
Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2011, Article ID 584510, 15 pages
doi:10.1155/2011/584510

Research Article
The Asymptotic Behavior for Second-Order Neutral
Stochastic Partial Differential Equations with
Infinite Delay

Huabin Chen

Department of Mathematics, Nanchang University, Jiangxi, Nanchang 330031, China

Correspondence should be addressed to Huabin Chen, chb 00721@126.com

Received 17 March 2011; Accepted 19 May 2011

Academic Editor: Her-Terng Yau

Copyright q 2011 Huabin Chen. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

By establishing two Lemmas, the exponential stability and the asymptotical stability for mild
solution to the second-order neutral stochastic partial differential equations with infinite delay
are obtained, respectively. Our results can generalize and improve some existing ones. Finally, an
illustrative example is given to show the effectiveness of the obtained results.

1. Introduction

The neutral stochastic differential equations can play an important role in describing many
sophisticated dynamical systems in physical, biological, medical, chemical engineering, aero-
elasticity, and social sciences [1–3], and the qualitative dynamics such as the existence and
uniqueness, stability, and controllability for first-order neutral stochastic partial differential
equations with delays have been extensively studied by many authors; see, for example, the
existence and uniqueness for neutral stochastic partial differential equations under the non-
Lipschitz conditions was investigated by using the successive approximation [4–6]; in [7],
Caraballo et al. have considered the exponential stability of neutral stochastic delay partial
differential equations by the Lyapunov functional approach; in [8], Dauer and Mahmudov
have analyzed the existence of mild solutions to semilinear neutral evolution equations with
nonlocal conditions by using the fractional power of operators and Krasnoselski-Schaefer-
type fixed point theorem; in [9], Hu and Ren have established the existence results for
impulsive neutral stochastic functional integrodifferential equations with infinite delays by
means of the Krasnoselskii-Schaefer-type fixed point theorem; some sufficient conditions
ensuring the controllability for neutral stochastic functional differential inclusions with
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infinite delay in the abstract space with the help of the Leray-Schauder nonlinear alterative
have been given by Balasubramaniam and Muthukumar in [10]; Luo and Taniguchi, in [11],
have studied the asymptotic stability for neutral stochastic partial differential equations with
infinite delay by using the fixed point theorem. Very recently, in [12], the author has discussed
the exponential stability for mild solution to neutral stochastic partial differential equations
with delays by establishing an integral inequality.

Although there are many valuable results about neutral stochastic partial differential
equations, they are mainly concerned with the first-order case. In many cases, it is
advantageous to treat the second-order stochastic differential equations directly rather than
to convert them to first-order systems. The second-order stochastic differential equations
are the right model in continuous time to account for integrated processes that can be
made stationary. For instance, it is useful for engineers to model mechanical vibrations or
charge on a capacitor or condenser subjected to white noise excitation through a second-
order stochastic differential equations. The studies of the qualitative properties about abstract
deterministic second-order evolution equation governed by the generator of a strongly
continuous cosine family was proposed in [13–15]. Recently, Mahmudov and McKibben,
in [16], have established the approximate controllability of second-order neutral stochastic
evolution equations; the existence and uniqueness for mild solution to second-order neutral
impulsive stochastic evolution equations with delay under the non-Lipschitz condition was
considered by the successive approximation [17]; Balasubramaniam and Muthukumar in
[10] have also discussed the approximate controllability of second-order neutral stochastic
distributed implicit functional differential equations with infinite delay; Sakthivel et al. in
[18] have studied the asymptotic stability of second-order neutral stochastic differential
equations by the fixed point theorem.

However, the work done by Sakthivel et al. [18] is mainly in connection with no
heredity case. Since many systems arising from realistic models heavily depend on histories
[19] (i.e., there is the effect of infinite delay on state equations), there is a real need to
proceed with studying the second-order neutral stochastic partial differential equations
with infinite delay. Although Sakthivel et al. [18] have applied the fixed point theorem
to discuss the asymptotic stability for mild solution to the second-order neutral stochastic
partial differential equations, the method proposed by Sakthivel et al. [18] is not suitable
for such equations with infinite delay. Obviously, the Lyapunov functional method utilized
by Caraballo et al. [7] fails to deal with the asymptotic behavior for mild solution to the
second-order neutral stochastic partial differential equations with infinite delay since the
mild solutions do not have stochastic differentials. Besides, to the best of author’s knowledge,
there is no paper which is involved with the exponential stability and the asymptotic stability
for mild solution to second-order neutral stochastic partial differential equations with infinite
delay. So, in this paper, we will make the first attempt to close this gap.

The format of this work is organized as follows. In Section 2, some necessary
definitions, notations, and Lemmas used in this paper are introduced; in Section 3, the main
results in this paper are given. Finally, an illustrative example is provided to demonstrate the
effectiveness of our obtained results.

2. Preliminaries

Let X and Y be two real, separable Hilbert spaces and L(Y,X) the space of bounded linear
operators from Y to X. For the sake of convenience, we will use the same notation ‖ · ‖ to
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denote the norms in X,Y and L(Y,X)when no confusion possibly arises. Let (Ω, I, {It}t≥0, P)
be a complete probability space equipped with some filtration It (t ≥ 0) satisfying the
usual conditions, that is, the filtration is right continuous and I0 contains all P -null sets.
Let C((−∞, 0], X) be the space of all bounded and continuous functions ϕ from (−∞, 0] to
X with the sup-norm ‖ · ‖C = sup−∞<θ≤0‖ϕ(θ)‖, and the space B present the family of all
It (t ≥ 0)-measurable and C((−∞, 0], X)-valued random variables.

Let βn(t) (n = 1, 2, . . .) be a sequence of real-valued one-dimensional standard Brown-
ian motions mutually independent over (Ω, I, {It}t≥0, P). Set w(t) =

∑+∞
n=1

√
λnβn(t)en, t ≥ 0,

where λn ≥ 0 (n = 1, 2, . . .) are nonnegative real numbers and {en} (n = 1, 2, . . .) is a complete
orthonormal basis in Y . LetQ ∈ L(Y, Y ) be an operator defined byQen = λnen with finite trace
trQ =

∑+∞
n=1 λn < +∞. Then, the above Y -valued stochastic process w(t) is called a Q-Wiener

process.

Definition 2.1 (see [20]). Let σ ∈ L(Y,X) and define

‖σ‖2
L0
2
:= tr(σQσ∗) =

{
+∞∑

n=1

∥
∥
∥
√
λnσen

∥
∥
∥
2
}

. (2.1)

If ‖σ‖2
L0
2
< +∞, then σ is called a Q-Hilbert—Schmidt operator, and let L0

2(Y,X) denote the

space of all Q-Hilbert—Schmidt operators σ : Y → X.
Now, for the definition of an X-valued stochastic integral of an L0

2(Y,X)-valued and
It-adapted predictable process Φ(t) with respect to the Q-Wiener process w(t), the readers
can refer to [20].

In this paper, we consider the following second-order neutral stochastic partial
differential equations with infinite delay:

d
[
x′(t) − f0(t, xt)

]
=
[
Ax(t) + f1(t, xt)

]
dt + f2(t, xt)dw(t), t ∈ [0,+∞),

x0(·) = ϕ,

x′(0) = ξ,

(2.2)

where ϕ ∈ B and ξ is also an I0-measurable X-valued random variable independent of
the Wiener process w(t). A : D(A) ⊂ X → X is the infinitesimal generator of a strongly
continuous cosine family on X; fi : [0,+∞) × B → X (i = 0, 1), f2 : [0,+∞) × B →
L0
2(Y,X) are three approximate mappings. In this sequel, the history xt : (−∞, 0] → X,

xt(θ) = x(t + θ) (t ≥ 0) belongs to the space B.
At the end of this section, let us introduce the following Lemmas and definitions that

are useful for the development of our results. The one parameter cosine family {C(t) : t ∈
R} ⊂ L(X,X) satisfying

(i) C(0) = I,

(ii) C(t)x is in continuous in t on R for all x ∈ R,

(iii) C(t + s) + C(t − s) = 2C(t)C(s) for all t, s ∈ R

is called a strongly continuous cosine family.
The corresponding strongly continuous sine family {S(t) : t ∈ R} ⊂ L(X) is defined

by S(t)x =
∫ t
0 C(s)x ds, t ∈ R, x ∈ X. The generator A : X → X of {C(t) : t ∈ R} is given by



4 Discrete Dynamics in Nature and Society

Ax = (d2/dt2)C(t)x|t=0 for all x ∈ D(A) = {x ∈ X : C(·)x ∈ C2(R,X)}. It is well known that
the infinitesimal generator A is a closed, densely defined operator on X. Such cosine and the
corresponding sine families and their generators satisfy the following properties.

Lemma 2.2 (see [21]). Suppose that A is the infinitesimal generator of a cosine family of operators
{C(t) : t ∈ R}. Then, the following holds:

(i) there existsM∗ ≥ 1 and α ≥ 0 such that ‖C(t)‖ ≤ M∗eαt and hence ‖S(t)‖ ≤ M∗eαt,

(ii) A
∫ r
s S(u)x du = [C(r) − C(u)]x for all 0 ≤ s ≤ r < +∞,

(iii) there existsN∗ ≥ 1 such that ‖S(s) − S(r)‖ ≤ N∗| ∫sr eα|θ|dθ| for all 0 ≤ r ≤ s < +∞.

Lemma 2.3 (see [20]). For any r ≥ 1 and for arbitrary L0
2(Y,X)-valued predictable process φ(·) such

that

sup
s∈[0,t]

E

∥
∥
∥
∥

∫ s

0
φ(u)dw(u)

∥
∥
∥
∥

2r

≤ Cr

(∫ t

0

(
E
∥
∥φ(s)

∥
∥2r
L0
2

)1/r
ds

)r

, t ∈ [0,+∞), (2.3)

where Cr = (r(2r − 1))r .

Definition 2.4. An X-value stochastic process x(t) (t ∈ R) is called a mild solution of the
system (2.2) if

(i) x(t) is adapted to It (t ≥ 0) and has càdlàg path on t ≥ 0 almost surely,

(ii) for arbitrary t ∈ [0,+∞), P{ω :
∫ t
0 ‖x(t)‖2dt < +∞} = 1 and almost surely

x(t) = C(t)ϕ + S(t)
(
ξ − f0(0, x0)

)
+
∫ t

0
C(t − s)f0(s, xs)ds

+
∫ t

0
S(t − s)f1(s, xs)ds +

∫ t

0
S(t − s)f2(s, xs)dw(s),

(2.4)

where x0(·) = ϕ ∈ B.

Definition 2.5. The solution of integral equation (2.4) is said to be exponentially stable in
p (p ≥ 2) moment, if there exists a pair of positive constants γ > 0 and M1 > 0 such that

E‖x(t)‖p ≤ M1e
−γt, t ≥ 0, p ≥ 2, (2.5)

for any initial value ϕ ∈ B.

Definition 2.6. The solution of integral equation (2.4) is said to be stable in p (p ≥ 2)moment,
if for arbitrarily given ε > 0, there exists a δ > 0 such that E‖ξ‖2C < δ guarantees that

E

{

sup
t≥0

‖x(t)‖p
}

< ε, p ≥ 2. (2.6)
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Definition 2.7. The solution of integral equation (2.4) is said to be asymptotically stable in
p (p ≥ 2) moment, if it is stable in mean square and for any ϕ ∈ B, a.s., we have

lim
T →+∞

E

{

sup
t≥T

‖x(t)‖p
}

= 0, p ≥ 2. (2.7)

3. Main Results

In order to obtain our main results, we need the following assumptions.

(H1) The cosine family of operators {C(t) : t ≥ 0} on X and the corresponding sine
family {S(t) : t ≥ 0} satisfy the conditions ‖C(t)‖ ≤ Me−bt and ‖S(t)‖ ≤ Me−at, t ≥ 0
for some constants M ≥ 1, a > 0 and b > 0.

(H2) The mappings fi (i = 0, 1, 2) satisfy the following conditions: there exist three
positive constants Ci > 0 (i = 0, 1, 2) and a function: k : (−∞, 0] → [0,+∞) with
two important properties:

∫0
−∞ k(t)dt = 1 and

∫0
−∞ k(t)e−νtdt < +∞ (ν > 0), such that

∥
∥fi(t, x) − fi

(
t, y
)∥
∥ ≤ Ci

∫0

−∞
k(θ)

∥
∥x(t + θ) − y(t + θ)

∥
∥dθ, fi(t, 0) = 0, i = 0, 1,

∥
∥f2(t, x) − f2

(
t, y
)∥
∥

L0
2
≤ C2

∫0

−∞
k(θ)

∥
∥x(t + θ) − y(t + θ)

∥
∥dθ, f2(t, 0) = 0,

(3.1)

for any x, y ∈ B and t ≥ 0.

(H3) 5p−1Mp

[

b−pCp

0 + a−pCp

1 + C
p

2a
−(p/2)

(
2(p − 1)
p − 2

)1−(p/2)(p(p − 1)
2

)p/2
]

< 1, (p ≥ 2).

Remark 3.1. Obviously, under the conditions: (H1)-(H2), the existence and uniqueness of mild
solution to the system (2.2) can be shown by using the Picard iterative method, and the proof
is very similar to that proposed in [4, 17]. Here, we omit it. In particular, the system (2.2) has
one unique trivial mild solution when the initial value ϕ = 0.

Lemma 3.2. For γ1, γ2 ∈ (0, ν], there exist some positive constants: λi > 0 (i = 1, 2, 3, 4) and a
function y : (−∞,+∞) → [0,+∞). If (λ3/γ1) + (λ4/γ2) < 1, the following inequality:

y(t) ≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λ1e
−γ1t + λ2e

−γ2t + λ3

∫ t

0
e−γ1(t−s)

∫0

−∞
k(θ)y(s + θ)dθ ds

+λ4

∫ t

0
e−γ2(t−s)

∫0

−∞
k(θ)y(s + θ)dθ ds, t ≥ 0,

λ1e
−γ1t + λ2e

−γ2t, t ∈ (−∞, 0],

(3.2)

holds. Then, one has y(t) ≤ M2e
−μt, t ∈ (−∞,+∞), where μ ∈ (0, γ1 ∧ γ2) is a positive root of the

algebra equation: ((λ3/(γ1−μ))+(λ4/(γ2−μ)))
∫0
−∞ k(θ)e−μθdθ = 1 andM2 = max{λ1+λ2, (λ1(γ1−

μ)/(λ3
∫0
−∞ k(θ)e−μθdθ)),(λ2(γ2 − μ)/(λ4

∫0
−∞ k(θ)e−μθdθ))} > 0.
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Proof. Letting F(λ) = ((λ3/(γ1 −λ)) + (λ4/(γ2 −λ)))
∫0
−∞ k(θ)e−λθdθ− 1, we have F(0)F(γ−) < 0

holds, that is, there exists a positive constant μ ∈ (0, γ1 ∧ γ2), such that F(μ) = 0.
For any ε > 0 and letting

Cε = max

⎧
⎨

⎩
λ1 + λ2 + ε, (λ1 + ε)

γ1 − μ

λ3
∫0
−∞ k(θ)e−μθdθ

, (λ2 + ε)
γ2 − μ

λ4
∫0
−∞ k(θ)e−μθdθ

⎫
⎬

⎭
> 0. (3.3)

Now, in order to show this Lemma, we only claim that (3.2) implies

y(t) ≤ Cεe
−μt, t ∈ (−∞,+∞). (3.4)

It is easily seen that (3.4) holds for any t ∈ (−∞, 0]. Assume, for the sake of contradiction, that
there exists a t1 > 0 such that

y(t) < Cεe
−μt, t ∈ (−∞, t1), y(t1) = Cεe

−μt1 . (3.5)

Then, it from (3.2) follows that

y(t1) ≤ λ1e
−γ1t1 + λ2e

−γ2t1 + λ3Cε

∫ t1

0
e−γ1(t1−s)

∫0

−∞
k(θ)e−μ(s+θ)ds

+ λ4Cε

∫ t1

0
e−γ2(t1−s)

∫0

−∞
k(θ)e−μ(s+θ)dθ ds

=

(

λ1 − Cελ3
γ1 − μ

∫0

−∞
k(θ)e−μθdθ

)

e−γ1t1 +

(

λ2 − Cελ4
γ2 − μ

∫0

−∞
k(θ)e−μθdθ

)

e−γ2t1

+

(
λ3

γ1 − μ

∫0

−∞
k(θ)e−μθdθ +

λ4
γ2 − μ

∫0

−∞
k(θ)e−μθdθ

)

Cεe
−μt1 .

(3.6)

From the definitions of μ and Cε, we obtain

λ3
γ1 − μ

∫0

−∞
k(θ)e−μθdθ +

λ4
γ2 − μ

∫0

−∞
k(θ)e−μθdθ = 1,

λ1 − λ3Cε

γ1 − μ

∫0

−∞
k(θ)e−μθdθ = λ1 − λ3

γ1 − μ

∫0

−∞
k(θ)e−μθdθ(λ1 + ε)

γ1 − μ

λ3
∫0
−∞ k(θ)e−μθdθ

< 0,

λ2 − Cελ4
γ2 − μ

∫0

−∞
k(θ)e−μθdθ = λ2 − λ4

γ2 − μ

∫0

−∞
k(θ)e−μθdθ(λ2 + ε)

γ2 − μ

λ4
∫0
−∞ k(θ)e−μθdθ

< 0.

(3.7)
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Thus, (3.6) yields

y(t1) < Cεe
−μt1 , (3.8)

which contradicts (3.5), that is, (3.4) holds.
As ε > 0 is arbitrarily small, in view of (3.4), it follows

y(t) ≤ M2e
−μt, t ≥ 0, (3.9)

whereM2 = max{λ1+λ2, (λ1(γ1−μ)/(λ3
∫0
−∞ k(θ)e−μθdθ)), (λ2(γ2−μ)/(λ4

∫0
−∞ k(θ)e−μθdθ))} >

0. The proof of this Lemma is completed.

Lemma 3.3. For γ1, γ2 > 0, there exist some positive constants: λi > 0 (i = 1, 2, 3, 4) and a function
y : (−∞,+∞) → [0,+∞). If (λ3/γ1) + (λ4/γ2) < 1, the following inequality:

y(t) ≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λ1e
−γ1t + λ2e

−γ2t + λ3

∫ t

0
e−γ1(t−s)

∫0

−∞
k(θ)y(s + θ)dθ ds

+λ4

∫ t

0
e−γ2(t−s)

∫0

−∞
k(θ)y(s + θ)dθ ds, t ≥ 0,

λ1 + λ2, t ∈ (−∞, 0],

(3.10)

holds. Then, one has limt→+∞y(t) = 0.

Proof. In order to show the conclusion of this Lemma, the proof is divided into two steps as
follows.

Step 1. We show that there exists a positive constant dε > 0 such that

y(t) ≤ dε, (3.11)

for any t ∈ (−∞,+∞). Firstly, for for all ε > 0, letting

dε = max
{

λ1 + λ2 + ε,
γ1
λ3

(λ1 + ε),
γ2
λ4

(λ2 + ε)
}

> 0. (3.12)

It is obviously seen that y(t) ≤ dε for any t ∈ (−∞, 0]. Assumed that there exists a t1 > 0 such
that

y(t) < dε, t ∈ (−∞, t1), y(t1) = dε. (3.13)



8 Discrete Dynamics in Nature and Society

Then, it from (3.10) implies that

y(t1) ≤ λ1e
−γ1t1 + λ2e

−γ2t1 + λ3dε

∫ t1

0
e−γ1(t1−s)ds + λ4dε

∫ t1

0
e−γ2(t1−s)ds

=
(

λ1 − λ3dε

γ1

)

e−γ1t1 +
(

λ2 − λ4dε

γ2

)

e−γ2t1 +
(
λ3
γ1

+
λ4
γ2

)

dε.

(3.14)

From the definition of dε, we have

λ1 − λ3dε

γ1
= λ1 − λ3

γ1

γ1
λ3

(λ1 + ε) < 0,

λ2 − λ4dε

γ2
= λ2 − λ4

γ2

γ2
λ4

(λ2 + ε) < 0.

(3.15)

Thus, (3.14) yields

y(t1) < dε, (3.16)

which contradicts (3.13), that is, (3.11) holds.
As ε > 0 is arbitrarily small, in view of (3.11), it follows

y(t) ≤ d, t ∈ (−∞,+∞), (3.17)

where d = max{λ1 + λ2, (γ1/λ3)λ1, (γ2/λ4)λ2}.

Step 2. We prove that limt→+∞y(t) = 0.
From the inequality (3.17), it has shown that y(t) is a bounded function defined on the

interval (−∞,+∞). Thus, as t → +∞, the upper limit (denoted by l ≥ 0) of y(t) exists, namely,

limt→+∞y(t) = l, (3.18)

the remaining work is to prove l = 0.
Supposed that l > 0. From (3.18), there must exist arbitrary positive scalar ε > 0 and

constant T1 > 0 such that

y(t) < l + ε, ∀t ≥ T1. (3.19)

On the other hand, since
∫0
−∞ k(s)ds = 1, there must exist T2 > 0 such that

∫−T2

−∞
k(θ)dθ < ε, ∀t ≥ T2. (3.20)
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Letting T = max{T1, T2}, (3.19) and (3.20) hold for t > T . Thus, it from (3.10) follows
that

y(t) ≤ λ1e
−γt + λ2e

−γ2t + λ3

∫ t

0
e−γ1(t−s)

∫s−T

−∞
k(u − s)y(u)duds

+ λ3

∫ t

0
e−γ1(t−s)

∫s

s−T
k(u − s)y(u)duds

+ λ4

∫ t

0
e−γ2(t−s)

∫s−T

−∞
k(u − s)y(u)duds

+ λ4

∫ t

0
e−γ2(t−s)

∫s

s−T
k(u − s)y(u)duds

≤
[

λ1 + λ3

∫2T

0
eγ1s

∫s

s−T
k(u − s)y(u)duds

]

e−γ1t

+

[

λ2 + λ4

∫2T

0
eγ2s

∫s

s−T
k(u − s)y(u)duds

]

e−γ2t

+
(
λ3d

γ1
+
λ4d

γ2

)

ε +
(
λ3
γ1

+
λ4
γ2

)

(l + ε).

(3.21)

By virtue of (3.18), we have

l ≤
(
λ3d

γ1
+
λ4d

γ2

)

ε +
(
λ3
γ1

+
λ4
γ2

)

(l + ε). (3.22)

From the arbitrary property of ε, it follows l ≤ ((λ3/γ1) + (λ4/γ2))l, that is,(λ3/γ1) +
(λ4/γ2) ≥ 1, which contradicts the condition: (λ3/γ1) + (λ4/γ2) < 1. Thus, l = 0. The proof of
this Lemma is completed.

Theorem 3.4. Suppose that the conditions: (H1)–(H3) are satisfied and a, b ∈ (0, ν], then the mild
solution to system (2.2) is exponentially stable in p (p ≥ 2) moment.

Proof. In view of (2.4) and the elementary inequality, we have

‖x(t)‖p =

∥
∥
∥
∥
∥
C(t)ϕ + S(t)

(
ξ − f0(0, x0)

)
+
∫ t

0
C(t − s)f0(s, xs)ds

+
∫ t

0
S(t − s)f1(s, xs)ds +

∫ t

0
S(t − s)f2(s, xs)dw(s)

∥
∥
∥
∥
∥

p
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≤ 5p−1Mp
∥
∥ϕ
∥
∥pe−bt + 5p−1Mp

∥
∥ξ − f0(0, x0)

∥
∥pe−at + 5p−1Mpb1−p

∫ t

0
e−b(t−s)

∥
∥f0(s, xs)

∥
∥pds

+ 5p−1Mpa1−p
∫ t

0
e−a(t−s)

∥
∥f1(s, xs)

∥
∥pds + 5p−1

∥
∥
∥
∥
∥

∫ t

0
S(t − s)f2(s, xs)dw(s)

∥
∥
∥
∥
∥

p

.

(3.23)

From the condition (H2), it from (3.23) concludes that

E‖x(t)‖p ≤ 5p−1MpE
∥
∥ϕ
∥
∥pe−bt + 5p−1MpE

∥
∥ξ − f0(0, x0)

∥
∥pe−at

+ 5p−1Mpb1−pCp

0

∫ t

0
e−b(t−s)E

(∫0

−∞
k(θ)‖x(s + θ)‖dθ

)p

ds

+ 5p−1Mpa1−pCp

1

∫ t

0
e−a(t−s)E

(∫0

−∞
k(θ)‖x(s + θ)‖dθ

)p

ds

+ 5p−1E

∥
∥
∥
∥
∥

∫ t

0
S(t − s)f2(s, xs)dw(s)

∥
∥
∥
∥
∥

p

.

(3.24)

From Lemma 2.3, we obtain

E

∥
∥
∥
∥
∥

∫ t

0
S(t − s)f2(s, xs)dw(s)

∥
∥
∥
∥
∥

p

≤ Mp

(∫ t

0

(
e−ap(t−s)E

∥
∥f2(s, xs)

∥
∥p
L0
2

)2/p
ds

)p/2(
p
(
p − 1

)

2

)p/2

= Mp

(∫ t

0
e−2a(t−s)

(
E
∥
∥f2(s, xs)

∥
∥p
L0
2

)2/p
ds

)p/2(
p
(
p − 1

)

2

)p/2

≤ Mp

(∫ t

0
e−(2a(p−1)/(p−2))(t−s)ds

)(p/2)−1 ∫ t

0
e−a(t−s)E

∥
∥f2(s, xs)

∥
∥p
L0
2
ds

(
p
(
p − 1

)

2

)p/2

≤ MpC
p

2

(
2a
(
p − 1

)

p − 2

)1−(p/2)(
p
(
p − 1

)

2

)p/2 ∫ t

0
e−a(t−s)E

(∫0

−∞
k(θ)‖x(s + θ)‖dθ

)p

ds.

(3.25)

Substituting (3.25) into (3.24), it follows

E‖x(t)‖p

≤ 5p−1MpE
∥
∥ϕ
∥
∥pe−bt + 5p−1MpE

∥
∥ξ − f0(0, x0)

∥
∥pe−at

+ 5p−1Mpb1−pCp

0

∫ t

0
e−b(t−s)

∫0

−∞
k(θ)E‖x(s + θ)‖pdθ ds
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+ 5p−1Mpa1−pCp

1

∫ t

0
e−a(t−s)

∫0

−∞
k(θ)E‖x(s + θ)‖pdθ ds

+ 5p−1MpC
p

2

(
2a
(
p − 1

)

p − 2

)1−(p/2)(
p
(
p − 1

)

2

)p/2 ∫ t

0
e−a(t−s)

∫0

−∞
k(θ)E‖x(s + θ)‖pdθ ds.

(3.26)

And it is easily verified that there exists two positive numberM′ > 0 andM′′ > 0 such
that E‖x(t)‖2 ≤ M′e−bt +M′′e−at, for any t ∈ (−∞, 0].

By Lemma 3.2, we can derive that E‖x(t)‖2 ≤ M1e
−μt, t ∈ [0,+∞) (μ ∈ (0, γ1 ∧ γ2)),

where

M1 =

⎧
⎨

⎩
5p−1Mp(E

∥
∥ϕ
∥
∥p + E

∥
∥ξ − f0(0, x0)

∥
∥p
)
, 5p−1Mpb−pCp

0 , 5
p−1Mp

(
a−pCp

1 + C
p

2a
−p/2

)

×
(

2
(
p − 1

)

p − 2

)1−(p/2)(
p
(
p − 1

)

2

)p/2
⎫
⎬

⎭
> 0.

(3.27)

The proof of this Theorem is completed.

Theorem 3.5. Suppose that the conditions: (H1)–(H3) are satisfied, then the mild solution to system
(2.2) is asymptotically stable in p (p ≥ 2) moment.

Proof. Similarly, we can obtain the conclusion as follows:

E‖x(t)‖p

≤ 5p−1MpE
∥
∥ϕ
∥
∥pe−bt + 5p−1MpE

∥
∥ξ − f0(0, x0)

∥
∥pe−at

+ 5p−1Mpb1−pCp

0

∫ t

0
e−b(t−s)

∫0

−∞
k(θ)E‖x(s + θ)‖pdθ ds

+ 5p−1Mpa1−pCp

1

∫ t

0
e−a(t−s)

∫0

−∞
k(θ)E‖x(s + θ)‖pdθ ds

+ 5p−1MpC
p

2

(
2a
(
p − 1

)

p − 2

)1−(p/2)(
p
(
p − 1

)

2

)p/2 ∫ t

0
e−a(t−s)

∫0

−∞
k(θ)E‖x(s + θ)‖pdθ ds,

(3.28)

and it is easily verified that there exists two positive number M′
∗ > 0 and M′′

∗ > 0 such that
E‖x(t)‖2 ≤ M′

∗ +M′′
∗ , for any t ∈ (−∞, 0].

By Lemma 3.3, we can derive that

lim
t→+∞

E‖x(t)‖p = 0. (3.29)
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To obtain the asymptotical stability in p (p ≥ 2)-moment, we need to prove that mild
solution of system (2.2) is stable in p (p ≥ 2)-moment. Let ε > 0 be given and choose δ >
0 (δ < ε) such that

Ce−(a∧b)t
∗
+ Δε < ε, (3.30)

where

C = 5p−1MpE
∥
∥ϕ
∥
∥p + 5p−1MpE

∥
∥ξ − f0(0, x0)

∥
∥p,

Δ = 5p−1Mp

⎡

⎣b−pCp

0 + a−pCp

1 + C
p

2a
−p/2

(
2
(
p − 1

)

(p − 2)

)1−(p/2)(
p
(
p − 1

)

2

)p/2
⎤

⎦.
(3.31)

If x(t, 0, ϕ) is a mild solution of system (2.2) with supθ∈(−∞,0]E‖ϕ(θ)‖p < δ, then
x(t) is defined in (2.4). Now, we claim that E‖x(t)‖p < ε for all t ≥ 0. Notice that
supθ∈(−∞,0]E‖ϕ(θ)‖p < ε. If there exists t∗ > 0 such that E‖x(t∗)‖p = ε and E‖x(t)‖p < ε,
for all t ∈ (−∞, t∗), then it follows from (2.4) that

E‖x(t∗)‖p

≤ 5p−1Mp(E
∥
∥ϕ
∥
∥p + E

∥
∥ξ − f0(0, x0)

∥
∥p
)
e−(a∧b)t

∗

+ 5p−1Mpb1−pCp

0

∫ t∗

0
e−b(t

∗−s)
∫0

−∞
k(θ)E‖x(s + θ)‖pdθ ds

+ 5p−1Mpa1−pCp

1

∫ t∗

0
e−a(t

∗−s)
∫0

−∞
k(θ)E‖x(s + θ)‖pdθ ds

+ 5p−1MpC
p

2

(
2a
(
p − 1

)

p − 2

)1−(p/2)(
p
(
p − 1

)

2

)p/2 ∫ t∗

0
e−a(t

∗−s)
∫0

−∞
k(θ)E‖x(s + θ)‖pdθ ds

< Ce−(a∧b)t
∗
+ Δε

< ε,

(3.32)

which contradicts the definition of t∗. This shows that the mild solution of system (2.2) is
asymptotically stable in p (p ≥ 2)-moment. The proof of this Theorem is completed.

4. An Illustrative Example

In this section, we provide an example to illustrate the obtained results above. Let X =
L2[0, π] and Y = R1 with the norm ‖ · ‖. And let en :=

√
2/π sin(nξ) (n = 1, 2, . . .) denote

the completed orthonormal basis in X. Let w(t) :=
∑+∞

n=1

√
λnβn(t)en, (λn > 0), where {βn(t)}

are one-dimensional standard Brownian motions mutually independent on a usual complete
probability space (Ω, I, It, P). Define A : X → X by A = (∂2/∂ξ2) with the domain
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D(A) = {h ∈ X : h, (∂/∂ξ)h are absolutely continuous, (∂2/∂ξ2)h ∈ X, h(0) = h(π) = 0}.
Then,

Ah =
+∞∑

n=1

n2(h, en)en, h ∈ D(A), (4.1)

where en, n = 1, 2, 3, . . ., is also the orthonormal set of eigenvector of A. It is well known that
‖C(t)‖ ≤ exp(−π2t) and ‖S(t)‖ ≤ exp(−π2t), t ≥ 0.

Now, we consider the following second-order neutral stochastic partial differential
equations with infinite delays:

d

[
∂

∂t
z
(
t, y
) − a0

π
√
π

∫0

−∞
(−θ)−1/2eπ2θz(t + θ, ξ)dθ

]

=

[
∂2

∂ξ2
z(t, ξ) +

α1

π
√
π

∫0

−∞
(−θ)−1/2eπ2θz(t + θ, ξ)dθ

]

dt

+
α2

π
√
π

∫0

−∞
(−θ)−1/2eπ2θz(t + θ, ξ)dθ dw(t), t ≥ 0, ξ ∈ [0, π],

x(t, 0) = x(t, π) = 0, t ≥ 0,

z(θ, ξ) = ϕ(θ, ξ), θ ∈ (−∞, 0], ξ ∈ [0, π],

∂

∂t
z(0, ξ) = ζ(ξ), ξ ∈ [0, π].

(4.2)

Define

f0(t, zt) =
α0π

√
π

5

∫0

−∞
(−θ)−1/2eπ2θz(t + θ, ξ)dθ, f0(t, 0) = 0,

f1(t, zt) =
α1π

√
π

5

∫0

−∞
(−θ)−1/2eπ2θz(t + θ, ξ)dθ, f1(t, 0) = 0,

f2(t, zt) =
α2π

5

∫0

−∞
(−θ)−1/2eπ2θz((t + θ), ξ)dθ, f2(t, 0) = 0,

(4.3)

for any zt ∈ B.
It is easily verified that

∥
∥
∥f0

(
t, z1t

)
− f0

(
t, z2t

)∥
∥
∥ ≤ α0π

√
π

5

∫0

−∞
(−θ)−1/2eπ2θ

∥
∥
∥z1(t + θ, ξ) − z2(t + θ, ξ)

∥
∥
∥dθ, f0(t, 0) = 0,

∥
∥
∥f1

(
t, z1t

)
− f1

(
t, z2t

) ∥
∥
∥ ≤ α1π

√
π

5

∫0

−∞
(−θ)−1/2eπ2θ

∥
∥
∥z1(t + θ, ξ) − z2(t + θ, ξ)

∥
∥
∥dθ, f1(t, 0) = 0,

∥
∥
∥f2

(
t, z1t

)
− f2

(
t, z2t

)∥
∥
∥ ≤ α2π

5

∫0

−∞
(−θ)−1/2eπ2θ

∥
∥
∥z1(t + θ, ξ) − z2(t + θ, ξ)

∥
∥
∥dθ, f2(t, 0) = 0,

(4.4)

for any z1t , z
2
t ∈ B.



14 Discrete Dynamics in Nature and Society

By virtue of Theorems 3.4 and 3.5, the exponential stability in p (p ≥ 2)-moment and
the asymptotical stability in p (p ≥ 2)-moment for mild solution to system (4.2) are obtained,
provided that the following inequality:

α
p

0 + α
p

1 + α2

(
2
(
p − 1

)

p − 2

)1−(p/2)(
p
(
p − 1

)

2

)p/2

< 5, p ≥ 2, (4.5)

holds.

Remark 4.1. Obviously, the result in [18] is ineffective in dealing with this example, and
our results are more general than those proposed in [18]. Besides, our results can be easily
extended to investigate two cases: (1) the exponential stability and the asymptotic stability
for the second-order neutral stochastic partial differential equations with infinite delay and
impulses and (2) the exponential stability for the second-order neutral stochastic partial
differential equations with time-varying delays; the readers can refer to [12, 22]. Here, we
omit them.
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