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A viral model of HIV infection of CD4+ T-cells with virus released period is formulated, and the
effect of this released period on the stability of the equilibria is investigated. It is shown that the
introduction of the viral released period can destabilize the system, and the period solution may
arise. The direction and stability of the Hopf bifurcation are also discussed. Numerical simulations
are presented to illustrate the results.

1. Introduction and Model Formulation

In the last decade, many mathematical models have been developed to describe the immuno-
logical response to infection with human immunodeficiency virus (HIV) (see [1–11]). Simple
HIV models have played a significant role in the development of a better understanding
of the disease and the various drug therapy strategies used against it. Perelson et al. in [1]
proposed a basic mathematical model to describe spread of HIV. Many other models [12–14]
which take the model proposed in [1] as their inspiration have been formulated. Zhou et al.
in [5] discussed the following ODE model:

dT

dt
= s − dT + aT

(
1 − T

Tmax

)
− βTV + ρI,

dI

dt
= βTV − (δ + ρ

)
I,

dV

dt
= qI − cV.

(1.1)
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In (1.1), T(t), I(t) represent, respectively, the concentration of healthy CD4+ T cells and
infected CD4+ T cells at time t, and V (t) represents the concentration of free HIV at time
t. These parameters are defined as follows: s is the source of CD4+ T cells precursors, d is
the natural death rate of CD4+ T cells, a is their growth rate (thus, a > d in general), and
Tmax is their carrying capacity, β is the contact rate between uninfected CD4+ T cells and virus
particles, δ is a blanket death term for infected cells, c is the clearance rate constant of virus,
q is the lytic death rate for infected cells, and ρ is cure rate from infected cells to healthy cells.
Parameters d, a, δ, β, ρ, c, Tmax, q, and s are positive values. They obtained the conditions for
which system (1.1) exists an orbitally asymptotically stable periodic solution.

Time delays of one type or another have been introduced to describe the time between
viral entry into a target cell and the production of new virus particles by many authors (see
[6–9]). Culshaw and Ruan in [6] introduced a discrete time delay to the model to describe the
time between infection of a CD4+ T-cell and the emission of viral particles on a cellular level.
They discussed locally asymptotically stable and obtained existence of the Hopf bifurcation
under some conditions. Herz et al. in [3] used a discrete delay to model the intracellular delay
that would substantially shorten the estimate for the half-life of free virus.

However, almost all of CD4+ models were discussed and the discrete delay had
denoted the time between infection of a CD4+ T-cell and the emission of viral particles on
a cellular level. According to reports of CDC government, they believed that there exists a
“window period” when the infected cell released virus. The time interval between point of
infection and detection of a seroconversion using US FDA-licensed third-generation antibody
assays averages 22 days. In primary HIV infection, a localized viral replication (eclipse)
takes place first, and lasts for 1–4 weeks [15]. If the amount of virus released does not
attend a certain level, a patient infected by infected CD4+ can not be examined. Therefore,
we introduce a discrete delay denoted the “window period” in their model. Efficacy of the
inhibition of viral replication is imposed upon the virus-host system by nucleoside analogue
therapy. Based on the work of Zhou et al. (see [5]), the HIV infection model with delay can
be written as follows:

dT

dt
= s − dT + aT

(
1 − T

Tmax

)
− βTV + ρI,

dI

dt
= βTV − (δ + ρ

)
I,

dV

dt
= qI(t − τ) − cV.

(1.2)

All the biological meanings of parameters are same as system (1.1). The time delay is
introduced in the system describing the dynamics of “window period,” that is, the released
virus term of infected CD4+ T cells is changed from ρI to qI(t − τ).

The initial conditions of system (1.2) are

T(0) = ϕ10, I(θ) = ϕ2(θ), V (0) = ϕ30, θ ∈ [−τ, 0],
ϕ10 ≥ 0, ϕ2(0) ≥ 0, ϕ30 ≥ 0.

(1.3)

With a standard argument given in [16], it easy to show that the solution T(t), I(t), V (t) with
initial conditions (1.2) exists and is unique for all t ≥ 0.
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Theorem 1.1. The solution of system (1.2) is positive and boundary.

Proof. First we proof the positivity of the solution of (1.2). From the first equation of (1.2),
we obtain

dT

dt
≥ aT
(

1 − T

Tmax

)
− dT − βTV. (1.4)

Solving it, we obtain

T(t) ≥ T(0) exp
∫ t

0

[
a

(
1 − T(t)

Tmax

)
− βV (t)

]
dt − dt ≤ 0. (1.5)

From the second and the third equation, we obtain

I(t) ≥ I(0) exp−(δ + ρ
)
t ≥ 0,

V (t) ≥ V (0) exp−ct ≥ 0.
(1.6)

Therefore, the solution of (1.2) is positive.

Second, we will prove the boundary of the solution of (1.2). Define d̂ = min{d, δ} and
L = T + I. Adding the first equation and the second equation of (1.2), it is easy to see

dL

dt
≤ s + aT

(
1 − T(t)

Tmax

)
− d̂L; (1.7)

if L ≥ Tmax, (1.7) become the following:

dL

dt
≤ s − d̂L. (1.8)

It is easy to get L ≥ s/d̂ .= M1. If L ≤ Tmax, (1.7) become the following:

dL

dt
≤ s + aT

(
1 − T(t)

Tmax

)
− d̂L

≤ s + aL
(

1
L(t)
Tmax

)
− d̂L.

(1.9)

It leads to L ≤ 2 max{s/d̂, Tmax} .= M2. Hence, for ε > 0 sufficiently small, there is a T1 such
that if t > T1, T(t) ≤ M + ε, I(t) ≤M2 + ε.

Again, for ε > 0 sufficiently small, we drive from the third equation of system (1.2)
that for t > T1 + τ

dV

dt
≤ q(M2 + ε) − cV. (1.10)
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A comparison argument shows that

V ≤ q(M2 + ε)
c

. (1.11)

Since this is true for arbitrary ε > 0, it follows that V ≤ q(M2)/c. If we set M = max{M2,

q(M2)/c}, such that S ≤M, I ≤M, V ≤ M. Hence, the solution of system (1.2) is boundary.

2. Equilibria Stability and Hopf Bifurcation

First we find all biologically feasible equilibria admitted by the system (1.2) and then study
the dynamics of the system around each equilibrium. We introduce the reproduction number
of differential-delay model (1.2), which is given by a similar expression

R0 =
T0

T
=

βqT0

c
(
δ + ρ

) . (2.1)

The R0 stands if one virus is introduced in a population of uninfected cells which infect the
total number of secondary infectious during their infectious period 1/c(δ + ρ).

The equilibria of the system (1.2) are as follows:

(i) uninfected equilibrium E0 = (T0, 0, 0), where T0 = (Tmax/2a)(a − d +√
(a − d)2 + (4as/Tmax));

(ii) an infected equilibrium E = (T, I, V ), which exists if R0 > 1, where

T =
c
(
δ + ρ

)
βq

, I =
1
δ

[
s − dT + aT

(
1 − T

Tmax

)]
, V =

q

c
I. (2.2)

Following the analysis in [5], we can see that, if R0 > 1, then the infection-free equilibrium E0

is unstable, and incorporation of a delay will not change the instability.
Next, we focus on investigating the local stability and Hopf bifurcation of the positive

equilibrium of (1.2). To study the local stability of the positive equilibrium E = (T, I, V ), we
consider the linearization of system (1.2) at the point E. Let us define

T(t) = x + T, I(t) = y + I, V (t) = z + V . (2.3)

The following transcendental characteristic equation is obtained:

λ3 + a1λ
2 + a2λ + a3 = e−λτ(b1λ + b2), (2.4)
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where the coefficients in this equation are expressed as follows:

a1 = c + δ + ρ + d − a +
2aT
Tmax

+ βV ,

a2 = c
(
δ + ρ

)
+
(
c + δ + ρ

)(
d − a +

2aT
Tmax

+ βV

)
− ρβV ,

a3 = c
(
δ + ρ

)(
d − a +

2aT
Tmax

+ βV

)
− cβρV ,

b1 = qβT,

b2 = qβT

(
d − a +

2aT
Tmax

)
.

(2.5)

For τ = 0, the characteristic equation (2.4) reduces to the following

λ3 + a1λ
2 + (a2 − b1)λ + a3 − b2 = 0. (2.6)

By the Routh-Hurwitz Criterion, it follows that all eigenvalues of (2.6) have negative real
parts if and only if

a1 > 0, a2 − b1 > 0, a3 − b2 > 0, a1(a2 − b1) − (a3 − b2) > 0. (2.7)

If R0 > 1, and d − a + (2aT/Tmax) > 0,

a1 > 0,

a2 − b1 =

((
c + δ + ρ

)(
d − a +

2aT
Tmax

)
+ (c + δ)βV

)
> 0,

a3 − b2 = cδβV > 0,

a1(a2 − b1) − (a3 − b2)

=

[
c + δ + ρ + d − a +

2aT
Tmax

+ βV

]((
c + δ + ρ

)(
d − a +

2aT
Tmax

)
+ (c + δ)βV

)
− cδβV > 0.

(2.8)

We know that all eigenvalues of (2.6) have negative real parts.
Clearly, if λ = iw with w > 0 is a root of (2.4). This is the case if and only if w satisfies

the following equation:

−iw3 − a1w
2 + ia2w + a3 = (coswτ + i sinwτ)(ib1w + b2). (2.9)
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Separating the real and imaginary parts, we have the following system that must be satisfied:

a3 − a1w
2 = b2 coswτ − b1w sinwτ,

a2w −w3 = b1w coswτ + b2 sinwτ.
(2.10)

We eliminate the trigonometric functions by squaring both sides of each equation above and
adding the resulting equations. We obtain the following sixth degree equation for w:

w6 +
(
a2

1 − 2a2

)
w4 +

(
a2

2 − 2a1a3 − b2
1

)
w2 + a2

3 − b2
2 = 0. (2.11)

Letting z = w2, then (2.11) becomes a third order equation in z:

z3 +m1z
2 +m2z +m3 = 0, (2.12)

where we have used the following notation for the coefficients of (2.12):

m1 = a2
1 − 2a2, m2 = a2

2 − 2a1a3 − b2
1, m3 = a2

3 − b2
2. (2.13)

In order to show that the endemic equilibrium E is locally stable we have to show that (2.12)
does not have a positive real solution which might give the square of w, that is, that (2.4)
cannot have purely imaginary solutions. The lemma below establishes conditions leading to
that result.

Lemma 2.1 (see [10]). For the polynomial equation (2.12)

(i) ifm3 < 0, then (2.12) has at least one positive root;

(ii) ifm3 ≥ 0 and Δ = m2
1 − 3m2 ≤ 0, then (2.12) has no positive root;

(iii) if m3 ≥ 0 and Δ = m2
1 − 3m2 > 0, then (2.12) has positive root if and only if z∗1 =

(−m1 +
√
Δ)/3, and h(z∗1) ≤ 0, where h(z) = z3 +m1z2 +m2z +m3.

Lemma 2.2 (see [10]). For the polynomial equation (2.12)

(i) if m3 ≥ 0 and Δ = m2
1 − 3m2 ≤ 0, then all roots with positive real parts of (2.4) have the

same sum as those of the polynomial equation (2.12) for all τ ;

(ii) if m3 < 0 or m3 ≥ 0, Δ = m2
1 − 3m2 > 0, and h(z∗1) ≤ 0, then all roots with positive real

parts of (2.4) have the same sum as those of the polynomial equation (2.12) for τ ∈ [0, τ0).

Summarizing the above analysis and noting that

m3 = a2
3 − b2

2 ≥ 0, (2.14)

we have the following theorem.
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Theorem 2.3. Assume that

(i) R0 > 1;

(ii) d − a + (2aT/Tmax) > 0;

(iii) m3 ≥ 0 andm2
1 − 3m2 ≤ 0.

Then the endemic equilibrium E of (2.4) is absolutely stable, that is, E is asymptotically stable for all
values of the delay τ ≥ 0.

Now, we turn to the bifurcation analysis. We use the delay τ as bifurcation parameter.
We view the solutions of (2.4) as functions of the bifurcation parameter τ . Let λ(τ) = η(τ) +
iw(τ) be the eigenvalue of (2.10) such that for some initial value of the bifurcation parameter
τ0 we have η(τ0) = 0, and w(τ0) = w0 (without loss of generality we may assume w0 > 0).
From (2.10) we have

τj =
1
w0

arccos

(−b1w
4
0 + (a2b1 − a1b2)w2

0 + a3b2

b2
1w

2
0 + b

2
2

)
+

2jπ
w0

, j = 0, 1, . . . . (2.15)

Also, we can verify that the following transversal condition

dRe λ(τ)
dτ

∣∣∣∣
τ=τ0

> 0 (2.16)

holds. By continuity, the real part of λ(τ) becomes positive when τ > τ0 and the steady state
becomes unstable. Moreover, a Hopf bifurcation occurs when τ passes through the critical
value τ0 (see [16]).

To establish the Hopf bifurcation at τ = τ0, we need to show that dRe λ(τ)/dτ |τ=τ0
> 0.

Differentiating (2.4) from both sides with respect to τ , it follows that

(
3λ2 + 2a1λ + a2

)dλ
dτ

=
[
−τe−λτ(b1λ + b2) + e−λτb1

]dλ
dτ

− λe−λτ(b1λ + b2). (2.17)

This gives

(
dλ

dτ

)−1

=
3λ2 + 2a1λ + a2 + τe−λτ(b1λ + b2) − e−λτb1

−λe−λτ(b1λ + b2)

=
3λ2 + 2a1λ + a2

−λe−λτ(b1λ + b2)
+

b1

λ(b1λ + b2)
− τ

λ

=
2λ3 + a1λ2 − a3

−λ2(λ3 + a1λ2 + a2λ + a3)
− b2

λ2(b1λ + b2)
− τ

λ
.

(2.18)
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Thus,

Sign
{
d(Re λ)
dτ

}∣∣∣∣
λ=iw0

= Sign

{
Re
(
dλ

dτ

)−1
}

λ=iw0

= Sign

{
Re

[
2λ3 + a1λ2 − a3

−λ2(λ3 + a1λ2 + a2λ + a3)

]
λ=iw0

+ Re
[ −b2

λ2(b1λ + b2)

]
λ=iw0

}

= Sign

{
Re

[ −2w3
0i − a1w

2
0 − a3

w2
0

(−w3
0i − a1w

2
0 + a2w0i + a3

)
]
+ Re

[
−b2

−w2
0(b1w0i + b2)

]}

= Sign

⎧⎨
⎩

2w6
0 +
(
a2

1 − 2a2
)
w4

0 − a2
3

w2
0

[(
a1w

2
0 − a3

)2 + (w3
0 − a2w0

)2] +
b2

2

w2
0

[
b2

2 + b
2
1w

2
0

]
⎫⎬
⎭

=
1
w2

0

Sign

{
2w6

0 +
(
a2

1 − 2a2
)
w4

0 + b
2
2 − a2

3

b2
2 + b

2
1w

2
0

}
.

(2.19)

Since

g(z) = 2σ3 +
(
a2

1 − 2a2

)
σ2 + b2

2 − a2
3, (2.20)

thus,

dg(z)
dz

= 6σ2 + 2
(
a2

1 − 2a2

)
σ. (2.21)

The roots of (2.21) can be expressed as

σ1 = 0, σ2 = −m1

3
. (2.22)

Noting that

m1 = a2
1 − 2a2

=
(
c + δ + ρ

)2 +

(
d − a +

2aT
Tmax

)2

− 2
(
δ + ρ

)
+ ρβV > 0,

(2.23)

hence,

dRe λ
dτ

∣∣∣∣
w=w0,τ=τ0

=
1
w2

0

Sign

{
2w6

0 +
(
a2

1 − 2a2
)
w4

0 + b
2
2 − a2

3

b2
2 + b

2
1w

2
0

}
> 0. (2.24)

The above analysis can be summarized into the following theorem.
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Theorem 2.4. Suppose that R0 > 1. If bothm3 ≥ 0 andm2
1 − 3m2 ≥ 0 are satisfied, then the endemic

equilibrium E of the delay model (1.2) is asymptotically stable when τ < τ0 and unstable when τ > τ0,
where

τ0 =
1
w0

arccos

(−b1w
4
0 + (a2b1 − a1b2)w2

0 + a3b2

b2
1w

2
0 + b

2
2

)
, (2.25)

when τ = τ0, a Hopf bifurcation occurs, that is, a family of periodic solutions bifurcates from E as τ
passes through the critical value τ0.

In this way, using time delay as a bifurcation parameter, Theorem 2.4 indicates that the
delay model could exhibit Hopf bifurcation at a certain value τ0 of the delay if the parameters
satisfy conditions. They show that a time delay in the infected-to-viral cells transmission term
can destabilize the system and periodic solutions can arise through Hopf bifurcation.

3. Direction and Stability of the Hopf Bifurcation

In this section, we will study the direction, stability, and the period of the bifurcating
periodic solutions. The approach we used here is based on the normal form approach, the
center manifold theory, and delay differential equation theory (see [16–19]). Throughout
this section, we always assume that system (1.2) undergoes Hopf bifurcation at the positive
equilibrium E = (S, I, V ), for τ = τk, and then iw is corresponding purely imaginary roots of
the characteristic equation at the positive equilibrium E = (S, I, V ).

Letting

T(t) = u1(t) + T, I(t) = u2(t) + I, V (t) = u3(t) + V , xi(t) = ui(τt), τ = τk + μ,
(3.1)

system (1.2) is transformed into an functional differential equation (FDE) in C = C([−1, 0],
R3) as

dx

dt
= Lμ(xt) + f(t, xt), (3.2)

where x(t) = (x1(t), x2(t), x3(t))T ∈ R3, Lμ : C → R, and f : R×C → R are given, respectively,
by

Lμ
(
φ
)
=
(
τk + μ

)
⎛
⎜⎜⎜⎜⎝
a − d − βV − 2aT

Tmax
0 −βT

βV −δ βT

0 0 −c

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎝
φ1(0)

φ2(0)

φ3(0)

⎞
⎟⎟⎠

+
(
τk + μ

)
⎛
⎜⎜⎝

0 0 0

0 0 0

0 p 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝
φ1(−1)

φ2(−1)

φ3(−1)

⎞
⎟⎟⎠,

(3.3)
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f
(
μ, φ
)
=
(
τk + μ

)
⎛
⎜⎜⎝

− a

Tmax
φ2

1(0) − βφ1(0)φ3(0)

βφ1(0)φ3(0)

0

⎞
⎟⎟⎠. (3.4)

By the Riesz representation theorem, there exists a function η(θ, μ) of bounded variation for
θ ∈ [−1, 0), such that

Lμφ =
∫0

−1
dη(θ, 0)φ(θ), for φ ∈ C. (3.5)

In fact, we can choose

η
(
θ, μ
)
=
(
τk + μ

)
⎛
⎜⎜⎜⎜⎝
a − d − βV − 2aT

Tmax
0 −βT

βV −δ βT

0 0 −c

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎝
φ1(0)

φ2(0)

φ3(0)

⎞
⎟⎟⎠

−
(
τk + μ

)
⎛
⎜⎜⎝

0 0 0

0 0 0

0 p 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝
φ1(−1)

φ2(−1)

φ3(−1)

⎞
⎟⎟⎠δ(θ + 1),

(3.6)

where δ is the Dirac delta function. For φ ∈ C([−1, 0], R3), define

Aμ

(
φ
)
=

⎧⎪⎨
⎪⎩
dφ(θ)
dθ

, θ ∈ [−1, 0),

dη(θ, s)φ(θ), θ = 0

R
(
θ, φ
)
=

⎧⎨
⎩

0, θ ∈ [−1, 0),

f
(
θ, φ
)
, θ = 0.

(3.7)

Then system (3.2) is equivalent to

ẋt = A(θ)xt + R(θ)xt, (3.8)

where x(θ) = x(t + θ), for θ ∈ [−1, 0).
For ψ ∈ C1([0, 1], (R3)∗), define

A∗ψ(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−dφ(s)

ds
, s ∈ (0, 1],

∫0

−1
dηT (t, 0)ψ(−t), s = 0,

(3.9)
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and a bilinear inner product

〈
ψ(s), φ(θ)

〉
= ψ(0)φ(0) −

∫0

−1

∫θ
ξ=0

ψ(ξ − θ)dη(θ)φ(ξ)dξ, (3.10)

where η(θ) = η(θ, 0). Then A(0) and A∗ are adjoint operators. By the discussion in Section 2,
we know that ±iwτk are eigenvalues of A(0). Thus, they are also eigenvalues of A∗. We
first need to compute the eigenvectors of A(0) and A∗ corresponding to iwτk and −iwτk,
respectively.

Suppose that q(θ) =
∫0
−1 (1, α, β)

Teiw
∗τkθ is the eigenvector of A(0) corresponding to

iw0τk, then

A(0)q(θ) = iwτkq(θ), A(0)q(0) = iwτkq(0). (3.11)

It follows from the definition of A(0) and (3.3), (3.5), and (3.6) that

τk

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝
a − d − βV − 2aT

Tmax
0 −βT

βV −δ βT

0 0 −c

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎝

0 0 0

0 0 0

0 p 0

⎞
⎟⎟⎠

⎤
⎥⎥⎥⎥⎦q(0) = iwτ

kq(0). (3.12)

That is,

τk

⎛
⎜⎜⎜⎜⎝
iw − a + d + βV +

2aT
Tmax

0 βT

−βV iw + δ −βT
0 −qe−iwτk iw + c

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

1

α

β1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0

0

0

⎞
⎟⎟⎠. (3.13)

Thus, we can easily obtain

q(0) =
(
1, α, β1

)T
, (3.14)

where

α = − iw + c
qe−iwτk

iw − a + d + βV +
(

2aT/Tmax

)

βT
, β1 = −

iw − a + d + βV +
(

2aT/Tmax

)

βT
.

(3.15)
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Suppose that q∗(s) = D(1, α∗, β∗1)e
iwτks,

τkD
(
1, α∗, β∗1

)
⎛
⎜⎜⎜⎜⎝

−iw − a + d + βV +
2aT
Tmax

0 βT

−βV −iw + δ −βT
0 qe−iwτ

k −iw + c

⎞
⎟⎟⎟⎟⎠ =

(
0 0 0

)
, (3.16)

where

α∗ =
−iw − a + d + βV +

(
2aT/Tmax

)

βV
, β∗1 = −−iw + δ

qe−iwτk
−iw − a + d + βV +

(
2aT/Tmax

)

βV
.

(3.17)

In order to assume 〈q∗(θ), q(θ)〉 = 1, we need to determine the value of D. From (3.10),
we have

〈
q∗(θ), q(θ)

〉
= D
(
1, α∗, β∗1

)(
1, α, β1

)T −
∫0

−1

∫θ
ξ=0

D
(
1, α∗, β∗

)
e−iwτ

kθdη(θ)
(
1, α, β

)T
eiwτ

kξdξ

= D

{
1 + αα∗ + β1β

∗
1 −
∫0

−1

∫θ
ξ=0

D
(
1, α∗, β∗

)
θeiwτ

kθdη(θ)
(
1, α, β1

)T}

= D

⎧⎪⎪⎨
⎪⎪⎩

1 + αα∗ + β1β
∗
1 + τ

ke−iwτ
k(

1, α∗, β∗1
)
⎛
⎜⎜⎝

0 0 0

0 0 0

0 q 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝

1

α

β1

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

= D

⎧⎪⎪⎨
⎪⎪⎩

1 + αα∗ + β1β
∗
1 + τ

ke−iwτ
k(

0, β∗1q, 0
)
⎛
⎜⎜⎝

1

α

β1

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

= D
{

1 + αα∗ + β1β
∗
1 + τ

ke−iwτ
k

αβ∗q
}
.

(3.18)

Thus, we can choose D as

D =
1

1 + αα∗ + β1β
∗
1 + τ

ke−iwτkαβ∗1q
. (3.19)

In the remainder of this section, we use the same notations as in [19]; we first compute the
coordinates to describe the center manifold C0 at μ = 0. Let xt be the solution of (3.8) when
μ = 0. Define

z(t) =
〈
q∗, xt

〉
, W(t, θ) = xt(θ) − 2 Re

{
z(t)q(θ)

}
. (3.20)
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On the center manifold C0, we have

W(t, θ) =W(z(t), z(t), θ), (3.21)

where

W(z(t), z(t), θ) = W20(θ)
z2

2
+W11(θ)zz +W02(θ)

z2

2
+W30(θ)

z3

6
+ · · · , (3.22)

z and z are local coordinates for center manifold C0 in the direction of q and q∗. Note that W
is real if x is real. We only consider real solutions. For solution xt ∈ C0 of (3.8), since μ = 0,
we have

ż(t) = iw0τ
kz + q∗(0)f

(
0,W(z, z, 0) + 2 Re

{
zq(0)

}) .= iw0τ
kz + q∗(0)f0(z, z). (3.23)

We rewrite this equation as

ż(t) = iw0τ
kz(t) + g(z, z) = g20

z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
+ · · · , (3.24)

where

g(z, z) = q∗(0)f0(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
+ · · · . (3.25)

It follows from (3.20) and (3.23) that

xt(θ) = w(t, θ) + 2 Re
{
z(t)q(θ)

}

= w(t, θ) + z(t)q(θ) + z(t)q
(
θ
)

= w20(θ)
z2

2
+w11zz +w02

z2

2
+
(
1, α, β1

)T
eiwτ

kθz +
(

1, α, β1

)T
e−iwτ

kθz + · · · .

(3.26)

It follows together with (3.4) that

f0(z, z) = f(0, xt)

= τk

⎛
⎜⎜⎜⎜⎝

− a

Tmax
x2

1t(0) − βx1t(0)x3t(0)

βx1t(0)x3t(0)

0

⎞
⎟⎟⎟⎟⎠



14 Discrete Dynamics in Nature and Society

= τk

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− a

Tmax

[
w

(1)
20 (0)

z2

2
+w(1)

11 (0)zz +w02(1)(0)
z2

2
+ z + z + · · ·

]

×
[
w

(1)
20 (0)

z2

2
+w(1)

11 (0)zz +w02(1)(0)
z2

2
+ z + z + · · ·

]

−β
[
w

(1)
20 (0)

z2

2
+w(1)

11 (0)zz +w02(1)(0)
z2

2
+ z + z + · · ·

]

×
[
w

(3)
20 (0)

z2

2
+w(3)

11 (0)zz +w
(3)
02 (0)

z2

2
+ β1z + β1z + · · ·

]

β

[
w

(1)
20 (0)

z2

2
+w(1)

11 (0)zz +w02(1)(0)
z2

2
+ z + z + · · ·

]

×
[
w

(3)
20 (0)

z2

2
+w(3)

11 (0)zz +w
(3)
02 (0)

z2

2
+ β1z + β1z + · · ·

]

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= τk

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
(
− a

Tmax
− ββ1

)
z2

2
+ 2
(
− a

Tmax
− ββ1

)
z2

2
− 2
(
− a

Tmax
+ βRe

(
β1
))

zz

−
[
− a

Tmax

(
w

(1)
20 (0) + 2w(1)

11 (0) +w
(3)
20 (0) + 2w(3)

11 (0)
)

−β
(
β1w

(1)
20 (0) + 2β1w

(1)
11 (0) +w

(3)
20 (0) + 2w(3)

11 (0)
) ]z2z

2
+ · · ·

2ββ1
z2

2
+ ββ1

z2

2
+ 2βRe β1zz

+
[
β1w

(1)
20 (0) + 2β1w

(1)
11 (0) +w

(3)
20 (0) + 2w(3)

11 (0)
]z2z

2
+ · · ·

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3.27)

Hence one can obtain

g(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
+ · · ·

= q∗(0)f0(z, z)
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= D
(

1, α, β1

)
τk

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
(
− a

Tmax
− ββ1

)
z2

2
+ 2
(
− a

Tmax
− ββ1

)
z2

2
− 2
(
− a

Tmax
+ βRe

(
β1
))
zz

−
[
− a

Tmax

(
w

(1)
20 (0) + 2w(1)

11 (0) +w
(3)
20 (0) + 2w(3)

11 (0)
)

−β
(
β1w

(1)
20 (0) + 2β1w

(1)
11 (0) +w

(3)
20 (0) + 2w(3)

11 (0)
)]z2z

2
+ · · ·

2ββ1
z2

2
+ ββ1

z2

2
+ 2βRe β1zz

+
[
β1w

(1)
20 (0) + 2β1w

(1)
11 (0) +w

(3)
20 (0) + 2w(3)

11 (0)
]z2z

2
+ · · ·

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= Dτk
{

2
[
− a

Tmax
− ββ1

]
z2

2
− 2
[

a

Tmax
+ ββ1

]
z2

2
− 2
[
− a

Tmax
+ βRe β1

]
zz

−
[
− a

Tmax

(
w

(1)
20 (0) + 2w(1)

11 (0) +w
(3)
20 (0) + 2w(3)

11 (0)
)

−β
(
β1w

(1)
20 (0) + 2β1w

(1)
11 (0) +w

(3)
20 (0) + 2w(3)

11 (0)
)]z2z

2

}

+Dατk
{

2ββ1
z2

2
+ ββ1

z2

2
+ 2βRe β1zz

+
[
β1w

(1)
20 (0) + 2β1w

(1)
11 (0) +w

(3)
20 (0) + 2w(3)

11 (0)
]z2z

2

}
+ · · · .

(3.28)

Comparing the coefficients with (3.25), we have

g20 = −Dτk2
(
− a

Tmax
+ ββ1

)
+ 2Dατkββ1,

g11 = −2Dτk
(
− a

Tmax
+ βRe

(
β1
))

+ 2DατkβRe
(
β1
)
,

g02 = 2Dτk
(
− a

Tmax
+ ββ1

)
+ 2Dατkββ1,

g21 = −Dτk
[
− a

Tmax

(
w

(1)
20 (0) + 2w(1)

11 (0) +w
(3)
20 (0) + 2w(3)

11 (0)
)

−β
(
β1w

(1)
20 (0) + 2β1w

(1)
11 (0) +w

(3)
20 (0) + 2w(3)

11 (0)
)]

+Dαβ
[
β1w

(1)
20 (0) + 2β1w

(1)
11 (0) +w

(3)
20 (0) + 2w(3)

11 (0)
]
.

(3.29)
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Since there are W20(θ) and W11(θ) in g21, we still need to compute them

ẇ = ẋt − żq − żq

=

⎧⎪⎨
⎪⎩
Aw − 2 Re

{
q∗(0)f0q(0)

}
, θ ∈ [−1, 0)

Aw − 2 Re
{
q∗(0)f0q(0)

}
+ f0, θ = 0

.= Aw +H(z, z, θ),

(3.30)

where

H(z(t), z(t), θ) = H20(θ)
z2

2
+H11(θ)zz +H02(θ)

z2

2
+H30(θ)

z3

6
+ · · · . (3.31)

From (3.30) and (3.31), we have

A(0)w(t, θ) − ẇ = −H(z, z, θ) = −H20(θ)
z2

2
−H11zz −H02

z2

2
+ · · · . (3.32)

In view of (3.32), one can obtain

A(0)w(t, θ) = A(0)w20
z2

2
+A(0)w11zz + · · · ,

ẇ = wzż +wzż

= w20(θ)z
(
iwτkz + g(z, z)

)

+w11(θ)
{[
iwτkz + g(z, z)

]
z + z
[
−iwτkz + g(z, z)

]}
+ · · ·

= 2iwτkw20(θ)
z2

2
+ · · · .

(3.33)

It follows from (3.32) and (3.33) that

A(0)w − ẇ =
[
A(0) − 2iwτkI

]
w20(θ)

z2

2
+A(0)w11(θ)zz + · · ·

= −H20
z2

2
−H11(θ)zz −H02(θ)

z2

2
− · · · .

(3.34)

Substituting the corresponding series into (3.30) and comparing the coefficients, we obtain

[
A(0) − 2iwτkI

]
w20(θ) = −H20(θ),

A(0)w11(θ) = −H11(θ).
(3.35)
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From (3.30), we know that, for all θ ∈ [−1, 0),

H(z, z, θ) = −2 Re
{
q∗f0(z, z)

}

= −q∗f0(z, z)q(θ) − q∗(θ)f0(z, z)q(θ)

= −g(z, z)g(θ) − g(z, z)q(θ)

= −(g02q(θ) + g02q(θ)
)z2

2
− (g11q(θ) + g11q(θ)

)
zz + · · · .

(3.36)

Comparing the coefficients with (3.31) gives that

H20(θ) = −(g02q(θ) + g02q(θ)
)
, (3.37)

H11(θ) = −(g11q(θ) + g11q(θ)
)
. (3.38)

From (3.35) and (3.37) and the definition of A(0), we have

ẇ20(θ) = 2iw20 + g20q(θ) + g20q(θ). (3.39)

Note that q(θ) = q(0)eiwτ
kθ, hence

w20 =
ig20

wτk
q(0)eiwτ

kθ +
ig20

3wτk
q(0)eiwτ

kθ + e2iwτkθE1. (3.40)

Similarly, from (3.35) and (3.38) and the definition of A(0), we have

w11 = − ig11

wτk
q(θ) +

ig11

wτk
q(θ) + E2,

2iwτkw20(θ) = −2g20q(0) − 2
3
g20q(0) + 2iwτkE1.

(3.41)

In what follows, we shall seek appropriate E1 and E2. From the definition of A and (3.35), we
obtain

∫0

−1
dη(θ)w20(θ) = 2iwτkw20(0) −H20(0), (3.42)

∫0

−1
dη(θ)w11(θ) = −H11(0), (3.43)
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where g(θ) = g(0, θ). By (3.37) and (3.38), we have

H20(0) = −g20q(0) − g20q(0) − 2τk

⎛
⎜⎜⎜⎝

− a

Tmax
+ ββ1

ββ1

0

⎞
⎟⎟⎟⎠, (3.44)

H11(0) = −g11q(0) − g11q(0) − 2τk

⎛
⎜⎜⎜⎝

− a

Tmax
+ ββ1

βRe β1

0

⎞
⎟⎟⎟⎠. (3.45)

Substituting (3.42) into (3.44) and noticing that

(
2iwτk −

∫0

−1
e2iwτkθdη(θ)

)
E1 = 2τk

⎛
⎜⎜⎜⎝

− a

Tmax
+ ββ1

ββ1

0

⎞
⎟⎟⎟⎠ (3.46)

which leads to

⎛
⎜⎜⎜⎜⎜⎝

2iw − a + d + βV +
2aT
Tmax

0 βT

−βV 2iw + δ −βT
0 −qeiwτk 2iw + c

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
E1

1

E1
2

E1
3

⎞
⎟⎟⎟⎠ = 2

⎛
⎜⎜⎜⎝

− a

Tmax
+ ββ1

βRe β1

0

⎞
⎟⎟⎟⎠, (3.47)

it follows that

E1
1 =

2
A

∣∣∣∣∣∣∣∣∣∣

− a

Tmax
+ ββ1 0 βT

ββ1 2iw + δ −βT
0 −qeiwτk 2iw + c

∣∣∣∣∣∣∣∣∣∣
,

E1
2 =

2
A

∣∣∣∣∣∣∣∣∣∣∣

2iw − a + d + βV +
2aT
Tmax

− a

Tmax
+ ββ1 βT

−βV ββ1 −βT
0 0 2iw + c

∣∣∣∣∣∣∣∣∣∣∣
,

E1
3 =

2
A

∣∣∣∣∣∣∣∣∣∣∣

2iw − a + d + βV +
2aT
Tmax

0 − a

Tmax
+ ββ1

−βV 2iw + δ ββ1

0 −qeiwτk 0

∣∣∣∣∣∣∣∣∣∣∣
,

(3.48)
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where

A =

∣∣∣∣∣∣∣∣∣∣∣

2iw − a + d + βV +
2aT
Tmax

0 βT

−βV 2iw + δ −βT
0 −qeiwτk 2iw + c

∣∣∣∣∣∣∣∣∣∣∣
. (3.49)

Similarly, substituting (3.43) into (3.45), we can get

⎛
⎜⎜⎜⎜⎝

−a + d + βV +
2aT
Tmax

0 βT

−βV δ −βT
0 −q c

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
E2

1

E2
2

E2
3

⎞
⎟⎟⎟⎠ = 2

⎛
⎜⎜⎜⎝

− a

Tmax
+ ββ1

βRe β1

0

⎞
⎟⎟⎟⎠, (3.50)

and hence,

E2
1 =

2
B

∣∣∣∣∣∣∣∣∣∣

− a

Tmax
+ ββ1 0 βT

βRe β1 2iw + δ −βT
0 −qeiwτk 2iw + c

∣∣∣∣∣∣∣∣∣∣
,

E2
2 =

2
B

∣∣∣∣∣∣∣∣∣∣

2iw − a + d + βV +
2aT
Tmax

− a

Tmax
+ ββ1 βT

−βV βRe β1 −βT
0 0 2iw + c

∣∣∣∣∣∣∣∣∣∣
,

E2
3 =

2
B

∣∣∣∣∣∣∣∣∣∣∣

2iw − a + d + βV +
2aT
Tmax

0 − a

Tmax
+ ββ1

−βV 2iw + δ βReβ1

0 −qeiwτk 0

∣∣∣∣∣∣∣∣∣∣∣
,

(3.51)

where

B =

∣∣∣∣∣∣∣∣∣∣

−a + d + βV +
2aT
Tmax

0 βT

−βV δ −βT
0 −q c

∣∣∣∣∣∣∣∣∣∣
. (3.52)
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Figure 1: (a)–(c) show that uninfected cells, infected cells, and virus converge to their equilibrium with
parametric values as stated in the text with τ = 0.75. They show that the equilibrium is asymptotically
stable.

It follows from (3.29) that g21 can be expressed explicitly. Thus, we can compute the following
values:

c1(0) =
i

2w0τk

(
g11g20 − 2

∣∣∣g2
11

∣∣∣ − g2
02

2

)
,

σ2 = − Re(c1(0))

Re
(
λ′
k

(
τkj

)) ,

β2 = 2 Re(c1(0)),

T2 = −
Im(c1(0)) + σ2Im

(
λ′
k

(
τkj

))

wτk
, k = 0, 1, 2, . . . .

(3.53)
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Figure 2: (a)–(c) are the oscillations of uninfected cells, infected cells, and virus.

By the result of Hassard et al. [19], we have the following.

Theorem 3.1. In (3.53), the sign of σ2 determined the direction of Hopf bifurcation: if σ2 > 0, (< 0),
then the Hopf bifurcation is supercritical (subcritical) and the bifurcating periodic solution exists for
τk > τ

k
j (< τ

k
j ). β2 determines the stability of the bifurcating periodic solution: the bifurcating periodic

solution is stable (unstable) if β2 < 0 (> 0), and T2 determines the period of the bifurcating periodic
solution: the period increases (decreases) if T2 > 0 (<0).

4. Simulation

In this section, we use numerical simulations to illustrate the theoretical results obtained in
previous sections. As an example, we take the parameter values as follows: s = 5, a = 0.97,
d = 0.0002, Tmax = 1200, δ = 0.26, q = 120, c = 2.4, β = 0.00024, τ = 0.75, and ρ = 0.01. By
using the classical implicit format solving the delay differential equations and the method of
steps for differential equations, we can solve the numerical solutions of (2.4) via the software
package DEDiscover.

Simulation of the model in this situation produces stable dynamics as is presented
in Figure 1. Plots (a)–(c) of Figure 1 show that uninfected cells, infected, cells and virus
converge to their equilibrium with the parametric values. They show that the equilibrium
E under some conditions (see Theorem 2.3) is asymptotically stable.
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Figure 3: (a)–(c) show the uninfected cells, infected cells and virus with ρ1 = 0.01 and ρ2 = 0.61. They show
the cure rate is a important parameter.

Next, we use a same set of parameter values as those in Figure 1, but we vary the value
of τ = 2.01. Thus the conditions of Theorem 2.4 are satisfied. Then the system (2.4) has an
asymptotically stable periodic orbit (see Figure 2). Plots (a)–(c) of Figure 2 are the oscillations
of uninfected cells, infected cells, and virus if τ attend a certain level (see Theorem 2.4).
Figure 2 shows that there is a periodic solution.

We also find that the infection would always keep stability when the cure rate ρ is
larger. This can be analyzed from the expression of R0 and the conditions of Theorem 2.3. For
example, we know that the oscillations of uninfected cells, infected cells and virus in Figure 3.
And if we select ρ1 = 0.01, ρ2 = 0.61, and τ = 2.01 and the other parameter values are same
in Figure 1, then the infection would be stale (see Figure 3). Thus we can claim that the cure
rate ρ is a very important parameter. The results show that if we improve the cure rate, we
may control the disease.

5. Conclusion

An epidemic model of HIV infection of CD4+ T cells with virus released period is studied.
Mathematical analyses of the model equations with regard to dynamic behaviors of
equilibria, Hopf bifurcation are analyzed. The basic reproduction number is obtained. In
[5], if R0 < 1, the disease-free equilibrium is globally stable and the disease dies out. If
R0 > 1, a unique endemic equilibrium exists, and it is globally asymptotically stable. In our
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model, we determine criteria for Hopf bifurcation using the time delay as the bifurcation
parameter based on the differential-delay model. We show that positive equilibrium is locally
asymptotically stable when time delay is suitably small, while a Hopf bifurcation can occur
as the delay increases. Hopf bifurcation has helped us in finding the existence of a region of
instability in the neighborhood of a nonzero endemic equilibrium where the population will
survive undergoing regular fluctuations. We should discuss the length of the delay which
impact on the stability of our model.
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