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It is shown that the sequence of the generalized Bell polynomials Sn(x) is convex under some
restrictions of the parameters involved. A kind of recurrence relation for Sn(x) is established, and
some numbers related to the generalized Bell numbers and their properties are investigated.

1. Introduction

Hsu and Shiue [1] defined a kind of generalized Stirling number pair with three free
parameters which is introduced via a pair of linear transformations between generalized
factorials, viz,

(t | α)n =
n∑

k=0

S
(
n, k;α, β, γ

)(
t − γ | β)k,

(
t | β)n =

n∑

k=0

S
(
n, k; β, α,−γ)(t + γ | α)k,

(1.1)

where n ∈ N (set of nonnegative integers), α, β, and γ may be real or complex numbers with
(α, β, γ) /= (0, 0, 0), and (t | α)n denotes the generalized factorial of the form

(t | α)n =
n−1∏

j=0

(
t − jα

)
, n ≥ 1, (t | α)0 = 1. (1.2)

In particular, (t | 1)n = (t)n with (t)0 = 1. Various well-known generalizations were obtained
by special choices of the parameters α, β, and γ (cf. [1]), and the generalization of some
properties of the classical Stirling numbers such as the recurrence relations

S
(
n + 1, k;α, β, γ

)
= S

(
n, k − 1;α, β, γ

)
+
(
kβ − nα + γ

)
S
(
n, k;α, β, γ

)
, (1.3)
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the exponential generating function

(1 + αt)γ/α
[
(1 + αt)β/α − 1

β

]k
= k!

∑

n≥0
S
(
n, k;α, β, γ

) tn

n!
, (1.4)

the explicit formula

S
(
n, k;α, β, γ

)
=

1
βkk!

k∑

j=0
(−1)k−j

(
k

j

)
(
βj + γ | α)n, (1.5)

the congruence relation, and a kind of asymptotic expansion was established. As a follow-
up study of these numbers, more properties were obtained in [2]. Furthermore, some
combinatorial interpretations of S(n, k;α, β, γ) were given in [3] in terms of occupancy
distribution and drawing of balls from an urn.

Hsu and Shiue [1] also defined a kind of generalized exponential polynomials Sn(x) ≡
Sn(x;α, β, γ) in terms of generalized Stirling numbers S(n, k;α, β, γ) with α, β, and γ real or
complex numbers as follows:

Sn(x) =
n∑

k=0

S
(
n, k;α, β, γ

)
xk. (1.6)

We may call these polynomials generalized Bell polynomials. Note that when x = 1, we get

Wn = Sn(1) =
n∑

k=0

S
(
n, k;α, β, γ

)
, (1.7)

the generalized Bell numbers. A kind of generating function of the sequence {Sn(x)} for the
generalized exponential polynomials has been established by Hsu and Shiue, viz,

∑

n≥0
Sn(x)

tn

n!
= (1 + αt)γ/α exp

[(
(1 + αt)β/α − 1

)x
β

]
, (1.8)

where α, β /= 0. In particular, (1.8) gives the generating function for the generalized Bell
numbers:

∑

n≥0
Wn

tn

n!
= (1 + αt)γ/α exp

⎡
⎢⎣

(
(1 + αt)β/α − 1

)

β

⎤
⎥⎦. (1.9)

Note that, when α → 0, (1 + αt)γ/α → exp(γt). Hence,

(1 + αt)γ/α exp
[(

(1 + αt)β/α − 1
)x
β

]
−→ eγt exp

[(
eβt − 1

)x
β

]
. (1.10)
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If we define the polynomial Gn,β,r(x) as

Gn,β,r(x) = lim
α→ 0

Sn

(
x;α, β, r

)
, (1.11)

then its exponential generating function is given by

∑

n≥0
Gn,β,r(x)

tn

n!
= exp

[
rt +

(
eβt − 1

)x
β

]
. (1.12)

We may call Gn,β,r(x) the (r, β)-Bell polynomial. Hence, with x = 1, this yields the exponential
generating function for the (r, β)-Bell numbers. Now, if we use S(n, k; β, γ) to denote the
following limit:

S
(
n, k; β, γ

)
= lim

α→ 0
S
(
n, k;α, β, γ

)
, (1.13)

then, by (1.5),

S
(
n, k; β, γ

)
=

1
βkk!

k∑

j=0
(−1)k−j

(
k

j

)
(
βj + γ

)n
, (1.14)

Gn,β,r(x) =
n∑

k=0

S
(
n, k; β, γ

)
xk. (1.15)

Also obtained by Hsu and Shiue is an explicit formula for Sn(x) of the form

Sn(x) =
(
1
e

)x/β ∞∑

k=0

(
x/β

)k

k!
(
kβ + γ | α)n. (1.16)

Consequently, with x = 1, we have

Wn =
(
1
e

)1/β ∞∑

k=0

(
kβ + γ | α)n

βkk!
. (1.17)

Note that, by taking α = 0, (1.16) gives

Gn,β,r(x) =
(
1
e

)x/β ∞∑

k=0

(
x/β

)k

k!
(
kβ + γ

)n
, (1.18)

the explicit formula for (r, β)-Bell polynomial. When x = 1, this gives

Gn,β,r =
(
1
e

)1/β ∞∑

k=0

(
1/β

)k

k!
(
kβ + γ

)n
, (1.19)
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a kind of the Dobinski formula for (r, β)-Bell numbers. This reduces further to the Dobinski
formula for r-Bell numbers [4] when β = 1. Moreover, with γ = 0, we get

Bn =
1
e

∞∑

k=0

k

k!
, (1.20)

which is the Dobinski formula for the ordinary Bell numbers [5].
In this paper, a recurrence relation and convexity of the generalized Bell numbers will

be established and some numbers related toWn will be investigated. Some theorems on (r, β)-
Bell polynomials will be established including the asymptotic approximation of the (r, β)-Bell
numbers.

2. More Properties of Sn(x)

Recurrence relation is one of the useful tools in constructing tables of values. The recurrence
relation for the ordinary Bell numbers [6] is given by

Bn+1 =
n∑

k=0

(
n

k

)
Bn−k, (2.1)

with initial condition B0 = 1. Carlitz’s Bell numbers [7] also satisfy the recurrence relation:

An+1(λ) = −λnAn(λ) +
n∑

k=0

k!

(
n

k

)(
μ

k

)
λkAn−k(λ), μ =

1
λ
, (2.2)

withA0(λ) = 1. Note that for λ = 1, An(1) = Bn and (2.2)will reduce to (2.1). Moreover, Mező
[4] obtained certain recurrence relations for the r-Bell polynomials, respectively, as

Bn,r(x) = rBn−1,r(x) + x
n−1∑

k=0

(
n − 1

k

)
Bk,r(x). (2.3)

The following theorem will generalize all of these recurrence relations.

Theorem 2.1. The generalized exponential polynomials satisfy the following recurrence relation:

Sn+1(x) =
(
γ − αn

)
Sn(x) +

n∑

k=0

x

(
n

k

)
(
β | α)kSn−k(x) (2.4)

with S0(x) = 1. Moreover, the generalized Bell numbersWn = Sn(1) satisfy

Wn+1 =
(
γ − αn

)
Wn +

n∑

k=0

(
n

k

)
(
β | α)kWn−k. (2.5)
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Proof. Differentiating both sides of (1.8) with respect to t will give

∑

n≥0
Sn(x)

tn−1

(n − 1)!
= (1 + αt)γ/α exp

[(
(1 + αt)β/α − 1

)x
β

](
(1 + αt)β/αx + γ

1 + αt

)
. (2.6)

Applying binomial theorem and Cauchy’s rule for product of two power series will yield

(1 + αt)
∑

n≥0
Sn(x)

tn−1

(n − 1)!
=

(
∑

n≥0
Sn(x)

tn

n!

)⎛

⎝
∑

n≥0

⎛

⎝
β

α
n

⎞

⎠xαntn + γ

⎞

⎠,

∑

n≥0
Sn(x)

tn−1

(n − 1)!
+
∑

n≥0
nαSn(x)

tn

n!
=
∑

n≥0

⎛

⎝
n∑

k=0

xk!

(
n

k

)⎛

⎝
β

α
k

⎞

⎠αkSn−k(x)

⎞

⎠ tn

n!
.

(2.7)

Comparing the coefficients of tn/n!, we obtain

Sn+1(x) + αnSn(x) = γSn(x) +
n∑

k=0

xk!

(
n

k

)⎛

⎝
β

α
k

⎞

⎠αkSn−k(x), (2.8)

which is precisely equivalent to (1.10).

By taking α = 0, Theorem 2.1 yields the recurrence relations for the (r, β)-Bell poly-
nomials. More precisely,

Gn+1,β,r(x) = rGn,β,r(x) +
n∑

k=0

x

(
n

k

)
βkGn−k,β,r(x). (2.9)

These further give (2.3) when β = 1. Surely, (2.2) can be deduced from (2.5) by letting
(α, β, γ) = (λ, 1, 0). Furthermore, for (α, β, γ) = (0, 0, 1), (2.4) gives

Bn+1(x) = 2Bn(x), (2.10)

where Bn(x) =
∑n

k=0(
n
k )x

k. If we let Bn = Bn(1), we get

Bn+1 = 2Bn, (2.11)

which implies

n∑

k=0

(
n + 1

k

)
= 2n+1 − 1, (2.12)
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the number of distinct partitions of an (n+2)-set into 2 nonempty subsets, or simply S(n+2, 2),
the classical Stirling number of the second kind.

Mathematicians have been aware for quite a while that the global behaviour of
combinatorial sequences can be used in asymptotic estimates. One of these interesting
behaviours is convexity [5]. A real sequence vk, k = 0, 1, 2, . . . is called convex on an interval
[a, b] (containing at least 3 consecutive integers) when

vk ≤ 1
2
(vk−1 + vk+1), k ∈ [a + 1, b − 1]. (2.13)

For instance, the sequence of binomial coefficients ( n
k ) satisfies the convexity property since

(
n + 2

k

)
− 2

(
n + 1

k

)
+

(
n

k

)
=

(
n

k − 2

)
> 0, for k ≥ 2. (2.14)

This implies that

Bn+1 ≤ 1
2

(
Bn + Bn+2

)
, (2.15)

that is, Bn is convex.
The next theorem asserts that the sequence of generalized exponential polynomials as

well as the generalized Bell numbers is convex under some restrictions.

Theorem 2.2. The sequence of generalized exponential polynomials Sn(x) with x > 0, α ≤ 0, and
β, γ ≥ 0 possesses the convexity property, viz,

Sn+1(x) ≤ 1
2
(Sn(x) + Sn+2(x)), n = 1, 2, . . . . (2.16)

Proof. Since α ≤ 0 and (kβ + γ − nα) ≥ 0, we have

0 ≤ [1 − (kβ + γ − nα
)]2 − α

(
kβ + γ − nα

)
,

0 ≤ 1 − 2
(
kβ + γ − nα

)
+
(
kβ + γ − nα

)2 − α
(
kβ + γ − nα

)
,

2
(
kβ + γ − nα

) ≤ 1 +
(
kβ + γ − nα

)(
kβ + γ − nα − α

)
.

(2.17)

Multiplying both sides by (kβ + γ | α)n, we get

2
(
kβ + γ | α)n+1 ≤

(
kβ + γ | α)n +

(
kβ + γ | α)n+2. (2.18)

Thus, making use of (1.16), we obtain (2.16).

Note that, for (α, β, γ, x) = (0, β, r, 1), (2.16) asserts the convexity of (r, β)-Bell
polynomials which further imply the convexity of r-Bell polynomials when β = 1. Moreover,
letting (α, β, γ, x) = (0, 1, 0, 1), (2.16) yields (2.15) and implies the convexity of Bn.
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3. A Variation of Generalized Bell Numbers

Let us denote A(n, k;α, β, γ) = k!βkS(n, k;α, β, γ) and define

Bn

(
α, β, γ

)
=

n∑

k=1

A
(
n, k;α, β, γ

)
. (3.1)

The numbers A(n, k;α, β, γ) were given combinatorial interpretation in [2], for nonnegative
integers α, β, and γ , as the number of ways to distribute n distinct balls, one ball at a time,
into k + 1 distinct cells, first k of which has β distinct compartments and the last cell with γ
distinct compartments such that

(i) the compartments in each cell are given cyclic ordered numbering,

(ii) the capacity of each compartment is limited to one ball,

(iii) each successive α available compartments in a cell can only have the leading
compartment getting the ball,

(iv) the first k cells are nonempty.

Illustration of (iii)

Suppose the first ball lands in compartment 3 of cell 2. The compartment numbered 4, 5, 6,. . .,
α, α + 1, α + 2 will be closed. And suppose the second ball lands in compartment β − 2 also of
cell 2. Then compartments numbered β − 1, β, 1, 2, α + 3, α + 4, α + 5, . . . , 2α − 3 of cell 2 will be
closed.

If k + 1 cells will be changed to any number of cells with the last cell containing γ
distinct compartments and the rest of the cells each has β distinct compartments such that
only the last cell could be empty, then this gives the combinatorial interpretation of Bn(α, β, γ).

The following theorem contains a kind of exponential generating function for
Bn(α, β, γ).

Theorem 3.1. The numbers Bn(α, β, γ) have the following exponential generating function:

∑

n≥0
Bn

(
α, β, γ

) tn

n!
=

(1 + αt)γ/α

2 − (1 + αt)β/α
. (3.2)

Proof. Using the exponential generating function in (1.4), we get

∑

n≥0
Bn

(
α, β, γ

) tn

n!
=
∑

n≥0

∑

k≥0
βkk!S

(
n, k;α, β, γ

) tn

n!

= (1 + αt)γ/α
∑

k≥0

[
(1 + αt)β/α − 1

]k

= (1 + αt)γ/α
1

1 −
[
(1 + αt)β/α − 1

] .

(3.3)

This is exactly the desired generating function.
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Differentiating both sides of (1.9)with respect to t, we yield

A
(
n, k;α, β, γ

)
=

dn

dtn

[
(1 + αt)γ/α

(
(1 + αt)β/α − 1

)k
]

t=0
. (3.4)

Since A(n, k;α, β, γ) vanishes when k = 0 and k > n, we have

Bn

(
α, β, γ

)
=

∞∑

k=0

dn

dtn

[
(1 + αt)γ/α

(
(1 + αt)β/α − 1

)k]

t=0

=
dn

dtn

[
(1 + αt)γ/α

(
2 − (1 + αt)β/α

)−1]

t=0

=
1
2
dn

dtn

[
(1 + αt)γ/α

∞∑

ν=0

(
1
2
(1 + αt)β/α

)ν
]

t=0

=
1
2

∞∑

ν=0

dn

dtn

[
(1 + αt)(γ+βν)/α

]

t=0

1
2ν

.

(3.5)

This result is embodied in the following theorem.

Theorem 3.2. The number Bn(α, β, γ) is equal to

Bn

(
α, β, γ

)
=

1
2

∞∑

ν=0

(
γ + βν | α)n2−ν, n ≥ 1. (3.6)

The next theorem provides a recurrence relation for the number Bn(α, β, γ) which can
be used as a quick tool in computing its first values.

Theorem 3.3. The following recurrence relation holds:

Bn

(
α, β, γ

)
= (γ | α)n +

(
β | α)n +

n−1∑

j=1

(
n

j

)
(
β | α)jBn−j

(
α, β, γ

)
, (3.7)

where n ≥ 1.

Proof. Making use of (3.6), we have

⎛

⎝
β

α
j

⎞

⎠Bn−j
(
α, β, γ

)

αn−j(n − j
)
!
=

1
2

∞∑

ν=0

⎛

⎝
β

α
j

⎞

⎠

⎛

⎝
βν + γ

α
n − j

⎞

⎠2−ν. (3.8)
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Summing up both sides from j = 0 to n − 1 and using Vandermonde’s formula, we get

n−1∑

j=0

(
n

j

)
(
β | α)j

Bn−j
(
α, β, γ

)

αnn!
=

1
2

∞∑

ν=0

⎛

⎝
n−1∑

j=0

⎛

⎝
β

α
j

⎞

⎠

⎛

⎝
βν + γ

α
n − j

⎞

⎠

⎞

⎠2−ν

=
1
2

∞∑

ν=0

⎛

⎝
β + νβ + γ

α
n

⎞

⎠2−ν − 1
2

∞∑

ν=0

⎛

⎝
β

α
n

⎞

⎠2−ν.

(3.9)

Hence, we have

n−1∑

j=0

(
n

j

)
(
β | α)jBn−j

(
α, β, γ

)
=

1
2

∞∑

ν=0

(
(ν + 1)β + γ | α)n2−ν −

(
β | α)n

1
2

∞∑

ν=0

2−ν. (3.10)

Now, by (3.6),

1
2

∞∑

ν=0

(
β(ν + 1) + γ | α)n2−ν =

∞∑

ν=0

(
β(ν + 1) + γ | α)n2−(ν+1)

=
∞∑

ν=0

(
βν + γ | α)n2−ν −

(
γ | α)n

= 2Bn

(
α, β, γ

) − (γ | α)n

(3.11)

and (1/2)
∑∞

ν=0 2
−ν = 1. Thus,

n−1∑

j=1

(
n

j

)
(
β | α)jBn−j

(
α, β, γ

)
= Bn

(
α, β, γ

) − (γ | α)n −
(
β | α)n (3.12)

which is precisely equivalent to (3.7).

Note that when n = 1, (3.7) gives

B1
(
α, β, γ

)
= γ + β, (3.13)

while (3.6) gives

B1
(
α, β, γ

)
= γ + β

( ∞∑

ν=1

ν

2ν+1

)
. (3.14)

This implies that

∞∑

ν=1

ν

2ν+1
= 1. (3.15)
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The following theorem gives a kind of congruence relation for Bn(α, β, γ) with the
restriction that α → 0. We use Ĝn,β,r to denote the following limit:

Ĝn,β,r = lim
α→ 0

Bn

(
α, β, γ

)
. (3.16)

Theorem 3.4. Let r and β be integers. Then for any odd prime p and n ≥ 1, one has the following
congruence relation:

Ĝn+p−1,β,r − Ĝn,β,r ≡ 0
(
mod 2p

)
. (3.17)

Proof. Note that the explicit formula in (1.14) can be expressed in terms of a kth difference
operator. That is,

[
Δk(βt + r

)n]

t=0
=

k∑

j=0
(−1)k−j

(
k

j

)
(
βj + r

)n
, (3.18)

where Δk denotes the kth difference operator. Hence,

Ĝn+p−1,β,r =
∞∑

k=0

[
Δk(βt + r

)n+p−1]

t=0
. (3.19)

Thus,

Ĝn+p−1,β,r − Ĝn,β,r =
∞∑

k=0

Δk
{(

βt + r
)n−1[(

βt + r
)p − (βt + r

)]}

t=0
. (3.20)

Since, by Fermat’s little theorem, (βt + r)p − (βt + r) is divisible by p,

(
βt + r

)n−1[(
βt + r

)p − (βt + r
)]

= px, (3.21)

for some integer x. Also, since (βt+ r)n and (βt+ r)p−1 − 1 are of different parity, (βt+ r)n[(βt+
r)p−1 − 1] is divisible by 2. Hence,

(
βt + r

)n[(
βt + r

)p−1 − 1
]
= 2py, (3.22)

for some integer y. Thus, we have

(
βt + r

)n[(
βt + r

)p−1 − 1
]
≡ 0

(
mod 2p

)
. (3.23)

This completes the proof of the theorem.
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4. Some Theorems on (r, β)-Bell Polynomials

The (r, β)-Bell polynomials Gn,β,r(x) have already possessed numerous properties. Some of
them are obtained as special case of the properties of Sn(x). However, there are properties of
the ordinary Bell numbers or r-Bell numbers which are difficult to establish in Sn(x) but can
be done in Gn,β,r(x). For instance, using the rational generating function for S(n, k; β, r) in [2]
which is given by

∑

n≥k
S
(
n, k; β, r

)
tn =

tk
∏k

j=0
[
1 − (βj + r

)
t
] , (4.1)

we can have

∑

n≥0
S
(
n, k; β, r

)
tn =

1
βk+1t

1
∏k

i=0
(
(1 − rt)/

(
βt
) − i

)

=
1

βk+1t

1
(
(1 − rt)/

(
βt
))∏k

i=1
(
(1 − rt)/

(
βt
) − i

)

=
−1

βk(rt − 1)
(−1)k

∏k
i=1
(
(rt − 1)/

(
βt
)
+ i
) .

(4.2)

It can easily be shown that

k∏

i=1

(
rt − 1
βt

− i

)
=

((
β + r

)
t − 1

βt

)

k

. (4.3)

Thus,

∑

k≥0

(
∑

n≥0
S
(
n, k; β, r

)
tn
)
xk =

∑

k≥0

(
−1

βk(rt − 1)
(−1)k

(((
β + r

)
t − 1

)
/βt

)
k

)
xk,

∑

n≥0

(
n∑

k=0

S
(
n, k; β, r

)
xk

)
tn =

−1
rt − 1

∑

k≥0

(1)k(((
β + r

)
t − 1

)
/βt

)
k

(−x/β)k
k!

.

(4.4)

This can be expressed further as

∑

n≥0
Gn,β,r(x)tn =

−1
rt − 1

· 1F1

⎛
⎜⎝

1(
β + r

)
t − 1

βt

∣∣∣∣∣∣∣

−x
β

⎞
⎟⎠, (4.5)

where 1F1 is the hypergeometric function which is defined by

p
Fq

(
a1, a2, . . . , ap

b1, b2, . . . , bq

∣∣∣∣t
)

=
∞∑

k=0

(a1)k(a2)k · · ·
(
ap

)
k

(b1)k(b2)k · · ·
(
bq
)
k

tk

k!
, (4.6)
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where (ai)j = ai(ai + 1)(ai + 2) · · · (ai + j − 1). Applying Kummer’s formula [8],

ex1F1

(
a
b

∣∣∣∣ − x

)
= 1F1

(
b − a
b

∣∣∣∣x
)
, (4.7)

we obtain the following generating function.

Theorem 4.1. The (r, β)-Bell polynomials satisfy the following generating function:

∑

n≥0
Gn,β,r(x)tn =

−1
rt − 1

· 1
ex/β

· 1F1

⎛
⎜⎜⎝

rt − 1
βt

βt + rt − 1
βt

∣∣∣∣∣∣∣∣

x

β

⎞
⎟⎟⎠. (4.8)

It will be interesting if one can also obtain a generating function of this form for Sn(x).
Now, using the integral identity in [9],

Im
∫π

0
eje

iθ

sin(nθ)dθ =
π

2
jn

n!
, (4.9)

and the explicit formula in (1.14), we get

π

2n!
S
(
n, k; β, r

)
=

1
βkk!

k∑

j=0
(−1)k−j

(
k

j

)
Im

∫π

0
e(βj+r)e

iθ

sin(nθ)dθ

=
1

βkk!
Im

∫π

0

⎡

⎣
k∑

j=0
(−1)k−j

(
k

j

)(
eβe

iθ
)j
⎤

⎦ere
iθ

sin(nθ)dθ

= Im
∫π

0

[(
eβe

iθ − 1
)
/β
]k

k!
ere

iθ

sin(nθ)dθ.

(4.10)

Hence,

∞∑

k=0

S
(
n, k; β, r

)
xk =

2n!
π

Im
∫π

0

⎧
⎪⎨

⎪⎩

∞∑

k=0

[(
eβe

iθ − 1
)
/β
]k

k!
xk

⎫
⎪⎬

⎪⎭
ere

iθ

sin(nθ)dθ

=
2n!
π

Im
∫π

0
ex(e

βeiθ−1)/βere
iθ

sin(nθ)dθ.

(4.11)

Thus,

Gn,β,r(x) =
2n!

πex/β
Im

∫π

0
exβ

−1eβe
iθ

ere
iθ

sin(nθ)dθ, (4.12)

where β /= 0. By simple algebraic manipulation, this can further be expressed as follows.
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Theorem 4.2. The (r, β)-Bell polynomials have the following integral representation:

Gn,β,r(x) =
2n!

πex/β

∫π

0
eJ1(θ) sin(J2(θ)) sin(nθ)dθ, (4.13)

where

J1(θ) = r cos θ +
xeβ cos θ cos

(
β sin θ

)

β
,

J2(θ) = r sin θ +
xeβ cos θ sin

(
β sin θ

)

β
.

(4.14)

It will also be compelling to establish such integral representation for Sn(x).

The Bell polynomials Bn(λ) are known to be connected to the Poisson distribution.
More precisely, Bn(λ) can be expressed in terms of the moment of the Poisson random
variable Z with parameter λ > 0 as

Bn(λ) = Eλ[Zn]. (4.15)

The exponential generating function for the (r, β)-Bell polynomials in (1.12) can be written as
follows:

e(r/β)βte(x/β)(e
βt−1) = e(r/β)βtEx/β

[
e(βt)Z

]

=
∑

n≥0

{
n∑

k=0

(
n

k

)
rn−kβkEx/β

[
Zk

]} tn

n!
.

(4.16)

Hence, we can also express the (r, β)-Bell polynomials in terms of the following moment:

Gn,β,r(x) = Ex/β

[(
βZ + r

)n]
. (4.17)

Now,

Gn,β,r(x) =
n∑

k=0

(
n

k

)
rn−kβkEx/β

[
Zk

]

=
n∑

k=0

(
n

k

)
rn−kβkBk

(
x

β

)

=
n∑

k=0

(
n

k

)
rn−kβk

k∑

j=0

S
(
k, j

)(x

β

)j

.

(4.18)

Thus, we have the following theorem.
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Theorem 4.3. The (r, β)-Bell polynomials equal

Gn,β,r(x) =
n∑

k=0

(
n

k

)
rn−k

k∑

j=0

βk−jS
(
k, j

)
xj . (4.19)

An extension of the Bell polynomials Bn(y, λ), defined by Privault [10] as

∞∑

n=0

Bn

(
y, λ

) tn

n!
= eyt−λ(e

t−t−1), (4.20)

can be expressed in terms of the (r, β)-Bell polynomials as

Bn

(
y, λ

)
= Gn,1,λ+y(−λ). (4.21)

Using Theorem 4.3, we obtain

Bn

(
y,−λ) = Gn,1,−λ+y(λ) =

n∑

k=0

(
n

k

)
(
y − λ

)n−k k∑

j=0

S
(
k, j

)
λj . (4.22)

This is exactly the identity obtained by Privault in [10].

5. An Asymptotic Approximation for Gn,β,r

Using the exponential generating function for Gn,r,β in (1.12) with x = 1 and Cauchy’s
theorem for integrals, we obtain the integral representation

Gn,r,β =
n!
2πi

∫

γ

exp
[
rz +

(
eβz−1/β

)]

zn+1
dz, (5.1)

where γ is the circle z = Reiθ,−π ≤ θ ≤ π . Contour integration yields

Gn,r,β =
n!

2πiRn

∫π

−π
exp

(
β−1eβRe

iθ

+ rReiθ − inθ − β−1
)
dθ, (5.2)

which can be written into the compact form

Gn,r,β = A

∫π

−π
exp(F(θ))dθ, (5.3)
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where

A =
n! exp

(
rR + β−1eβR − β−1

)

2πRn
,

F(θ) = β−1eβRe
iθ

+ rReiθ − inθ −
(
rR + β−1eβR

)
.

(5.4)

Define ε = e−3R/8 and let

J1 =
∫ε

−π
exp(F(θ))dθ, J2 =

∫π

ε

exp(F(θ))dθ. (5.5)

Thus (5.3) can be written as

Gn,r,β = AJ1 +A

∫ ε

ε

exp(F(θ))dθ +AJ2. (5.6)

Lemma 5.1. There exists a constant k > 0 such that

|J2| < e−kβ
−1eβR(π − ε). (5.7)

Proof. It can be shown that

∣∣exp(F(θ))
∣∣ = e−[(rR+β

−1eβR)+β−1 cos(βR sin θ)eβR cos θ]. (5.8)

Since cos θ < 1 for 0 < ε < θ ≤ π , we have

∣∣exp(F(θ))
∣∣ = e−β

−1eβR[1 − cos
(
βR sin θ

)]
. (5.9)

Since [1 − cos(βR sin θ)] > 0 for cos θ < 1 for 0 < ε < θ ≤ π , there exists a constant k > 0 such
that [1 − cos(βR sin θ)] < k. Hence

|J2| < e−kβ
−1eβR(π − ε). (5.10)

It will be seen later that R → ∞ as n → ∞. With the result in Lemma 5.1 we see that
J1 and J2 will tend to zero as n → ∞. Hence

Gn,r,β ∼ A

∫ ε

−ε
exp(F(θ))dθ. (5.11)
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Observe that F(θ) is analytic at θ = 0.Thus F(θ) has aMaclaurin series expansion about θ = 0.
This Maclaurin expansion can be written in the form

F(θ) =
(
ReβR + rR − n

)
iθ +

1
2

(
βR2 + ReβR + rR

)
i2θ

+
∞∑

k=3

[
β−1ρk

(
eβR

)
+ rR

]
(iθ)k,

(5.12)

where we define ρ to be the operator ρ = R(dθ/dR). Choose R such that ReβR + rR − n = 0;
that is, R satisfies the equation xeβR + rx − n = 0. This R is shown to exist in the following
lemma.

Lemma 5.2. There exists a unique positive real solution to the equation xeβR + rx − n = 0.

Proof. We can rewrite the given equation in the form

x

n − rx
= e−βx. (5.13)

The desired solution is the x-coordinate of the intersection of the functions h(x) = x/(n − rx)
and g(x) = e−βx.

It can be seen from the preceding lemma that R → ∞ as n → ∞. With this choice of
R, we have

F(θ) = −1
2

(
βR2 + ReβR + rR

)
θ +

∞∑

k=3

[
β−1ρk

(
eβR

)
+ rR

]
(iθ)k. (5.14)

We now introduce the following notations:

φ =
[
(1/2)

(
βR2eβR + ReβR + rR

)1/2
]
θ,

ak =

[
β−1e−βRρk+2

(
eβR

)
+ rRe−βR

](
iφ
)k+2

(k + 1)!
[
1/2

(
βR2 + R + rRe−βR

)]k+2/2 ,

z = e−βR/2,

f(z) =
∞∑

k=1

akz
k.

(5.15)

Then F(θ) = −φ2 + f(z) and

Gn,r,β ∼ C

∫h

−h
exp

[
−φ2 + f(z)

]
dz, (5.16)

where h = (1/2)(βR2eβR + ReβR + rR)1/2e−3R/8 and C = A/[(1/2)(βR2eβR + rR)]1/2.
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We have defined z as a function of R. However, for the moment we consider z to be an
independent variable and expand ef(z) into a convergent Maclaurin series expansion of the
form

ef(z) =
∞∑

k=0

bkz
k, (5.17)

where b0 = ef(0) = 1, b1 = ef(0)f ′(0) = a1, and b2 = a2 + (a2
1/2).

Lemma 5.3. There is a constant Ro such that for all R > Ro,

|ak| <
∣∣2φ

∣∣k+2. (5.18)

Proof. We see that

|ak| =
Rk+2[1 + o

(
Rk+2)](2)(k+2)/2

(k + 2)!
(
βR2

)(k+2)/2[1 + o(R2)]

∣∣φ
∣∣k+2 (5.19)

which tends to

2k+2/2

(k + 2)!
< 2k+2

∣∣φ
∣∣k+2 (5.20)

as R → ∞. From this, it follows that there is a constant Ro satisfying (5.18).

Now, it will follow from Lemma 5.3 that the radius of convergence of (5.17) becomes
large when θ is near zero. Thus, z = e−βR/2 is within the domain of convergence.

With z = e−βR/2,

Gn,r,β ∼ C
s−1∑

k=0

(∫h

−h
e−φ

2
bk dφ

)
zk +Qs, (5.21)

where

Qs =
∫h

−h

( ∞∑

k=s

e−φ
2
bkz

k

)
dφ. (5.22)

Note that R → ∞ as n → ∞. Furthermore with

h =
1
2

(
βR2eβR + ReβR + rR

)1/2
e−3R/8

=
1
2

(
βR2 + R + rRe−βR

)1/2
e(R(4β−3))/8,

(5.23)

h → ∞ as R → ∞. From these facts and the known asymptotic expansion of the function of
the form

∫h

−h
e−φ

2(
polynomial in

∣∣φ
∣∣)dφ, (5.24)
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the replacement of h by ∞ in (5.16) is easily justified (see [11]). Hence

Gn,r,β ∼ C
s−1∑

k=0

(∫∞

−∞
e−φ

2
bk dφ

)
zk +Qs. (5.25)

It remains to show that Qs = o(|z|s) as R → ∞, that is, z → 0. From a lemma in [12],
|bk| ≤ |2φ|k+2(1 + |2φ|2)k−1. Thus,

∣∣∣∣∣

∞∑

k=s

bkz
k

∣∣∣∣∣ ≤
[∣∣2φ

∣∣s+2
(
1 +

∣∣2φ
∣∣2
)s−1

|z|s
][
1 + μ + μ2 + · · ·

]
, (5.26)

where μ = |2φ|(1 + |2φ|2)|z|.
Now, for μ < 1, we have

∣∣∣∣∣

∞∑

k=s

bkz
k

∣∣∣∣∣ ≤
∣∣2φ

∣∣s+2
(
1 +

∣∣2φ
∣∣2
)s−1

|z|s

1 − |z|∣∣2φ∣∣
(
1 +

∣∣2φ
∣∣2
) . (5.27)

Let M and Ps(|φ|)|z|s denote the denominator and the numerator, respectively, in
(5.27). Since |φ| ≤ h and z = e−βR/2, we have

∣∣∣φ3
∣∣∣|z| ≤ 1

8

(
βR2 + R + rRe−βR

)3/2
e−3R/8 −→ 0 as R −→ ∞. (5.28)

Hence for sufficiently large R,M ≥ 1/2. Moreover,

∫∞

−∞
e−φ

2
Ps

(∣∣φ
∣∣)dφ (5.29)

exists and tends to zero as R → ∞. Therefore,

|Qs|
|z|s ≤

∫∞

−∞

e−φ
2
Ps

(∣∣φ
∣∣)

M
dφ. (5.30)

Thus, |Qs| = o(|z|s). Consequently,

Gn,r,β ∼ C
∞∑

k=0

(∫∞

−∞
e−φ

2
bk dφ

)
e(−kβR)/2. (5.31)

Since
∫∞
−∞ e−x

2
xn = 0 for odd n, and b2k+1, as a polynomial in φ, contain only odd powers of φ,

it follows that

Gn,r,β ∼ C
∞∑

k=0

(∫∞

−∞
e−φ

2
b2kdφ

)
e−kβR. (5.32)



Discrete Dynamics in Nature and Society 19

Calculation yields

a1 =
βR3 + 3R2 + β−1R + rRe−βR

3!
[
(1/2)

(
βR2 + R + rRe−βR

)]3/2
(
iφ
)3
,

a2 =
βR4 + 6βR3 + 7R2 + β−1R + rRe−βR

4!
[
(1/2)

(
βR2 + R + rRe−βR

)]2
(
iφ
)4
.

(5.33)

Taking the first two terms of the asymptotic expansion of (5.32), we have

Gn,r,β ∼ C

∫∞

−∞
e−φ

2
bo dφ + Cz2

∫∞

−∞
e−φ

2
b2dφ. (5.34)

Since b2 = a2 + a2
1/2 and bo = 1,

Gn,r,β ∼ C

∫∞

−∞
e−φ

2
dφ + Cz2

∫∞

−∞
a2e

−φ2
dφ + C

z2

2

∫∞

−∞
e−φ

2
(
a2
1

)
dφ. (5.35)

Let I1, I2, and I3 denote, respectively, the integrals in (5.35). Then evaluating the last two
integrals by parts and since

∫∞
−∞ e−φ

2
dφ =

√
π , we obtain

I1 = C
√
π,

I2 =
Ce−R

√
π
(
βR3 + 6βR2 + β−1 + re−βR

)

8R
(
βR + 1 + re−βR

)2 ,

I3 =
−5Ce−R√π

(
βR2 + 3β−1R2 + re−βR

)2

24R
(
βR + 1 + re−βR

)3 .

(5.36)

Substituting the results in (5.35) and simplifying, we obtain

Gn,r,β ∼ C
√
π

(
1 +

D + E

F

)
, (5.37)

where

D =
(
3β2R3 + 8βR3 + 3βR + 3 − 10β−1 − 2re−βR

)
re−βR,

E =
(
3β3 − 5β2

)
R4 +

(
21β2 − 30β

)
R3 +

(
39β − 55

)
R2 +

(
24 − 30β−1

)
R +

(
3β−1 − 5β−2

)

F = 24ReβR
(
βR + 1 + re−βR

)3
.

,

(5.38)
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Since ReβR = (n − rR)β−1 and Rn = nn(βeβR + r)−n,

C =
n! exp

(
rR + β−1eβR − β

)

π
[
nn
(
βeβR + r

)−n][2(n − rR)β−1
]1/2(

βR + 1 + re−βR
)1/2 . (5.39)

Using Stirling’s approximation for n!, viz,

n! ∼ (2π)e−nnn+(1/2)
(
1 +

1
12n

)
, (5.40)

we obtain

C ∼ n1/2(1 + (1/12n)) exp
(
rR + β−1eβR − β

)(
ββR + r

)n

π1/2
[
(n − rR)β−1

]1/2(
βR + 1 + re−βR

)1/2
en

. (5.41)

Using (5.37), we obtain

Gn,r,β ∼ n1/2(1 + (1/12n)) exp
(
rR + β−1eβR − β − n

)(
ββR + r

)n
[
(n − rR)β−1

]1/2(
βR + 1 + re−βR

)1/2

(
1 +

D + E

F

)
. (5.42)

Acknowledgments

The authors wish to thank the referee for reading and evaluating the manuscript. They would
also like to thank the Office of the President and the Office of the Vice Chancellor for Research
and Extension of Mindanao State University-Main Campus for the support extended to this
research.

References

[1] L. C. Hsu and P. J.-S. Shiue, “A unified approach to generalized Stirling numbers,”Advances in Applied
Mathematics, vol. 20, no. 3, pp. 366–384, 1998.

[2] R. B. Corcino, “Some theorems on generalized Stirling numbers,” Ars Combinatoria, vol. 60, pp. 273–
286, 2001.

[3] R. B. Corcino, L. C. Hsu, and E. L. Tan, “Combinatorial and statistical applications of generalized
Stirling numbers,” Journal of Mathematical Research and Exposition, vol. 21, no. 3, pp. 337–343, 2001.
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