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This paper first constructs a tiered network model of the interbank market. Then, from the
perspective of contagion risk, it studies numerically the resilience of four types of interbank
market network models to shocks, namely, tiered networks, random networks, small-world
networks, and scale-free networks. This paper studies the interbank market with homogeneous
and heterogeneous banks and analyzes random shocks and selective shocks. The study reveals
that tiered interbank market networks and random interbank market networks are basically more
vulnerable against selective shocks, while small-world interbank market networks and scale-free
interbank market networks are generally more vulnerable against random shocks. Besides, the
results indicate that, in the four types of interbank market networks, scale-free networks have
the highest stability against shocks, while small-world networks are the most vulnerable. When
banks are homogeneous, faced with selective shocks, the stability of the tiered interbank market
networks is slightly lower than that of random interbankmarket networks, whereas, in other cases,
the stability of the tiered interbank market networks is basically between that of random interbank
market networks and that of scale-free interbank market networks.

1. Introduction

Interbank markets play an essential role in modern financial systems. In an interbank market,
banks with liquidity shortages can borrow liquidity from banks with liquidity surpluses. This
interconnection of the banking system can lead to an enhanced liquidity allocation, but it
also contributes to risk sharing among banks. Interbank linkages in interbank markets might
become a contagion channel through which solvency or liquidity problems of a single bank
can spread to other banks. Direct interbank connections become a source of systemic risk,
which has highlighted the importance of interbank markets for financial stability.

The importance of interbank linkages has been recognized in safeguarding overall
financial stability. At the same time, there has been a lot of empirical research on the rec-
ognition of such linkages as a channel of contagion. These studies adopt data on interbank
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exposures from a number of countries, namely, Switzerland, United States, Germany, the
United Kingdom, Holand, Denmark, India, and Finland [1–8]. These researches are valuable
in providing insights into the empirical significance of interbank contagion in real interbank
markets. However, the empirical literature assumes maximum diversification or a complete
interbank market structure, which is obviously not in accord with the actual situation. In
addition, the use of maximum entropy techniques underestimates contagion risk relative to
an approach that uses information on actual bilateral exposures, which is revealed in
Mistrulli’s research on the Italian banking system [9].

A new approach to contagion risk in financial market originates from network theory.
The connections between financial institutions, such as interbank linkages, make financial
institutions form complex networks [10–18]. There aremany applications of network analysis
to financial systems. Most of the current research using network theory focuses on issues
such as financial stability and contagion. Allen and Gale [19] demonstrate that the spread of
contagion depends crucially on the pattern of interconnectedness among banks. When the
network is complete, the impact of a shock is readily attenuated, and there is no contagion.
However, when the network is incomplete, the system is more fragile. The initial impact of
a shock is concentrated among neighboring banks. Under the assumption that the banking
structure is, respectively, a local and global network, Cassar and Duffy [20] find that, when
the banking network is a local one, the transmission speed of banking risk is relatively
low, and interbank liquidity is inadequate; when the banking network is a global one, the
transmission speed of banking risk is relatively high, and interbank liquidity is not seriously
inadequate. Aleksiejuk et al. [21] study the effects of one bank’s failure on the nucleation of
contagion phase in a financial market and discover the power law distribution of contagion
sizes in 3D- and 4D-networks as an indicator of self-organized criticality behavior. However,
the self-organized criticality dynamics is not detected in 2D-lattices. The difference between
2D- and 3D- or 4D-systems is explained in terms of the percolation theory. Dasgupta [22]
discusses how linkages between banks represented by cross-holding of deposits can be a
source of contagious breakdowns. De Vries [23] shows that there is interdependence between
banks’ portfolios, given the fat tail property of the underlying assets, and this carries the
potential of systemic breakdown.

Vivier-Lirimont [24] addresses the issue of optimal networks from a different perspec-
tive: he focuses on network architectures where transfers between banks promote depositors’
utility. He finds that only very dense networks, where banks are only a few links away
from one another, are compatible with a Pareto optimal allocation. Babus [25] considers a
model where banks form links with each other in order to reduce the risk of contagion. The
network is formed endogenously and serves as an insurance mechanism. Gai and Kapadia
[26] develop an analysis model of contagion in financial networks with arbitrary structure
and find that financial systems exhibit a robust-yet-fragile tendency: while the probability
of contagion might be very low, the effects could be extremely widespread should problems
occur. The resilience of the system to strong shocks in the past is also unlikely to prove a
reliable guide to future contagion. Allen and Babus [27] investigate the resilience of financial
networks to shocks and the formation of financial networks.

As for random banking networks, Iori et al. [28] study banking systems with homo-
geneous banks, as well as systems in which banks are heterogeneous. With homogeneous
banks, an interbank market unambiguously stabilizes the system. With heterogeneous banks,
knock-on effects become possible, but the stabilizing role of interbank lending remains so
that the interbank market can play an ambiguous role. In random interbank market network,
Nier et al. [29] find that (i) the more capitalised banks are, the more resilient the banking
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system against contagious defaults is, and this effect is nonlinear, (ii) the effect of the degree
of connectivity is nonmonotonic, (iii) the size of interbank liabilities tends to increase the risk
of knock-on default, and (iv) more concentrated banking systems are shown to be prone to
larger systemic risk. Georg and Poschmann [30] also indicate that common shocks are not
subordinate to contagion effects but are instead a greater threat to systemic stability.

Tiered banking systems are found in a many of countries such as the UK, Austria,
Belgium andGermany, but the empirical evidence of contagion risk in these systems is mixed.
Wells [4] and Harrison et al. [31] report that relatively limited scope for contagion exist
among UK banks. Boss et al. [32] and Degryse and Nguyen [33] find that tiered banking
systems in Austria and Belgium are stable, and systemic crises are unlikely to strike. On the
contrast, Upper and Worms [3] suggest that, in the structurally similar banking system in
German, the effects of the breakdown of a single bank could potentially be very strong, and
system-wide bank failures are possible. In the theoretical studies of tiered banking system,
Freixas et al. [34] show that tiered system with money-center banks, where banks on the
periphery are linked to the center but not to each other, may also be susceptible to contagion.
Nier et al. [29] model the tiered structure by classifying the banks in the network into large
and small banks and find that tiered structures are not necessarily more prone to systemic
risk and that whether they are or not depends on the degree of centrality, which is the num-
ber of connections to the central node. Such that, as the degree of centrality increases, con-
tagious defaults first increase but then start to decrease, as the number of connections to
the central node starts to lead to greater dissipation of the shock. Teteryatnikova [35] con-
structs tiered banking networks, where banks are linked by interbank exposures with a
certain predefined probability. The tiered structure is represented either by a network with
negative correlation in connectivity of neighboring banks, or alternatively, by a network with
a scale-free distribution of connectivity across banks. The main findings of Teteryatnikova’s
paper highlight the advantages of tiering within the banking system in terms of both the
resilience of the banking network to systemic shocks and the extent of necessary government
intervention should a crisis evolve.

The literature mentioned above mostly investigates how different network structures
respond to the breakdown of a single bank in order to identify which ones are more fragile.
But we still cannot obtain a clear picture about whether there exists a certain network that
can well withstand shocks, that is, the one that has a high stability against shocks. Motivated
by these considerations, we construct in this paper a tiered network model and numerically
analyze contagion risk on different types of networks and then study how resilient different
network models are against shocks. In this paper, interbank market network models studied
are random networks, small-world networks, scale-free networks, and tiered networks. The
paper is organized as follows. Section 2 introduces the approach to construct tiered interbank
networks and the way to describe contagion effect of shocks. Section 3 analyzes the effect of
shocks on interbank market networks, and Section 4 provides a conclusion.

2. The Basic Model

2.1. Tiered Interbank Market Network Model

Tiered structure is detected in a range of countries’ interbank markets, such as the Austrian
interbank market and the German interbank market, and is commonly defined as an organi-
zation of lending-borrowing relations/linkages between banks, where relatively few first-tier



4 Discrete Dynamics in Nature and Society

or head institutions have a large number of interbank linkages, whereas many second-tier or
peripheral banks have only few links. First-tier banks are connected to second-tier banks
and are also connected with each other, whereas second-tier banks are almost exclusively
connected to first-tier banks [35]. In order to explain the formation of tiered structure, we
suggest a setup for a network model of the interbank market, though in real life it is much
more complex. In interbank market networks, each node represents a bank, and each edge
signifies a directional credit lending relationship between two banks.

Generally, in the interbank market, the number of banks with large-scale assets is
relatively small, and a bank with large-scale assets has a high bank credit degree, which
leads to the phenomenon that a small number of banks in the interbank market have high
credit degrees, while most banks have relatively low credit degrees. Here, bank credit degree
represents trusted banks’ capacity of obtaining fundswithout immediate payment. Therefore,
this paper assumes that each bank in the interbankmarket has a certain amount of bank credit
degree which follows a power law distribution at the interval (0, 1). In the interbank market,
banks with liquidity shortage will make credit lending from banks with liquidity surplus to
meet their liquidity needs. Generally, there are no sponsion or mortgages in the credit lending
relationships. Therefore, bank credit degree is the main factor in determining credit lending
transactions. Moreover, this paper assumes that a bank with liquidity surplus and a bank
with liquidity shortage do their credit degree interaction to determine whether they could
fulfill credit lending transactions. Inaoka et al. [36] use the mean-field interaction to build
scale-free banking networks. However, the credit degree of the bank with liquidity shortage
is a major consideration, and this paper assumes that the credit interaction between banks
is nonmean field. Provided with the above postulates, the interbank network model in this
paper is addressed as follows.

(i) Deciding Bank Credit Degrees in the Interbank Market. Supposing that the number of
banks in the interbank market is N, we let ci denote the credit degree of bank i,
where ci follows a power law distribution and 0 < ci < 1, i = 1, 2, . . . ,N.

(ii) Determining the Interaction between Banks. In the interbank market, a bank with
liquidity surplus is a potential creditor bank and a bank with liquidity shortage
a potential debtor bank. Generally, there are no sponsion or mortgages in the
credit lending relationships. Whether there is a credit lending relationship between
them is based on their credit degree interaction cij , which is defined as cαi × c

β

j ,
0 < α < 1 < β.

(iii) Deciding Interbank Credit Relationships. Based on the interaction, we decide
interbank credit relationships using the threshold method. When the interaction
cij is larger than or equal to c, we define an interbank credit lending relationship
between node i and node j, where the value of the threshold is set by c, which is
calculated as τ × cmax × cmin, with τ being a positive parameter, cmax and cmin the
maximum and the minimum values of the bank credit degrees, respectively.

With the above-mentioned steps, we can construct interbank market networks. Note if
cij is larger than or equal to c, there is an interbank credit relationship between node i and j,
where bank i is the debtor bank and j the creditor bank. At this time, the credit degree of bank
i is mainly considered to decide the interbank credit relationship, so we set 0 < α < 1 < β in
step (ii). Next, we analyze whether the network model we constructed has the characteristic
of a tiered structure. Based on the network model presented above, the result is showed in
Figure 1 after performing a numerical simulation.
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Figure 1: The graph of an interbank market network.

In the simulation, we choose the network size N = 100, and other parameters are
chosen as follows: the power law index of the distribution that bank credit degrees follow,
denoted by ρ, is equal to 0.2, and τ = 0.3, α = 0.1, and β = 3. From Figure 1, we can see that
nodes 17, 27, 58, 84, and 92 are first-tier banks, and other nodes are second-tier banks. We also
know that first-tier banks are connected to second-tier banks and are also connectedwith each
other, whereas second-tier banks are exclusively connected to first-tier banks. This means that
our simulation result suggests that tiered structure can be detected in the interbank market
network model presented in this paper. It is worth pointing out that tiered structure is a
critical phenomenon, because it can only be produced under special parameter values, rather
than arbitrary parameter ones. Throughmany simulations, we find that the parameters of the
model are sensitive to the formation of tiered formation except the network size N. In order
to form tiered structure in the interbank market, the ranges and requirements for relevant
parameter are as follows: ρ ∈ [0.1, 2], τ ∈ [0.1, 1], 0 < α < 1 < β < 5, where the difference
between α and β should be large.

2.2. Constructing Bank Balance Sheets

In order to study the resilience of the interbank market to shocks, in this section we develop
a simplified model of a real-world interbank market, which allows us to analyze the process
of shock transmission. The primary function of banks is to channel funds received from
depositors towards productive investment. This makes bank balance sheets mainly consist
of assets and liabilities. In this paper, we assume that an individual bank’s assets, include
investments, liquid assets, and interbank assets, denoted by V , I, and L, respectively, and
that a bank’s liabilities are composed of interbank loans, deposits, and net worths, denoted
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byB,A, andM, respectively.We then construct bank balance sheets by deciding the following
aspects.

(i) Bank Deposits. For bank k, we set the ratio of its deposit Ak in its total assets TAk to
be η, that is,Ak = ηTAk. And then, we can generate the total assets of the interbank
market, denoted by E, and E =

∑
Ak/η.

(ii) Interbank Assets and Borrowing. According to the total assets of interbank market
E, we can obtain total interbank assets TA = θ × E, where θ is the ratio of total
interbank assets in the total assets of the interbank market. Boss et al. [11] find
that the size of interbank credit lending follows the power law distribution, so we
assume that the credit lending size of bank i from bank j, denoted by xij , stem from
a power law distribution, and

∑∑
xij = TA. Therefore, we can know the interbank

assets Lk and the interbank borrowing Bk of bank k are equal to
∑

i xik and
∑

i xki,
respectively.

(iii) Liquid Assets. Based on the total assets of bank k, we have the liquid assets Vk of
bank k, which is equal to φ × TAk, where φ is the percentage of liquid assets in the
total assets of bank k. And, then, we know the total liquid assets of the interbank
market, denoted by V , and V = φ × E. Moreover, we can figure out the size of the
total interbank investment I, which is equal to (1 − φ − θ)E.

(iv) Bank Investments. Borrowing in the interbank market is restricted to short-term
solvency needs and does not cover long-term investments. Therefore, for any bank
k, we require that its investments Ik be no less than its net interbank borrowing,
that is, Ik ≥ Bk − Lk. So we set Ik to be equal to (Bk − Lk) + (1 − φ − θ)E/N.

(v) Bank Net Worths. According to steps (i)–(iv), we complete the asset part of the bank
balance sheets as well as interbank borrowing and deposit in the liability. Noting
that the bank assets are equal to bank liabilities, we can determine the remaining
component, net worth Mk.

In short, we complete the construction of banks’ balance sheets in light of the above
steps. Note that, in step (ii), the determination of the interbank credit lending size is based
on the interbank market network, that is, xij > 0, when there exists a link between bank i and
bank j, or xij = 0.

2.3. Shocks and Shock Transmission

In this paper, we study the consequences of an idiosyncratic shock striking some banks
in the interbank market and then analyze the contagion effect of shocks due to interbank
exposures. Moreover, we study the resilience of different interbank market networks to
shocks. Therefore, we first analyze the process of shock transmission.

For any given realization of the interbank market, let Sk be the size of shock on bank
k, and let D0 be the set of banks affected by initial shocks. For bank k in set D0, we assume
shock Sk to be first absorbed by its net worth, then its interbank liabilities to be followed by
its deposits, as the ultimate sink. If Sk ≤ Mk, the shock is fully absorbed and if Sk > Mk, bank
k defaults. When the bank defaults, if the residual shock (Sk −Mk) is less than the interbank
liabilities Bk of bank k, all the residual shock (Sk − Mk) is transmitted to its creditor banks.
However, if (Sk −Mk) > Bk, all the residual shocks cannot be transmitted to creditor banks,
and depositors receive a loss of (Sk −Mk − Bk).
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Let D1 be the set of creditor banks of default banks in D0; that is, D1 = {i | i : k, Sk >
Mk, k ∈ D0}, where i : k denotes that bank i is the creditor bank of bank k. We assume
that the residual shock of a default bank is divided into its creditor banks according to the
respective proportions of its liabilities to creditor banks. All banks in D1 receive a certain
shock, which, in turn, is absorbed by their net worths, interbank liabilities, and deposits. If
there are default banks in D1, the transmission continues flowing down the chains until the
shocks are completely absorbed.

3. Impact of Shocks on Interbank Market Networks

3.1. Parameters of Models for Simulations

In this section, we determine the parameters for conducting simulation analysis to study
how resilient different types of interbank market networks are against shocks. In this paper,
we analyze four types of interbank market networks, which are, namely, tiered networks,
random networks, small-world networks, and scale-free networks. These four network
structures are revealed in real interbank markets by empirical analysis. In the simulation,
we choose the network size N = 20. For the tiered interbank market network, we choose
the parameters as follows: ρ = 0.2, τ = 0.3, α = 0.1, and β = 3. According to Erdos and
Renyi’s model [37], we connect every pair of nodes with probability p = 0.2 to create a
random network. Based on the algorithm provided by Watts and Strogatz [38], we start with
a ring lattice with 20 nodes in which every node is connected to its nearest two neighbors and
randomly rewire each edge of the lattice with the probability 0.02 such that self-connections
and duplicate edges are excluded. The scale-free network is generated by the algorithm [39]:
starting with three nodes, at every step, we add a new node with two edges that link the
new node to two different nodes already present in the system. When choosing the nodes
to which the new node connects, we assume that the probability that a new node will be
connected to node i depending on the degree of node i. After some steps, we can generate a
scale-free network with 20 nodes. Note that the random interbankmarket network, the small-
world interbank market network, and the scale-free interbank market network constructed
based on the above methods are undirected, we adopt the following method to determine the
direction of edges in the three networks: for arbitrary node i and node j, if there is an edge
between node i and node j, the probability of the direction from i to j is 0.1, the probability of
the direction from j to i is 0.3, and the probability of bidirectional connection between node i
and node j is 0.6.

When constructing bank balance sheets, the exogenous parameters take the following
values: η = 50%, θ = 40%, φ = 5%. In the interbank market, we consider two kinds of
banks, homogeneous banks and heterogeneous banks. In the homogeneous case, all banks
are identical in deposits, and we let bank deposits be 1000 units; in the heterogeneous case,
bank deposits stem from a normal distribution, which is set as N(1000, 100).

3.2. Simulation Results

In this section, we investigate the impact of shocks on the interbankmarket networks through
the simulation. Based on the realization of interbankmarket networks, in this paper, the shock
applied to each bank is calibrated to wipe out all investments of the bank. For each shocked
bank, we count the overall number of defaults and then adopt the number to measure the
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impact of shock on the interbank market. In this paper, we consider two kinds of shocks,
selective shocks and random ones, where selective shocks mean shocking the nodes in a cer-
tain order, namely, from the nodes with the largest degree to nodes with increasingly smaller
degrees, and random shocks mean shocking some nodes from the network in a stochastic
manner. For each set of parameters, we repeat this practice for 100 draws of the networks and
report averages across realization.

Figure 2 reports the impact of selective shocks and random shocks on the interbank
markets. For the tiered interbank market network, from Figures 2(a) and 2(b), we can see that
in the homogeneous case the impact of selective shocks is larger than that of random shocks,
because the number of defaults caused by selective shocks is larger than that caused by
random shocks. However, in the heterogeneous case, the impact of selective shocks is the
same as that of random shocks when the number of shocked banks f is small, while the
impact of selective shocks is higher than that of random shocks with the increase of f after a
certain threshold. In the random interbank market network, the impact of shocks is similar to
that in the tiered interbank market network in the heterogeneous case. This can be revealed
from Figures 2(b)–2(d). With regard to the small-world interbank market network, we learn
that the impact of random shocks is larger than that of selective shocks from Figures 2(e) and
2(f). In the scale-free interbankmarket network, when f is less than 0.6, the impact of random
shocks is larger than that of selective shocks; but, beyond the threshold 0.6, the impact of
random shocks and selective shocks is identical. In short, from the perspective of shock
transmission, we can figure out that the tiered interbank market network and the random
interbank market network are basically more vulnerable against selective shocks, while the
small-world interbank market network and the scale-free interbank market network are
basically more vulnerable against random shocks.

Next, we analyze differences of the effect of shocks on four types of interbank market
networks. The results are showed in Figure 3. As we observe from Figure 3, the number
of defaults in the scale-free interbank market network is the smallest, and the number of
defaults in the small-world interbank market network is the largest. This signifies that scale-
free interbank market networks have the highest stability against shocks, while the small-
world interbank market networks are most vulnerable against them. At the same time, we
can find that, for tiered interbank market networks, when banks are homogeneous, faced
with selective shocks, the stability of the tiered interbank market networks is slightly lower
than that of random interbank market networks. In other cases, the stability of the tiered
interbank market networks is basically between that of random interbank market networks
and that of scale-free interbank market networks.

4. Conclusion

In this paper, we develop a model of shock transmission in the interbank market and analyze
the resilience of four types of interbank market structures to shocks, namely, tiered networks,
random networks, small-world networks, and scale-free networks. The interbank market
network models are constructed based on network theory, where nodes represent banks
and links represent interbank credit lending. Under this framework, the tiered network is
modeled under two postulates, one being that interbank credit lending relationships are
established by the interaction of bank credit degrees, and the second being that bank credit
degrees follow a power law distribution on the interval (0, 1). And random interbank market
networks, small-world interbankmarket networks, and scale-free interbankmarket networks
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Figure 2: Number of defaults caused by random shocks and selective shocks. (a), (c), (e), and (g)
correspond respectively to the results of tiered networks, random networks, small-world networks, and
scale-free networks in the homogeneous case; (b), (d), (f), and (h) are, respectively, the results of tiered
networks, random networks, small-world networks, and scale-free networks in the heterogeneous case. f
denotes the number of shocked banks in the interbank market, and S represents the number of defaults.
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Figure 3: Differences of shocks on four types of networks. TN, ER, SW, and BA represent, respectively,
the tiered networks, random networks, small-world networks, and scale-free networks. (a) and (b) are the
respective results of random shocks and selective shocks in the homogeneous case, (c) and (d) random
shocks and selective shocks in the heterogeneous case.

are constructed based on the algorithm [37–39], respectively, where the direction of edges are
exogenous.

The network structure of the interbank market is important in determining the
spread of contagion defaults and in deciding the resilience of the interbank market to
shocks. Through the simulation analysis, we find that tiered interbank market networks and
random interbank market networks are basically more vulnerable against selective shocks,
while small-world interbank market networks and scale-free interbank market networks are
basically more vulnerable against random shocks. In addition, scale-free interbank market
networks have the highest stability against shocks, while the small-world interbank market
networks are most vulnerable against them. And for tiered interbank market networks, when
banks are homogeneous, faced with selective shocks, the stability of the tiered interbank
market networks is slightly lower than that of random interbank market networks. In other
cases, the stability of the tiered interbank market networks is basically between that of ran-
dom interbank market networks and that of scale-free interbank market networks.

These findings highlight the importance of network structure in determining the
spread of contagious defaults. While greater connectivity increases the spread of contagion
in the interbank market network, it also improves risk sharing among neighboring banks and
thereby reduces the susceptibility of banks to defaults. These opposing effects of risk sharing
and risk spreading interact differently in varying structures. For example, in small-world
interbank market network, there exist long-range edges, which make the default contagion
easier, and, hence, small-world interbank market network become most vulnerable against
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shocks. As a result, the resilience of an interbank market to shocks, and the optimal number
of bank rescues depend on the features of the structure of an interbank market. These insights
provide the basis for specific policy recommendations in order to maintain the stability of
banking systems.

The models and results presented in this paper suggest some directions for future
research. An interesting extension of the paper would focus on a model whose setup is even
closer to the one in real life to demonstrate the tiered banking systems. Alternatively, one
could think of creating dynamic models to analyze the resilience of interbank markets to
shocks, that is, to consider the evolution of interbank market networks with time. These
strands of research would add realism to the model and provide new, potentially valuable
insights.

Acknowledgments

This research is supported byNSFC (nos. 70671025 and 71071034), NBRR (no. 2010CB328104-
02), and the Scientific Research Foundation of the Graduate School of Southeast University
(YBJJ1014).

References

[1] G. Sheldon and M. Maurer, “Interbank lending and systemic risk: an empirical analysis for
Switzerland,” Swiss Journal of Economics and Statistics, vol. 134, pp. 685–704, 1998.

[2] C. H. Furfine, “Interbank exposures: quantifying the risk of contagion,” Journal of Money, Credit and
Banking, vol. 35, no. 1, pp. 111–128, 2003.

[3] C. Upper and A. Worms, “Estimating bilateral exposures in the German interbank market: is there a
danger of contagion?” European Economic Review, vol. 48, no. 4, pp. 827–849, 2004.

[4] S. Wells, “Financial interlinkages in the United Kingdom’s interbank market and the risk of
contagion,” Working Paper number 230, Bank of England, 2004.

[5] I. V. Lelyveld and F. Liedorp, Dutch National Bank, 2004.
[6] E. Amundsen and H. Arnt, “Contagion risk in the Danish interbank market,” Working Paper,

Danmarks Nationalbank, 2005.
[7] R. Iyer and J. L. Peydro-Alcalde, “Howdoes a shock propagate? Amodel of contagion in the interbank

market due to financial linkages,” in Proceedings of the European Finance Association Annual Meetings,
Moscow, Russia, 2005.

[8] M. Toivanen, “Financial interlinkages and risk of contagion in the Finnish interbank market,” Discus-
sion Papers, Bank of Finland Research, 2009.

[9] P. E. Mistrulli, Banca d’Italia, Mimeo, 2005.
[10] W. Souma, Y. Fujiwara, and H. Aoyama, “Complex networks and economics,” Physica A, vol. 324, no.

1-2, pp. 396–401, 2003.
[11] M. Boss, H. Elsinger, M. Summer, and S. Thurner, “Network topology of the interbank market,”

Quantitative Finance, vol. 4, no. 6, pp. 677–684, 2004.
[12] A. Lubloy, Magyar Nemzeti Bank, 2006.
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