
with period T > 0, then, for arbitrary small δ > 0, one has x(δ) = x(δ+T). From (2.7), |x(δ+T)|
has a bound independent of δ for arbitrary δ > 0 due to the assumption of f(x), but |x(t)|
approaches to +∞ as δ → 0+. This completes Conclusion 3.

The previous conclusion can be very smoothly generalized to the higher-dimensional
case. In the following, we further study the important nature of RL derivative.

Property 2.

(1) Composition with the integral operator: for α > 0, β > 0, then RLD
α−β
0,t = RLD

α
0,t ·

D
−β
0,t /=D

−β
0,t · RLD

α
0,t.

(2) Composition with the integer derivative operator: for α ∈ (n−1, n), n ∈ Z+,m ∈ Z+,
then (dm/dtm) · RLD

α
0,t = RLD

α+m
0,t /= RLD

α
0,t · (dm/dtm).

(3) Composition with Caputo operator: for α ∈ (n − 1, n), n ∈ Z+, (α/= )β ∈ (m − 1, m),
m ∈ Z+, then RLD

α+β−m
0,t (dm/dtm) = RLD

α
0,t · CD

β

0,t /= C
D

β

0,t · RLDα
0,t = D

−(m−β)
0,t · RLDα+m

0,t .

(4) Composition with the generalized fractional derivative operator: for α ∈ (n − 1, n),
n ∈ Z+, β > 0, then (dn/dtn)[Yn−α−β∗] = RLD

α
0,t · G

D
β

0,t /= G
D

β

0,t · RLDα
0,t = Y−β ∗ RLD

α
0,t.

Proof. (1) Can be regarded as the direction conclusion of Property 1(4) and (5).
(2) Can be derived by the direct computation.
(3)Means that the RL derivative operators cannot commute with each other unless the

involved initial value conditions are homogeneous [14].
(4) Can be proved by Property 1(2) and corresponding definitions.

Although the Riemann-Liouville integral operator D−α
0,t (α ∈ R+) has the semigroup

property, that is, D−α
0,t · D

−β
0,t = D

−α−β
0,t (α > 0, β > 0), RL derivative operator RLD

α
0,t does not

have this character, that is, RLD
α
0,t · RLD

β

0,t /= RLD
α+β
0,t and RLD

β

0,t · RLDα
0,t /= RLD

α+β
0,t [14]. However,

we have following interesting result.

Property 3. If x(t) ∈ C1[0, T], αi ∈ (0, 1) (i = 1, 2) (the trivial case αi = 0 or 1 is simple and
removed here), and α1 + α2 ∈ (0, 1], then RLD

α1
0,t · RLD

α2
0,tx(t) = RLD

α1+α2
0,t x(t).

Proof. According to Property 1(3), one gets

C
Dα2

0,t · CD
α1
0,t x(t) = C

Dα2
0,t

{

RLD
α1
0,t[x(t) − x(0)]

}

= RLD
α2
0,t

{

RLD
α1
0,t[x(t) − x(0)] −

C
Dα1

0,t x(t)
∣
∣
∣
t=0

}
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= RLD
α2
0,t

{

RLD
α1
0,t[x(t) − x(0)]

}

= RLD
α2
0,t · RLD

α1
0,tx(t) −

t−α1−α2

Γ(1 − α1 − α2)
x(0).

(2.8)

Similarly,

C
Dα2

0,t · CD
α1
0,t x(t) = RLD

α2
0,t · RLD

α1
0,tx(t) −

t−α1−α2x(0)
Γ(1 − α1 − α2)

. (2.9)

On the other hand,

C
Dα1+α2

0,t x(t) = RLD
α1+α2
0,t x(t) − t−α1−α2

Γ(1 − α1 − α2)
x(0). (2.10)

If α1 + α2 = 1, then (t−α1−α2/Γ(1 − α1 − α2)) x(0) is automatically equal to zero
because Γ(0) = ∞. By using Theorem 3.3 of [9], one obtains that RLD

α2
0,t · RLD

α1
0,tx(t) =

RLD
α1
0,t · RLD

α2
0,tx(t) = RLD

α1+α2
0,t x(t).

The following result is for comparison nature of fractional derivatives.

Property 4. (1) If α ∈ (n−1, n), n ∈ Z+, and x(k)(0) ≥ 0 (k = 0, 1, . . . , n−1), then CD
α
0,t ≥ RLD

α
0,t.

(2) If α ∈ (n − 1, n), n ∈ Z+, RLD
α
0,tx(t) ≥ RLD

α
0,ty(t), and [ RLD

α−k−1
0,t x(t)]

t=0
≥

[ RLD
α−k−1
0,t x(t)]

t=0
(k = 0, 1, . . . , n − 1), then x(t) ≥ y(t). Parallelly, if α ∈ (n − 1, n), n ∈ Z+,

CD
α
0,tx(t) ≥ CD

α
0,ty(t), and x(k)(0) ≥ y(k)(0) (k = 0, 1, . . . , n − 1), then x(t) ≥ y(t).

Proof. (1) It is just the direction conclusion of Property 1(3).
(2) We only show the first part. The proof of the second part (the general case of

Lemma 10 [25]) can be similarly given.
Setting RLD

α
0,tx(t) = ξ(t) + RLD

α
0,ty(t) and taking the Laplace transform in both sides,

one has

sαX(s) = sαY(s) +L[ξ(t)]

+
n−1∑

k=0

sk
{[

RLD
α−k−1
0,t x(t)

]

t=0
− RLD

α−k−1
0,t y(t)

]

t=0

}
.

(2.11)

It immediately follows from dividing by sα and taking the inverse Laplace transform in both
sides that

x(t) = y(t) +D−α
0,t ξ(t)

+
n−1∑

k=0

{[

RLD
α−k−1
0,t x(t)

]

t=0
− RLD

α−k−1
0,t y(t)

]

t=0

}
Yα−k.

(2.12)

The last two addends in the right side of the above equality are nonnegative. This completes
the proof.
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Property 5. Let A = {x(t) ∈ R, t ≥ 0, x(t) is analytical for any t ≥ 0}. If α ∈ (0, 1), then RL
derivative operator RLD

α
0,t defined in A can be expressed as

RLD
α
0,t =

∞∑

k=0

[
dk · /dtk]t=0
Γ(k − α + 1)

tk−α. (2.13)

More generally, if n − 1 < α < n ∈ Z+, then RLD
α
0,t defined inA has also the following form:

RLD
α
0,t =

∞∑

k=0

[
dk · /dtk]t=0
Γ(k − α + 1)

tk−α. (2.14)

The proof is easy so it is left out here.

Remark 2.1. (1) For an arbitrary function x(t) ∈ A, according to the expressions of Caputo
differential operator [10] and RL differential operator, one can also easy get Property 1(3).

(2) Even if x(t) ∈ A (it implies that x(0) exists), [ RLD
α
0,tx(t)]t=0(α > 0) may not exist

unless the initial value x(0) = 0.

The following example shows that a function is not derivable at one point in the
classical sense but is derivable at the same point in RL sense.

Example 2.2. Consider

x(t) =

⎧
⎨

⎩

1 − t, 0 < t ≤ 1,

t − 1, 1 < t < 1 + ε, ε > 0.
(2.15)

x(t) exists (right) derivative in the classical sense at t = 0 but does not exist derivative
in the same sense at t = 1. By simple calculation, one has

RLD
α
0,tx(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t−α

Γ(1 − α)
− t1−α

Γ(2 − α)
, 0 < t ≤ 1,

t−α

Γ(1 − α)
− t1−α − 2(t − 1)1−α

Γ(2 − α)
, t ∈ (1, 1 + ε),

(2.16)

where α ∈ (0, 1).

From the above example, x′(0+) exists, but x′(1) does not exist; it is quite the reverse
for the RL derivative, that is, RLD

α
0,tx(t) does not exist at t = 0 but exists at t = 1. So we

cannot in general terms say that RL derivative is more general than the classical derivative
unless the initial time (or the origin) is excluded. From the above example, we also see that
RLD

α
0,tx(t) > 0 if t < 1 − α, but x(t) is not monotonously increasing for t ∈ (0, 1 − α). The

RL derivative RLD
α
0,tx(t) > 0 only means that D−(1−α)

0,t x(t) is monotonously increasing with
respect to t but does not imply that x(t) is monotonously increasing. Geometrically speaking,
the value RLD

α
0,tx(t) at point t relates to an “area.” On the other hand, its Caputo derivative
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exists in the whole interval (0, 1 + ε), although its classical derivative does not at t = 1. So
we cannot regard RL and Caputo derivatives as the generalization of the typical derivative in rigorous
mathematical meaning.

Definition 1.4 is sometimes called the “left RL fractional derivative.” Correspondingly,
the right RL fractional derivative with α order (α ∈ (m − 1, m), m ∈ Z+) is defined as

RLD
α
t,bx(t) =

(−1)m
Γ(m − α)

dm

dtm

∫b

t

(τ − t)m−α−1x(τ)dτ, (2.17)

in which t ∈ (0, b).
The Riesz fractional derivative (Definition 1.5) is actually induced by left and right RL

derivatives. The properties of right RL derivative can be similarly given.

3. Partial RL Derivative

Present studies on the anomalous diffusion are often restricted in one space dimension, say
[22, 26–28] and references cited therein, where the involved RL derivative is defined with
order α ∈ (0, 1) in one spatial dimension. If the anomalous diffusion phenomenon appears
in R2 or in higher spatial dimensions, how do we model it? In another words, how do we
define the partial RL derivative? In this section, we first introduce the partial RL derivatives
which were mentioned in [2], and then we define the partial Caputo derivatives in a similar
manner.

Suppose αi ∈ (0, 1), i = 1, 2, α = α1 + α2. If we define

RL∂
α1+α2

x
α1
1 x

α2
2
u(x1, x2) =

∂α2

∂xα2
2

(
∂α1

∂xα1
1

u(x1, x2)

)

=
∂α2

∂xα2
2

(
1

Γ(1 − α1)
∂

∂x1

∫x1

0
(x1 − ξ)−α1u(ξ, x2)dξ

)

=
1

Γ(1 − α2)
∂

∂x2

∫x2

0

(x2 − τ)−α2

Γ(1 − α1)
∂

∂x1

∫x1

0
(x1 − ξ)−α1u(ξ, τ)dξ dτ,

(3.1)

then

RL∂
α1+α2

x
α1
1 x

α2
2
u(x1, x2) =

1
Γ(1 − α1) · Γ(1 − α2)

∂2

∂x1∂x2

∫x2

0

∫x1

0
(x2 − τ)−α2(x1 − ξ)−α1u(ξ, τ)dξ dτ.

(3.2)

According to the classical calculus, if

∂2

∂x1∂x2

∫x2

0

∫x1

0
(x2 − τ)−α2(x1 − ξ)−α1u(ξ, τ)dξ dτ,

∂2

∂x2∂x1

∫x1

0

∫x2

0
(x2 − τ)−α2(x1 − ξ)−α1u(ξ, τ)dτ dξ

(3.3)
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exist in a neighborhood of (x1, x2) and are continuous at this point (x1, x2), then

RL∂
α1+α2

x
α1
1 x

α2
2
u(x1, x2) = RL∂

α1+α2

x
α2
2 x

α1
1
u(x1, x2). (3.4)

If α = α1 + α2 ∈ (0, 1), then the above partial RL derivative can characterize subdiffusion in
R2.

The case with α1 = 0 or α2 = 0 was simply mentioned in [7],

RL∂
α2

x
α2
2
u(x1, x2) =

∂α2

∂xα2
2

u(x1, x2)

=
1

Γ(1 − α2)
∂

∂x2

∫x2

0
(x2 − τ)−α2u(x1, τ)dτ,

RL∂
α1

x
α1
1
u(x1, x2) =

∂α1

∂xα1
1

u(x1, x2)

=
1

Γ(1 − α1)
∂

∂x1

∫x1

0
(x1 − ξ)−α1u(ξ, x2)dξ.

(3.5)

Now we give the definition of the partial RL derivative as follows.

Definition 3.1. The partial RL derivative with order α1+α2 (α1th order in x1-direction and α2th
order in x2 direction) is defined as follows:

RL∂
α1+α2

x
α1
1 x

α2
2
u(x1, x2)

=
1

Γ(m − α1) · Γ(n − α2)
∂m+n

∂xm
1 ∂x

n
2
·
∫x2

0

∫x1

0
(x2 − τ)n−α2−1(x1 − ξ)m−α1−1u(ξ, τ)dξdτ,

(3.6)

where α1 ∈ (m − 1, m), α2 ∈ (n − 1, n),m, n ∈ Z+.

In the right side of the above equality, if the derivative value of the integral has no
relation to partial differential sequence, then the value of the left side of the above equation
does not either.

The definition in more higher-dimensional space is given in the following.

Definition 3.2. The partial RL derivative with order
∑


i=1 αi (αi th order in xi-direction, i =
1, . . . , 
) is defined as follows:

RL∂
α1+···+α


x
α1
1 ··· xα





u(x1, . . . , x
)

=
(∂m1 + · · · +m
)/

(
∂xm1

1 · · ·∂xm





)

∏

i=1Γ(mi − αi)

∫x


0
· · ·
∫x1

0
(x
 − ξ
)m
−α
−1 · · · (x1 − ξ1)m1−α1−1udξ1 · · ·dξ
,

(3.7)

where αi ∈ (mi − 1, mi), mi ∈ Z+, i = 1, . . . , 
.



12 Discrete Dynamics in Nature and Society

It is easy to show that (may refer to [9])

lim
αi →m−

i

RL∂
α1+···+α


x
α1
1 ··· xα





u(x1, . . . , x
)

= RL∂
α1+···+αi−1+αi+1+···+α


x
α1
1 ··· xαi−1

i−1 x
αi+1
i+1 ···xα





∂mi

∂xmi

i

u(x1, . . . , x
),

lim
αi → (mi−1)+

RL∂
α1+···+α


x
α1
1 ··· xα





u(x1, . . . , x
)

= RL∂
α1+···+αi−1+αi+1+···+α


x
α1
1 ··· xαi−1

i−1 x
αi+1
i+1 ···xα





∂mi−1u(x1, . . . , x
)

∂xmi−1
i

.

(3.8)

We can similarly define the partial Caputo derivative.

Definition 3.3. A two-dimensional case: the partial Caputo derivative with order α1 +α2 (α1th
order in x1-direction and α2th order in x2-direction) is defined as follows:

C∂
α1+α2

x
α1
1 x

α2
2
u(x1, x2) =

1
Γ(m − α1) · Γ(n − α2)

·
∫x2

0

∫x1

0
(x2 − τ)n−α2−1(x1 − ξ)m−α1−1 ∂m+n

∂ξm∂τn
u(ξ, τ)dξ dτ,

(3.9)

where α1 ∈ (m − 1, m), α2 ∈ (n − 1, n),m, n ∈ Z+.

Definition 3.4. A higher-dimensional case: the partial Caputo derivative with order
∑


i=1 αi

(αith order in xi-direction,i = 1, . . . , 
) is defined as follows:

RL∂
α1+···+α


x
α1
1 ··· xα





u(x1, . . . , x
)

=
1

∏

i=1Γ(mi − αi)

·
∫x


0
· · ·
∫x1

0
(x
 − ξ
)m
−α
−1 · · · (x1 − ξ1)

m1−α1−1 ∂
m1 + · · · +m


∂ξm1
1 · · ·∂ξm





u(ξ1, . . . , ξ
)dξ1 · · ·dξ
,

(3.10)

where αi ∈ (mi − 1, mi), mi ∈ Z+, i = 1, . . . , 
.

In the right sides of the above equalities of Definitions 3.2–3.4, if the derivative values
of the integrals do not relate to partial differential sequences, then the values of the left sides
of the above equations do not either.
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One can also get

lim
αi →m−

i

C∂
α1+···+α


x
α1
1 ··· xα





u(x1, . . . , x
) = C∂
α1+···+αi−1+αi+1+···+α


x
α1
1 ··· xαi−1

i−1 x
αi+1
i+1 ···xα





∂mi

∂xmi

i

u(x1, . . . , x
),

lim
αi → (mi−1)+

C∂
α1+···+α


x
α1
1 ··· xα





u(x1, . . . , x
)

= C∂
α1+···+αi−1+αi+1+···+α


x
α1
1 ··· xαi−1

i−1 x
αi+1
i+1 ···xα





∂mi−1u(x1, . . . , x
)

∂xmi−1
i

− C∂
α1+···+αi−1+αi+1+···+α


x
α1
1 ··· xαi−1

i−1 x
αi+1
i+1 ···xα





∂mi−1u(x1, . . . , xi−1, 0, xi+1, . . . , x
)

∂xmi−1
i

.

(3.11)

By the way, the partial (RL) fractional is also defined here.

Definition 3.5. The partial (RL) integral with order
∑


i=1 αi (αi th order in xi-direction, i =
1, . . . , 
) is defined as follows:

RL∂
−(α1+···+α
)

x
α1
1 ··· xα





u(x1, . . . , x
) =
1

∏

i=1Γ(αi)

·
∫x


0
· · ·
∫x1

0
(x
 − ξ
)α
−1 · · · (x1 − ξ1)α1−1udξ1 · · ·dξ
,

(3.12)

where αi ∈ R+, i = 1, . . . , 
.

Example 3.6. Let u = u(x1, . . . , x
) = x1 · · ·x
 .
(1) By simple calculation, one has RL∂

α1+···+α


x
α1
1 ··· xα





u =
∏


i=1x
1−αi

i /Γ(2 − αi), in which αi > 0,

i = 1, 2, . . . , 
. If there exists an (2 ≤)αi ∈ Z+, then RL∂
α1+···+α


x
α1
1 ··· xα





u = 0 because Γ(−k) = ∞,

k = 0, 1, 2, . . .. This coincides with the property of classical derivative.
(2) By almost the same calculation, one has C∂

α1+···+α


x
α1
1 ··· xα





u =
∏


i=1(x
1−αi

i /Γ(2 − αi)), in

which 1 ≥ αi > 0, i = 1, 2, . . . , 
. For same αi’s values, C∂
α1+···+α


x
α1
1 ··· xα





u = RL∂
α1+···+α


x
α1
1 ··· xα





u due to the

zero initial value condition. If there exists an i such that αi > 1, then C∂
α1+···+α


x
α1
1 ··· xα





u = 0.

(3) One also has ∂−(α1+···+α
)

x
α1
1 ··· xα





u =
∏


i=1(x
1+αi

i /Γ(2 + αi)), in which αi > 0, i = 1, 2, . . . , 
.

4. Conclusions

In this paper, we further studied the important properties of the RL derivatives. We also
discussed some properties of the Caputo derivative which have not been studied elsewhere.
And we generalized the fractional derivative defined in the real line to the partial fractional
derivatives in higher space dimensions. How to generalize the fractional derivatives in the
real plane to those in the complex plane is our future work.
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