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By employing a generalized Riccati technique and an integral averaging technique, some new
oscillation criteria are established for the second-order matrix differential system U′ = A(x)U +
B(t)V , V ′ = C(x)U−A∗(t)V , whereA(t), B(t), and C(t) are (n×n)-matrices, and B,C are Hermitian.
These results are sharper than some previous results.

1. Introduction

In this paper, we are concerned with the oscillatory behavior of the linear matrix Hamiltonian
system of the form

U′ = A(x)U + B(t)V,

V ′ = C(x)U −A∗(t)V,
t ≥ t0, (1.1)

where A(t), B(t), and C(t) are (n × n)-matrices and B, C are Hermitian, that is, B∗(t) = B(t),
C∗(t) = C(t). For any matrix A, the transpose of A is denoted by A∗.

For any real symmetric matrixes P , Q, R, we write P ≥ Q meaning that P −Q ≥ 0; that
is, P −Q is positive semidefinite and P > Q meaning that P −Q > 0; that is, P −Q is positive
definite.

Definition 1.1. A solution (U(t), V (t)) of (1.1) is called nontrivial if detU(t)/= 0 for at least one
t ≥ t0.
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Definition 1.2. A nontrivial solution (U(t), V (t)) of (1.1) is called prepared if U∗(t)V (t) −
V ∗(t)U(T) = 0 for every t ≥ t0.

Definition 1.3. System (1.1) is called oscillatory on [t0,∞) if there is a nontrivial prepared
solution (U(t), V (t)) of (1.1) having the property that detU(t) vanishes on [T,∞) for every
T > t0. Otherwise, it is called nonoscillatory.

Note 1. It follows from [1, Theorem 8.1, page 303] that if the system (1.1) is oscillatory on
[t0,∞), then every nontrivial prepared solution (U(t), V (t)) of (1.1) has the property that
detU(t) vanishes on [T,∞) for every T > t0.

The oscillation problem for system (1.1) and its various particular cases such as the
second-order matrix differential systems

[Y(t)]′′ +Q(t)Y(t) = 0, t ∈ [t0,∞), (1.2)

[P(t)Y(t)]′′ +Q(t)Y(t) = 0, t ∈ [t0,∞), (1.3)

has been studied extensively in recent years, for example, see [1–23]. Some of the most
important conditions that guarantee that system (1.2) is oscillatory are as follows:

limt→∞λ1{
∫ t
t0
Q(s)ds} = ∞ (see [4, 6]),

limt→∞ inf(1/t)
∫ t
t0

∫s
t0
trQ(τ)dτ ds > −∞ and

limt→∞ sup(1/t)
∫ t
t0
λ1[
∫s
t0
Q(τ)dτ]ds = ∞ or

limt→∞ sup(1/t)
∫ t
t0
{λ1[

∫s
t0
Q(τ)dτ]}2ds = ∞ (see [5]),

limt→∞ sup(1/tm−1)λ1[
∫ t
t0
(t − s)m−1Q(s)ds]ds = ∞,m > 2 is an integer (see [2]).

We particularly mention the other results of Erbe et al. [2] who proved the following
theorem.

Erbe, Kong, and Ruan’s Theorem

LetH(t, s) and h(t, s) be continuous onD = {f(t, s) : t ≥ s ≥ t0} such thatH(t, t) = 0 for t ≥ t0
and H(t, s) > 0 for t > s ≥ t0. We assume further that the partial derivative (∂/∂s)H(t, s) =
Hs(t, s) is nonpositive and continuous for t ≥ s ≥ t0 and h(t, s) is defined by

Hs(t, s) = −h(t, s)[H(t, s)]1/2, (t, s) ∈ D. (1.4)

Finally, we assume that

lim
t→∞

sup
1

H(t, t0)
λ1

[∫ t

t0

(
H(t, s)Q(s) − 1

4
h2(t, s)I

)
ds

]

= ∞, (1.5)

where λ1[A] ≥ λ2[A] ≥ · · · ≥ λn[A] denotes the usual ordering of the eigenvalues of the
symmetric matrix A; I is the n × n identity matrix. Then system (1.2) is oscillatory.
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And, later, Meng et al. [3] gave the following oscillation criteria.

Meng, Wang, and Zheng’s Theorem

Let H(t, s) and h(t, s) be continuous on D = {(t, s) : t ≥ s ≥ t0} such that H(t, t) = 0 for t ≥ t0
and H(t, s) > 0 for t > s ≥ t0. We assume further that the partial derivative (∂/∂s)H(t, s) =
Hs(t, s) is nonpositive and continuous for t ≥ s ≥ t0 and h(t, s) is defined by

Hs(t, s) = −h(t, s)[H(t, s)]1/2, (t, s) ∈ D. (1.6)

If there exists a function f ∈ C1[t0,∞) such that

lim
t→∞

sup
1

H(t, t0)
λ1

[∫ t

t0

(
H(t, s)R(s) − 1

4
a(s)h2(t, s)I

)
ds

]

= ∞, (1.7)

where a(t) = exp{−2 ∫ tf(s)ds}, R(t) = a(t){Q(t) + f2(t)I − f ′(t)I}. Then system (1.2) is
oscillatory.

However, all these results are given in the form of limt→∞ sup λ1[·] = +∞. In this paper,
using the generalized Riccati technique and the integral averaging technique, we establish
some new oscillation criteria which are different from most known ones in the sense that
they are based on a new weighted function �(t, s, l) and which are presented in the form of
limt→∞ sup λ1[·] > const. Our results are presented in the form of a high degree of generality.
Although the conditions in our main results (Theorem 2.1) seem to be more complicated
compared to the known ones, with appropriate choices of the functions �, f , we derive a
number of oscillation criteria (see also (2.2)), which extend, improve, and unify a number of
existing results and handle the cases not covered by known criteria. In particular, this can be
seen by the examples given at the end of this paper.

2. Main Results

In the last literature, most oscillation results involve a function H = H(t, s) ∈ C(D,R+),
where D = {(t, s) : t0 ≤ s ≤ t < ∞}, which satisfies H(t, t) = 0, H(t, s) > 0 for t > s and has
partial derivative ∂H/∂s on D such that

∂H

∂s
= −h(t, s)[H(t, s)]1/2, (2.1)

where h is locally integrable with respect to s in D.
In this paper, let a function � = �(t, s, l) be continuous on D = {(t, s, l) : t0 ≤ l ≤ s ≤ t <

+∞}, which satisfies �(t, t, l) = 0, �(t, s, l) > 0 for l ≤ s < t and has the partial derivative ∂�/∂s
on D such that ∂�/∂s is locally integrable with respect to s inD, and we call the two positive
numbers γ and δ admissible [22] if they satisfy the condition γδ > 1.
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Theorem 2.1. If there exist a function f ∈ C1[t0,∞) and two admissible numbers γ , δ such that

lim
t→∞

sup
1

�2(t, t0, t0)
λ1

[∫ t

t0

(
�
2(t, s, t0)Ψ(s) + γδP(t, s, t0)

)
ds

]

= ∞, (2.2)

where Ψ(s) = b(s)[−C − f(A + A∗) + f2B − f ′I](s), I is the n × n identity matrix, b(s) =
exp(−2 ∫sx0

f(ς)dς), and

P(t, s, t0) = b(s)�2(t, s, t0)
[
f(A +A∗) −A∗B−1A

]
(s)

− b(s)�(t, s, t0)
[
�
′
s(t, s, t0) − f(s)�(t, s, t0)

] ×
[
A∗B−1 + B−1A

]
(s)

− b(s)
[(
�
′
s(t, s, t0) − f(s)�(t, s, t0)

)
B−1/2(s) − f(s)�(t, s, t0)B1/2(s)

]2
,

(2.3)

then system (1.1) is oscillatory.

Proof. Suppose to the contrary that system (1.1) is nonoscillatory. Then there exists a
nontrivial prepared solution (U(t), V (t)) of (1.1) such that U(t) is nonsingular on [T,∞) for
some T > t0. Without loss of generality, we may assume that detU(t)/= 0 for t ≥ t0. Define

W(t) = b(t)
[
V (t)U−1(t) + f(t)I

]
, t ≥ t0. (2.4)

Then W(t) is well defined, Hermitian, and it satisfies the Riccati equation

{
W ′ +WA +A∗W +

1
b
WBW − f[WB + BW − 2W] + Ψ

}
(t) = 0 (2.5)

on [t0,∞). Multiplying (2.5), with t replaced by s, by �
2(t, s, t0), integrating from t0 to t, and

picking two admissible numbers γ and δ, we obtain

∫ t

t0

�
2(t, s, t0)Ψ(s)ds = −

∫ t

t0

�
2(t, s, t0)W ′(s)ds −

∫ t

t0

�
2(t, s, t0)
b(s)

[WBW](s)ds

−
∫ t

t0

�
2(t, s, t0)

[
WA +A∗W − f(WB + BW − 2W)

]
(s)ds

= �
2(t, t0, t0)W(t0) −

∫ t

t0

�
2(t, s, t0)
b(s)

[WBW](s)ds

−
∫ t

t0

�
2(t, s, t0)

[
WA +A∗W − f(WB + BW)

]
(s)ds
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+ 2
∫ t

t0

�(t, s, t0)
[
�
′
s(t, s, t0) − f(s)�(t, s, t0)

]
W(s)ds

= �
2(t, t0, t0)W(t0) − 1

γ

∫ t

t0

[(Q∗Q)(t, s, t0)]ds − γδ

∫ t

t0

[P(t, s, t0)]ds

− γδ − 1
γδ

∫ t

t0

�
2(t, s, t0)
b(s)

[
(RW)∗(RW)

]
(s)ds,

(2.6)

where R(t) =
√
B(t) and

Q(t, s, t0) =
�(t, s, t0)√

δb(s)
(RW)(s) − γ

[√
δb(s)�(t, s, t0)

](
fR − R−1A

)
(s)

+ γ
√
δb(s)

[
�
′
s(t, s, t0) − f(s)�(t, s, t0)

]
R−1(s).

(2.7)

Then

∫ t

t0

(
�
2(t, s, t0)Ψ(s) + γδP(t, s, t0)

)
ds = �

2(t, t0, t0)W(t0) − 1
γ

∫ t

t0

[(Q∗Q)(t, s, t0)]ds

− γδ − 1
γδ

∫ t

t0

�
2(t, s, t0)
b(s)

[
(RW)∗(RW)

]
(s)ds

≤ �
2(t, t0, t0)W(t0).

(2.8)

This implies that

λ1

[∫ t

t0

(
�
2(t, s, t0)Ψ(s) + γδP(t, s, t0)

)
ds

]

≤ �
2(t, t0, t0)λ1(W(t0)), (2.9)

and then

1
�2(t, t0, t0)

λ1

[∫ t

t0

(
�
2(t, s, t0)Ψ(s) + γδP(t, s, t0)

)
ds

]

≤ λ1(W(t0)). (2.10)

Taking the upper limit in both sides of (2.10) as t → ∞, the right-hand side is always
bounded, which contradicts condition (2.2). This completes the proof of Theorem 2.1.
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By applying the matrix theory [8, 21], we have the following theorem from
Theorem 2.1.

Theorem 2.2. If there exist a function f ∈ C1[t0,∞) and two admissible numbers γ , δ such that

lim
t→∞

sup
1

�2(t, t0, t0)

[∫ t

t0

(
�
2(t, s, t0) trΨ(s) + γδ trP(t, s, t0)

)
ds

]

= ∞, (2.11)

where Ψ(s), b(s), and P(t, s, t0) are as in Theorem 2.1, then system (1.1) is oscillatory.

By [8], the trace tr : S → R is a positive linear functional on S, where the space S is
the linear space of all real symmetric n×nmatrices. And noting that two admissible numbers
γ , δ satisfying γδ > 1, then we have the following corollary from Theorem 2.2.

Corollary 2.3. If there exist a function f ∈ C1[t0,∞) and two admissible numbers γ , δ such that

lim
t→∞

sup
1

�2(t, t0, t0)

[∫ t

t0

(
�
2(t, s, t0) trΨ(s) + trP(t, s, t0)

)
ds

]

= ∞, (2.12)

where Ψ(s), b(s), and P(t, s, t0) are as in Theorem 2.1, then system (1.1) is oscillatory.

Proof. By virtue of a simple property of limits

lim
t→∞

sup
1

�2(t, t0, t0)

[∫ t

t0

(
�
2(t, s, t0) trΨ(s) + γδ trP(t, s, t0)

)
ds

]

> lim
t→∞

sup
1

�2(t, t0, t0)

[∫ t

t0

(
�
2(t, s, t0) trΨ(s) + trP(t, s, t0)

)
ds

] (2.13)

and (2.12), the conclusion follows from Theorem 2.2.

If we choose �(t, s, t0) =
√
H(t, s)/H(t, t0) in Theorem 2.1, then

�(t, t0, t0) =

√
H(t, t0)
H(t, t0)

= 1, (2.14)

we have the following.

Corollary 2.4. If there exist a function f ∈ C1[t0,∞) and two admissible numbers γ , δ such that

lim
t→∞

sup
1

H(t, t0)
λ1

[∫ t

t0

(
H(t, s)Ψ1(s) + γδP1(t, s)

)
ds

]

= ∞, (2.15)
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where H(t, s) are as in Erbe, Kong, and Ruan’s Theorem, Ψ1(s) = b(s)[−C − γδA∗B−1A + f2B −
f ′I + γδf(A∗B−1 + B−1A)](s), I is the n × n identity matrix, b(s) = exp(−2 ∫s

x0
f(ς)dς), and

P1(t, s) =
b(s)h(t, s)

√
H(t, s)

2

[
A∗B−1 + B−1A

]
(s)

− b(s)
[(

h(t, s)
2

+ f(s)
√
H(t, s)

)
B−1/2(s) + f(s)

√
H(t, s)B1/2(s)

]2
,

(2.16)

then system (1.1) is oscillatory.

Remark 2.5. In the last literature [1–4, 12, 15, 23], most oscillation results were given in the
form of limt→∞ sup(1/(H(t, t0)))λ1[·] = +∞. Obviously, Theorem 2.1 extends and improves
a number of existing results and handles the cases not covered by known criteria, which can
be seen from Corollary 2.4.

If we choose f(t) = 0 and let �(t, s, r) =
√
(t − s)α/(t − r)β for α, β > 1/2 in Theorem 2.1,

then we have the following.

Corollary 2.6. If there exist two real numbers α, β > 1/2 and two admissible numbers γ , δ such that

lim
t→∞

sup
1
tα
λ1

{∫ t

t0

(t − s)α

γδ

[
α(t − s)α−1

2

(
A∗B−1 + B−1A

)
−A∗B−1A

−α(t − s)2(α−1)

4
B−1 − γδC

]

ds

}

= ∞,

(2.17)

then system (1.1) is oscillatory.

If we choose appropriate f in Theorem 2.1 such that b(t)B−1(t) ≤ I for t ≥ t0 and let
�(t, s, r) =

√
(t − s)α/(t − r) for α > 2, then we have the following

Corollary 2.7. If there exist a function f ∈ C1[t0,∞) and two admissible numbers γ , δ such that for
some α > 1/2 and for every r ≥ t0,

lim
t→∞

sup
1

t2α+1
λ1

[∫ t

r

(t − s)2(s − r)2α
(
Ψ(s) + γδP1(t, s, r)

)
ds

]

>
α

(2α − 1)(2α + 1)
, (2.18)
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where Ψ(s), b(s) are as in Theorem 2.1 and

P1(t, s, r) = b(s)
[
f(A +A∗) −A∗B−1A

]
(s)

− b(s)
(t − s)(s − r)

[r + αt − (α + 1)s]
[
A∗B−1 + B−1A

]
(s)

+ b(s)f(s)
[
A∗B−1 + B−1A − f

(
B + 2I + B−1

)]
(s)

+
2b(s)f(s)

(t − s)(s − r)
[r + αt − (α + 1)s]

(
I + B−1

)

− b(s)

(t − s)2(s − r)2
B−1,

(2.19)

then system (1.1) is oscillatory.

Proof. Assume to the contrary that (1.1) is nonoscillatory. Then U(t) is nonsingular for all
sufficiently large t, say t ≥ T ≥ t0. Similar to the proof of Theorem 2.1, for t ≥ T ≥ t0, we have

∫ t

T

(
�
2(t, s, T)Ψ(s) + γδP1(t, s, T)

)
ds ≤ γδ

∫ t

T

b(s)B−1(s)
[
�
′
s(t, s, T)

]2
ds

≤ γδ

∫ t

T

(s − T)2(α−1)[T + αt − (α + 1)s]2I.

(2.20)

This implies that

λ1

[∫ t

T

(
�
2(t, s, T)Ψ(s) + γδP1(t, s, T)

)
ds

]

≤
∫ t

T

(s − T)2(α−1)[T + αt − (α + 1)s]2ds

=
α

(2α − 1)(2α + 1)
(t − T)2(α+1).

(2.21)

Then

lim
t→∞

sup
1

t2α+1
λ1

[∫ t

T

(
�
2(t, s, T)Ψ(s) + γδP1(t, s, T)

)
ds

]

≤ α

(2α − 1)(2α + 1)
, (2.22)

which contradicts assumption (2.18). This completes the proof of Corollary 2.7.

When A(t) ≡ 0, B−1(t) = P(t) and −C(t) = Q(t) for t ≥ t0, then system (1.1) reduces to
system (1.3).
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As an immediate result of Theorem 2.1, we have the following theorem.

Theorem 2.8. If there exist a function f ∈ C1[t0,∞) and two admissible numbers γ , δ such that

lim
t→∞

sup
1

�2(t, t0, t0)
λ1

[∫ t

t0

(
�
2(t, s, t0)Ψ1(s) + γδP2(t, s, t0)

)
ds

]

= ∞, (2.23)

where Ψ1(s) = b(s)[Q(t) + f2P−1(t) − f ′I](s), I is the n × n identity matrix, b(s) =
exp(−2 ∫sx0

f(ς)dς), and

P2(t, s, t0) = −b(s)
[(
�
′
s(t, s, t0) − f(s)�(t, s, t0)

)
P 1/2(s) − f(s)�(t, s, t0)P−1/2(s)

]2
, (2.24)

then system (1.3) is oscillatory.

By applying the matrix theory [8, 21], we have the following theorem from
Theorem 2.8.

Theorem 2.9. If there exist a function f ∈ C1[t0,∞) and two admissible numbers γ, δ such that

lim
t→∞

sup λ1

[∫ t

t0

(
�
2(t, s, t0) trΨ1(s) + γδ trP2(t, s, t0)

)
ds

]

= ∞, (2.25)

where Ψ1(s), b(s), and P2(t, s, t0) are as in Theorem 2.8, then system (1.3) is oscillatory.

By [8], the trace tr : S → R is a positive linear functional on S, where the space S is
the linear space of all real symmetric n×nmatrices. And noting that two admissible numbers
γ , δ satisfying γδ > 1, then we have the following corollary from Theorem 2.9.

Corollary 2.10. If there exist a function f ∈ C1[t0,∞) and two admissible numbers γ , δ such that

lim
t→∞

sup λ1

[∫ t

t0

(
�
2(t, s, t0) trΨ1(s) + trP2(t, s, t0)

)
ds

]

= ∞, (2.26)

where Ψ1(s), b(s), and P2(t, s, t0) are as in Theorem 2.8, then system (1.3) is oscillatory.

By Corollary 2.7 and (1.3), we easily get the following theorem:

Theorem 2.11. If there exist a function f ∈ C1[t0,∞) and two admissible numbers γ , δ such that for
some α > 1/2 and for every r ≥ t0,

lim
t→∞

sup
1

t2α+1
λ1

[∫ t

r

(t − s)2(s − r)2α
(
Ψ1(s) + γδP3(t, s, r)

)
ds

]

>
α

(2α − 1)(2α + 1)
, (2.27)
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where Ψ1(s), b(s) are as in Theorem 2.8 and

P3(t, s, r) = −b(s)f2(s)
(
P + 2I + P−1

)
(s) − b(s)

(t − s)2(s − r)2
P(s)

+
2b(s)f(s)

(t − s)(s − r)
[r + αt − (α + 1)s](I + P)(s),

(2.28)

then system (1.3) is oscillatory.

3. Examples

Example 3.1. Consider the Euler differential system

Y ′′ + diag
(
n

t2
,
m

t2

)
Y = 0, t ≥ 1, m ≥ n > 0. (3.1)

If we choose f(t) = 0, then a(t) = 1, Ψ1(t) = diag(n/t2, m/t2) and P3(t, s, r) = (1/((t − s)2(s −
r)2))I. Note that for each r ≥ 1,

lim
t→∞

1
t2α+1

[∫ t

r

(t − s)2(s − r)2α
(

m

t2
− γδ

(t − s)2(s − r)2

)

ds

]

= lim
t→∞

1
t2α+1

∫ t

r

m(t − s)2(s − r)2α

t2
ds − lim

t→∞
γδ

t2α+1

∫ t

r

(s − r)2α−2ds

=
m

α(2α − 1)(2α + 1)
.

(3.2)

Obviously, for anym > 1/4, there exists α > 1/2 such that

m

α(2α − 1)(2α + 1)
>

α

(2α − 1)(2α + 1)
. (3.3)

This means that (2.25) holds. By Theorem 2.11, we find that system (3.1) is oscillatory for
m > 1/4.

Remark 3.2. As pointed out in [3], the above-mentioned criteria (1.5) of Erbe, Kong, and Ruan
cannot be applied to the Euler differential system (3.1), for

lim
t→∞

sup
1

H(t, 1)
λ1

[∫ t

1

(
H(t, s)Q(s) − 1

4
h2(t, s)I

)
ds

]

≤ lim
t→∞

∫ t

1

m

s2
ds = m < ∞. (3.4)

Though the above-mentioned criteria (1.7) of Meng, Wang, and Zheng’s Theorem can be
applied to the Euler differential system, our results are sharper than theirs, which can be seen
from Example 3.1.
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Remark 3.3. It is interesting for the fact that If we choose f(t) = 0, �(t, s, T) =√
H(t, s)/H(t, T), then for differential system (1.2), we have

lim
t→∞

sup λ1

[∫ t

1

(
�
2(t, s, 1)Ψ1(s) + P2(t, s, 1)

)
ds

]

= lim
t→∞

sup
1

H(t, 1)
λ1

[∫ t

1

(
H(t, s)Q(s) − 1

4
h2(t, s)I

)
ds

]

,

(3.5)

whereH(t, s) are as in Erbe, Kong, and Ruan’s Theorem. Obviously, Theorem 2.8 extends and
improves a number of existing results and handles the cases not covered by known criteria.

Example 3.4. Consider the 4-dimensional system (1.1) where

A(t) ≡ 0, B(t) = (t + 1)2I2, C(t) = −

⎡

⎢
⎣

ρ

t2
0

0
σ

2t2

⎤

⎥
⎦, (3.6)

and where ρ ≥ σ > 0 and t ≥ 1. If we let f(t) = 0, then b(t) = 1 and b(t)B−1(t) ≤ I2 for t ≥ 1.
Thus, we have

Ψ(s) =

⎡

⎢
⎣

ρ

t2
0

0
σ

2t2

⎤

⎥
⎦, P1(t, s, r) = − 1

(t − s)2(s − r)2(s + 1)2
I2. (3.7)

Thus, if we choose two admissible numbers γ , δ such that γδ = 3/2, then for some α > 1/2
and for every r ≥ t0,

lim
t→∞

1
t2α+1

[∫ t

r

(t − s)2(s − r)2α
(

ρ

t2
− 3

2(t − s)2(s − r)2(s + 1)2

)

ds

]

=
ρ

α(2α − 1)(2α + 1)
.

(3.8)

By Corollary 2.6, we find that system (3.1) is oscillatory for ρ > 1/4.
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