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A defect-correction mixed finite element method for solving the time-dependent Johnson-
Segalman viscoelastic equations in two dimensions is given. In the defect step, the constitutive
equation is computed with the artificially reduced Weissenberg parameter for stability, and the
resulting residual is corrected in the correction step on the same grid. A streamline upwind Petrov-
Galerkin (SUPG) approximation is used to stabilize the hyperbolic character of the constitutive
equation for the stress. We establish a priori error estimates for the defect step and the first
correction step of the defect correction method. The derived theoretical results are supported by
numerical tests.

1. Introduction

Time-dependent calculations of viscoelastic flows are important to the understanding of
many problems in non-Newtonian fluid mechanics, particularity those related to flow
instabilities. Error analysis of finite element approximations to time-dependent viscoelastic
flow was first analyzed by Baranger and Wardi in [1], using an implicit Euler temporal
discretization and a discontinuous Galerkin (DG) approximation for the hyperbolic
constitutive equation. In [2, 3], Ervin and Miles have analyzed the problem using an implicit
Euler time discretization and an SUPG discretization for the constitutive equation. The key
of SUPG method, first introduced by Hughes and Brooks [4], is to stabilize the numerical
solution by adding dissipative effects limited to the direction in which their influence
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is needed. Error analysis of a modified Euler-SUPG approximation to time-dependent
viscoelastic flow problem was presented by Bensaada and Esselaoui in [5]. In [6], Ervin
and Heuer have proposed a Crank-Nicolson time discretization scheme for this problem.
A fractional step 6-method for the time-dependent problem is described and analyzed in [7].
The reader may find more relevant work, for example, [8, 9] and the reference therein.

In addition, when the Weissenberg number increases, boundary layers for the stress
develop. This will add to the difficulty of computing accurate numerical approximations.
There are also many papers in developing stable numerical algorithms for high Weissenberg
number flows (see [10-15] and the references therein) over the years. In [10-12], a defect-
correction method has successfully applied in steady viscoelastic and Oseen-viscoelastic fluid
flow model, aiming at high Weissenberg number. The basic idea of defect correction method
for viscoelastic fluid flow is as follows. In the defect step, the Weissenberg number is reduced
artificially by using a mesh-dependent parameter to obtain better convergence of an iteration
scheme. Then, in a correction step, the initial approximation is improved using the residual
correction. The defect correction method is an iterative improvement technique for increasing
the accuracy of a numerical solution without applying a grid refinement. Due to its good
efficiency, there are many works devoted to this method, for example, [16-22].

Inspired by [2, 3, 10-12, 21, 22], in this paper, we will use the defect correction method
for solving the time-dependent Johnson-Segalman viscoelastic equations in two dimensions.
Approximation in space is made by finite element (FE) method. Approximate stress, velocity,
and pressure are, respectively, P; continuous, P, continuous, and P; continuous. As the
constitutive equation has hyperbolic character for the stress, we use streamline upwind
Petrov-Galerkin (SUPG) formulation to stabilize the constitutive equation. Approximate in
time is made by Euler scheme. Finally, we establish a priori error estimates for the defect step
and the first correction step of the defect correction method. While in [22], the authors present
this problem by DG stabilized style, we know that these two styles have many differences.
Choice of the Johnson and Segalman model is not essential, and the results obtained can be
extended to more realistic differential models likes those of Phan-Thien and Tanner, Giesekus
and Oldroyd, provided a Newtonian viscosity is present.

Detailed descriptions, analysis, and numerical examples of the defect correction
method for the viscoelastic fluid flow are presented in the rest of the paper as follows. In the
next section, we present the time-dependent viscoelastic fluid flow of the Johnson-Segalman
model and its variational formulation. In Section 3, we introduce finite element spaces and
present the fully discrete approximation scheme (Euler in time, FE in space). Defect correction
algorithm is given in Section 4. Then a priori error estimates for the defect step and the first
correction step of the defect correction method are derived in Section 5. Numerical results are
presented in Section 6. Finally, a summary and discussion of continuing work are presented
in Section 7.

2. The Johnson-Segalman Model and Its Variational Formulation

In this section, we consider a fluid flowing in a connected, bounded polygonal domain  C
R¥,d" = 2 with the Lipschitz continuous boundary T.

The following notation will be used. R? is equipped with cartesian coordinates x;, i =
1,2. For a function u, 0u/0x; is written u; and Ou/0t is written u;. Einstein’s convention of
summation is used. For a scalar function p, gradient of p is a vector Vp with (Vp); = p,. For
a vector u, gradient of u is a tensor Vu with (Vu);; = u;;. For a vector function u, divergence
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of u is a scalar Vu = u;;. with (Vu)i]- = u, ;. For a tensor function 7 and a vector function u,
divergence of T is a vector V - 7 with (V - 7); = 73;; and u - V denotes the operator u;(3/0x;).

Let T > 0 be a given final time, we consider the time-dependent Johnson-Segalman
viscoelastic equations as follows:

Re(w;+u-Vu)-V-0-2(1-a)V-D(u)+Vp=1f, inQx(0,T),

Aoy +o0+Mu-V)o+1Ag.(o,Vu) —2aD(u) =0, inQx(0,T),

divu=0, in Qx(0,T), (2.1)
u=0, on I'x(0,T),

u(0,x) =ug(x), o0(0,x)=0p(x), on Qx{0},

where 1 is the Weissenberg number, Re is the Reynolds number, 0 < a < 1 may be considered
as the fraction of viscoelastic viscosity (a = 1 for Maxwell’s model and this case is excluded
here, see reference [23] for a description of various models), and f the body forces. The
unknowns are the fluid velocity vector u = (u1,uy), the pressure p, and the stress o, which
is the viscoelastic part of the total stress tensor owt = o + 2(1 — a)D(u) — pL. In (2.1),
D(u) = (1/2)(Vu+ Vu?) is the rate of the strain tensor, for all a € [-1,1], g,(0, Vu) is defined

by

1+a

ga(o,Vu) = 1—Tu (oVu + (Vu)To> - <(Vu)0 + o(Vu)T>. (2.2)

Note that an Oldroyd B constitutive model is obtained when a = 1 in g,(c, Vu).

The L?(Q) inner product is denoted by (-,-), and the LP(Q) norm by || - ||, with the
special cases of L?(Q) and L*(Q) norms being written as || - || and || - ||.. For k € N, we
denote the norm associated with the Sobolev space W™#(Q) by || - ||;ymr, With the special
case W™2(Q) being written as H™(Q) with the norm || - ||,,, and seminorm | - |,,,. In order to
introduce a variational formulation, we set the spaces X, Q, S, V as follows:

X: =H3(Q)2 = {ve HY(Q)?:v=0 on F},
=13(Q) = L*(Q); dx=0¢,
Q:-13@ - {qe @ [ qax-o}
S:= {T = (Tii); Tij = Tji, Tij ELZ(Q),‘ 1,] = 1,2} (23)
N {T= (1ij); v-Vr e L2(Q), VVEX},

V::{VGX; L}q(V-v)dsz, quQ}.
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The corresponding weak formulation of problem (2.1) is then obtained: find (o, u, p) €
(S, X, Q) such that for all (7,v,q) € (5, X,Q)

(Rew; +Reu - Vu,v) + (0,D(v)) +2(1 —a)(D(u), D(v)) + (p, V - v) = (f,v),
Moy, 7) + (0,7) + M((u- V)0, 7) + A(ga(0, Vu), 7) = 2a(D(u),7) =0, (2.4)

(g, V-u)=0.

Using the weak divergence free space V, the weak formulation (2.4) can be written as
follows: find (o, u) € (S, V) such that for all (7,v) € (5,V)

(Rew + Reu - Vu,v) + (0, D(v)) + 2(1 - a)(D(w), D(v)) = (£,v),
2.5
Moy, 7) + (0,7) + M(u- V)0, T) + A(ga(0, Vu), 7) = 2a(D(u),7) =0 29

Existence results for problem (2.1) are proved in [24] for the "slow flow” model of
(2.1) (i.e., the u - Vu term in momentum equation is ignored). They are of two kinds: local
existence in time of strong solutions in space variable in a C> domain, and global existence
(in time) of a unique solution for u and o under a small data assumption on f, f;, uy, 0y. For
a more complete discussion of existence and uniqueness issues, see [25].

3. Finite Element Approximation

In this section, we present a fully discrete approximation to (2.5). We begin by describing the
finite element approximation framework.

Suppose T" is a uniformly regular triangulation of Q such that Q = {UK : K €
T"} and assume that there exist positive constants C;, C; such that C1h < hx < Capk,
where hg is the diameter of K, px is the diameter of the greatest ball included in K, and
h = maxgernhg. Throughout the paper, the constants C,Cq,Cs, ... denote different constants
which are independent of mesh size h and time step k. We use the classical Taylor-Hood FE
for the approximation in space of (u, p) : P,-continuous in velocity, P;-continuous in pressure;
we consider Pj-continuous approximation of the stress ¢. The corresponding FE spaces are

xh = {v e XNCYQ)% vix € Py(K)?, VK € Th},

T€SNCUQ)Y%; Tk € P(K)¥?; VK € Th}
(3.1)

"={
{q €QNCYQ); gk € Py (K); VK € :rh}
"=

veX" (q,V-v)=0,vgeQ"},

where P, (K) denotes the space of polynomials of degree < w on K € T". It is well known

[26, 27] that the Taylor-Hood pair (X", Q") satisfies the discrete inf-sup (or LBB) condition.
To obtain the fully discrete approximation, the time derivatives are replaced by

backward Euler differences, and the nonlinear terms are lagged. In order to stabilize
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the hyperbolic constitutive equation, an SUPG formulation is used to avoid spurious
oscillations in the numerical approximation. Let N be an integer, we divide the interval [0, T
into N intervals of equal length k and denote t,, = nk. For notational convenience, we denote
v" :=v(,t,) and

s . g(ts) — g(ts-1)

dtg k 7

b(u,0,7)=(u-Vo,1), c(u,v,w)=(u-Vv,w). (3.2)

The following norms are used in the analysis:

N 1/2
n n1|2
Igllo, = max (18", [gllom = [z;kllg ||m] , (33)

1<n<N

and when ¢ (x, t) is defined on the entire time interval (0,T), we denote

T
19l oo = sup lloC B, Nl ¢=f lgColnde — llelle =llgcoll. G4
0<t<T 0

Then, based on SUPG formulation, the fully discrete approximating systems of (2.5) is
the following;

given u"® = uy,...,u""; 6" = oy,...,0"", n=0,1,2,...,N -1, find (u"*!,o"m*1) €
(V", S") such that for all (v, 7) € (V",S")

h,0

Re <dtuh'"+1,v> +Re c(uh'", uh"”l,v) +2(1-a) <D (uh’"+1>, D(v)) + <0h'"+1, D(V))

— <fn+1/ V> ,

)L(dtoh’"”, T) + <oh’"+1,F> +Ab <uh'", oh’"”,F) -2a <D <uh'"+1>,?) =-1 (ga <0'h’", Vuh'">,?>,
(3.5)

where T = 7 + v/, 7% = 4" . Y1, v is a small positive constant.

The goal of the parameter v is used to suppress the production of spurious oscillations
in the approximation. The discretization of the constitutive equation is the usual Galerkin
finite element method if v = 0.

The existence of a unique solution and a priori error estimate to (3.5) can be found in
[2,3,5].

4. Defect Correction Method

In this section, our defect correction method used in computing the solution to (3.5) is
described as follows.
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Algorithm 1 (Defect-correction method).

Step 1. Solve the defected problem: find (u; hatl h"”) € (V" S") such that for all (v,7) €
(Vh,sh

Re<dtuh "v) + Ree(u™,u™ v) +2(1 - a) (D(ui""“>,1)(v)> + <a{""”,D(v))
()

Maiop™, 1) + (o™, 7) + 1ab(u}”, o 7) - 2a(D(u}™), 7)
= -A(ga(o", vuy"),7),

where E is chosen such that Ay = A — Eh > 0.

(4.1)

(4.2)

Step 2. Fori =1,2,..., solve the correction problem: find (ulh+’1l+1, ﬁr;’”) € (V",S") such that
forall (v, ) € (V", Sh)

Re(dli™,v) + Rec(ulf, uli" v) +2(1-a)(D(w4™), DW)) + (o4, D) )

(4.3)
— (f’”l/ V> ,
)L(dtoh "+1,T> + <oﬁr’;’+1,?> + )qb( m Z;Hl,?) 2a<D< H“),?)
(4.4)
=-1 <ga< :—?’ Vuf:f{) _> ()L Al)b( 1h+rll’ h n+1’F> .
The initial value approximations are taken to be uh 0= uﬁ? =19, and 0{’ ah Y = gy. In order

to ensure computability of the algorithm, we begm by showing that (4.1)-(4. 2) and (4.3)-(4.4)

are uniquely solvable for (uh ML ghmly i = 1,2 at each time step 1+ 1. We use the following

j
induction hypothesis, which simply states that the computed iterates (u;’
are bounded independent of h and n:

h,s
o.
o ” j

In next section, we will prove the induction hypothesis (IH1) is right.

hn+1 hn+1) ] _ 1 )

IH1) : || <K j=120<s<n (4.5)
: j

Lemma 4.1. Suppose (IH1) is true. For sufficiently small step size k, then Step 1 of Algorithm 1
admits a unique solution (u}™*', o™y € (VI,Sh).

Proof. Letting v = u/"™", 7 = ¢/"""', multiplying (4.1) by 2a, and adding to (4.2), we get
& 1 plymg y & &

2aRe
4< izn+1 {m+1 izn+1’ {t,m—l) 2 <fn+1 itn+1> < " 111n+1>
(4-6)

hn hn\ —=hn+1 A hn _hn+l
—A(ga<ol ,Vuy ),01 >+k<a1 ,07 >,
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where the bilinear form A(u, o; v, T) is defined by

A(u,0;v,T) =

“kRe (u,v) + 2aRe c(u”, u,v) + 4a(1 - a)(D(u), D(v))

+2a(o,D(v)) + (0,T) + %(O‘,T) +Mb(u"*,0,7) (4.7)

+ Lib(u”, 0,vu" - V1) - 2a(D(u),0) — 2a(D(u), vu" - VT).

As (4.1)-(4.2) represent a finite system of liner equations, the positivity of A(uh "”,0{1 i,

h, n+1 h n+1

R+l _hpel
u;’ ) is a sufficient condition for the existence and uniqueness of (u;’ (an oy’ .
sl Sl hnel bl
We now estimate each term of A(u;""", 0/ ;u"™", 0/""""). We have

2

4

a dKZC Re?
|2aRec<u1 Iuizn+1’uizn+l>| <€1||D< hn+1>” ||uil,n+1
hn+l n,u
|<c71 , V0 )

2
hn+l _hn+l nu |2 J\l hn+l
'/\1 <“1 101" 0y >| <ep|oy||” + 1e, 111

2
2 v nu |2
0

7

2 (4.8)

7

7

2 a?y? )
<es||D () [+ == llot
€3

hn _hn+l nu\ _ nu
)L1b<u1 ,0."", voy ) = Mv||og
|2a< <u}11 "+1> vof’”)

where we have used the induction hypothesis (IH1) and the Korn’s lemma, Ck is Korn
constant.
Substituting all above equations into A(:,;-,-), we have

LA .
2+<%_4_€2>|| hn+1

V2 dZVZ
+ (da(l-a) - e - &) ID(w}™ )| + <)le e = oI

007w, 0

(e PHCGR .
- k €1 1

A <u§l n+l  _hn+l _hnu+l O_h,n+1>

(4.9)

Choosing v < 2A41(1-a))/(1+3a), k <min{2Av /Ay, 2(1 - a)/d’KzCi Re}and e; = ¢3 = a(1-
a), €2 = \v/2, the bilinear form A(:, -; -, -) is positive definite. Hence, for k chosen sufficiently
small, Step 1 of Algorithm 1 admits a unique solution (1", o]""*") € (V*, ). O

Similarity as Lemma 4.1, we can derive that Step 2 of Algorithm 1 admits a unique
solution (u!™*!,gl™*1y € (V1 Sh).
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5. A Priori Error Estimates

In this section, we explore the error estimates in approximating the true solution (u,p, o)
of (2.1) by the defect step approximation (u1,p1,01) and one correction step approximation
(42, p2, 02). The main results of this section are presented in the following theorem.

Theorem 5.1. Suppose that (2.1) has a solution (u,o,p) € C2(0,T;H®) x C?(0,T; H?) x
CY(0,T; H?). In addition, assume that k, v < ch®’?, and |[u|, |[Vul.., ol IVoll, < M
forallt € [0,T], (u’f, o{’) and (ué’, oé’) satisfy (4.1)-(4.2) and (4.3)-(4.4), respectively. Then, there
exists a constant C = C(Re, a, Q, T, u,p, 0,f, A1, L), such that

[la=tfll, Mo =, +lla=ifll,, + [lo=t[l,, < B R 61
©,0 0,0 0,1 0,0

h h h h
(=l = o=zl + [l =l # o -2l < B w52
0,0 0,0 0,1 0,0

where

B(k,h,v) = C(Rlllulllys + Fllkwcllys + Hllollloz + Hlllovllo + 72| [Ipll o)
+ C(I Nl + 7210 l2) + Ch(llusllys + Il (53)

Hlotllor + lloulloe) + Cy(lllotlllys +1oellle0) + CVT (A= A1).

Remark 5.2. As mentioned in Algorithm 1, A — Ay = Eh, thus, for i = 1,2, the essence of the
estimates (5.1) and (5.2) is

[e=ut .. o=l « [l =y, #llo=orll,, < ctreresn. 6
0,0 0,0 0,1 0,0

i i

Before deriving the estimates (5.2), (5.9), we first introduce some notation and some
approximating properties of finite element spaces. Let u" = u(t,), c" = o(t,) represent
the solution of (2.5) at time t, = nk. Assume (u,0,p) € C2*(0,T; H®) x C*(0,T; H?) x
C'(0,T; H?). Let (u",p") denote the Stokes projection of (u",p") into (V",Q"), and 6" a
Clement interpolant of 0" [26, 28]. The following approximating properties are right.

[w” = @"|| + K|V (u" - @")|| < CH’|[u"|l5,
" - 7"l < Cr*||p"

lo™ =&"|| + h|[V (0" = &")|| < Ch*||0"|,.

(5.5)

27
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Let (u",0/"") and (u?",0}™) denote the solutions of (4.1)-(4.2) and (4.3)-(4.4),
respectively. We denote (IJ;?, Y].", e]’.‘, ‘P}“, LI;?, e]'.‘, j =1,2as follows:

n_ . n_ ~n n _~n_  hn n_ fn n_ . n_  hn
(Dj—u u”, Y].—u w;, e].—(D].+Y]. =u-u;”, 56
n_ n_ ~n n_~n_  _hn n _ yn n_ n_ hn ’
‘Pj—o o, Uj—o 0", ej—‘Pj+llj—o o,
In order to establish Theorem 5.1, we need another induction hypothesis, that is,
s—1
(IH2) : Zoknwjnlloo <1, j=1,2 (5.7)
P

The induction hypothesis (IH2) will be proved later.

Proof. We first give the profile of the proof. The proof of Theorem 5.1 is established in two
steps.

Step 1. Prove the error estimate (5.1) is right. We divide Step 1 into two substep.

Substep 1.1. Under the induction hypothesis (IH1) and (IH2) for j = 1, we prove the error
estimate (5.1) is true.

Substep 1.2. We prove that the two induction hypotheses (IH1) and (IH2) for j = 1 are right.
Step 2. Show that the error estimate (5.2) is true.

Now, we start to prove Theorem 5.1.

Step 1. Prove the error estimate (5.1) is right.

Substep 1.1. Under the induction hypotheses (IH1) and (IH2), we prove the error
estimate (5.1) is true.

As (0,u,p) being the exact solution of (2.1), it satisfies the following consistency
equation: for all (7,v) € Sh x Vi in particular, at time t = t,,; (noting that we denote
"= 0(, ),

2aRe <uf‘+1,v> + <)L0t"+1,?> + 2ac<Re u"+1,u"+1,v>
+ 2¢x<o”+1,D(v)> +4a(l - a) <D <u"+1>, D(v))
+ Jlb<u"+1,0"+1,F> + <G"+1,?> - 2a<D(u”+1>,?>

= 2a<f"+1,v> + 2a<p"+1, V- V) - A(g,l <0"+1, Vu””),?).
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Equation (5.8) can also be written as

2aRe(dp™!,v) + (Adio™,7) + 2ac(Re )", u™!, v)
+ da(l-a) <D<u"+1>,D(v)> + 2a(o"+1,D(v)> + )le(u;”",o"”,?)
+(0m1,7) —2a(D(w),7)
= 2a(£"1,v) + 2a(p"™!, V- v) - A(ga (0}, VUi ™), 7) (5.9)
+2aRe(du™!,v) - 2aRe(uf!,v) +2ac(Reu}”, u™", v)

—2ac<Reu"+1 m ) )L<g ( Vui’")f) - A(ga <G"+1,Vu"+1>,?>
)

+ </\dt0”+l, ) <)Lot" TT)+ A ( h" o™l —> _ Ab(un+l,0n+1/?>.
Multiplying (4.1) by 2a and adding to (4.2), for all (7,v) € S" x V"', we get

2aRe (dm’f’"”,v) + ()Ldto{”" L ) + 2ac<Re ui’" ui’ "+1,V>
+20c<01 nl D(V)) + 4a(1- zx)( ( h"+1> D(v))
+ J\1b<u?” ol ’”1,?) + <0{1'"+1,?> -2a <D (ui”"”),?)

= 2a<f"+ ,V) - )L(ga<o{”", Vu’f’"),?).

(5.10)

Subtracting (5.9) from (5.10), for all (7, v) € S" x V", we obtain the following equation for e]'*!

and e{”l.

Z“Re<dt€{’+1,v> + (AdteT+1,T> +2ac<Reu§l" e{”l,v)
+ 4a(l-a) <D<e?+1>,D(v)) +2“<€{‘”,D(v)) +)le<u§’" e ?>

+(er1,7) —2a(D () 7)

(5.11)
=2aRe (dtu’”1 u, ) +2aRe c<ui’ g u"+1,u"+1,v>

- (Aot 7) + (Adio™, 7) = Ab(w™, 0™ 7) + Lib(u}", 0™, 7)

+ A(ga (o{”", Vui”"),?) - A(ga (0'"”, Vu"”),?) +2a <p”+1, V. v).
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Substituting e*! = Y1 + @1+, et = UM + Wy = Y and 7 = U into (5.11), we get

2aRe(d Y], Y ) + A (U, upt) + 20 (U, D(Yp) )

+2ac(Reu)”, Y7, ¥7*1) + da(1 - ) (DY), D(Y]))
(5.12)

—n+1

s (ur, ) + b (up,up, ) - 2a(D (), U

=F <Y1n+1, u111+1 > ,
where

F <Y1n+1 , u'il+1 )

—n+l

= 2a(p™!, V- ¥*") + 2aRe(diu™! - ui*!, Vi) - (1011, UL
+2aRec(uf” —uum, V) + 2 (g0}, val), T
+ (Mo, upt) = A (ga (0™, vurt), T ) - 2ac(Rew”, 07, Y71) - (5.13)
-set-aa (o1 () (%o () - (9

—)Lb< n+1 +1 ;H'l) +./\1b< hn o1 ﬁ" ) )le<uizn 1Pn+1 UT—l)

+2a(D(@p), Ty ) 2aRe(d®p, ¥t ) - 0 (W, Uy,
Using the identity (a — b, a) = (1/2)(|al/> - ||b||* + ||a - b]||*), we obtain

aRe
Yn+1
s

2k<

gzaRe| ( oyl yr +1>

+ 2av| <D (Yl’”l) uy ”)

=+ et -y

2) +4a(l - a)||D(Y1"+1) ?

).

vi <un+1, un,u>

2
wet |- u )+ ffuz - uy upt | + v Juy|?

(5.14)

A |b(ul, U, upt)

+F<Y"+1 un 1>
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First multiply (5.14) by k and sum it form n = 0 to s — 1, we obtain

ye | P+ e - v

s-1
aRe Z [
n=0

+4a(l - a)ksz_l: ||D(Y1"+1> ’
n=0

2
Ut = uy| +

.)Ls_l
+ znZZOH

n+1 n
ul - ul

n+1
ul

2 s-1
] + kZ
n=0

2 s—1 a2
+vA1kZ||U1’ I
n=0

< k:g(l) [Za Re|c<ui”", Y{’”,Y{’”) +

UL

s—1
+a [b(u)", urt, Ut ) [+ 2a0 | (DY), Uy ||+ kDF(Y Ut
o )|« 2] (D () ) || + k2R (e ui)
(5.15)
Then, we get, remarking that Ylo =0and U? =0,
5|12 < n+1 n 2 A 5|2 < n+l n 2
aRe| |7 +Zo i -y ) (IS4 +Zo uy™ -uy
s—-1 2 s-1 2 s-1
wk Y |urt|[ + 4a -k 3 | D (vi) ||+ vak 3 Uy
n=0 n=0 n=0
(5.16)

v ()
+ 2av| <D <Y1"+1> uy u>

For controlling each term on the right-hand side (RHS) of (5.16), the assumption
(IH1) and (IH2) are needed here. We will prove the two induction hypotheses in the next
subsection. Let us estimate each term of the RHS of (5.16). For details, please see [2, 3, 6]. We
start from the first four terms of the RHS of (5.16);

< k:Z_: [Za Re|c<u§"", Y{”l,Y{”l) +

A (b<u§”‘, uy“,u'f“)

] +kZF<Y"+1 un+l>

d'K?
4€1

2aRe| < Yn+1 Y1n+1> Yln+1 2/

| (U up)| <

|)L1b< u n+l u;wl)
)

2av|( (veet), uy

2Re2C§<el ”D(Yf”) ? +

2
|| 2,

(5.17)
)‘ n n+1)2 n+1
SNV el P + M),

< da ez||D(Y"+1)

-
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Now, we estimate each term of F(Yl’”l, U{”l). As F has many terms and in order to make the
proof more clear, we divide the terms of F into four parts, that is, c(:,-,-) terms of F, b(-,, )
terms of F, g, terms of F, other terms of F. Firstly, we estimate c(, -, -) terms of F;

!
2“Re| <u1 ’q)rH-l Yn+1>' <2a<Re2' Y1n+1 2+ K d ||Vq)n+1 >
hn 1 1 1 Re’d’ M 1|
2aRe| ( —u" u™t Y )' <2a —”Y"” zx| Y
2 ,2 tn+1
+%||cp"|| —d'zMzkf ||ut||2dt>
(5.18)
For the b(,,,-) terms of F(Y]"*!, U"*"), we have
!
Aab(ad, eyt Ty )| < 23 [uy Lo urP + sz |7 ?,
u|(b(uh = wrt,om, T ) | < 3 fug LU+ 15d° M| Y|P
(5.19)
+1.5d4"° M?|| @7 ||* + 1.5d° Mk f lu|?dt,
t}‘l
|- b (o, T | < %(A—A1)2M4+ (Chs e ur
For the g, terms of F(Yl’”l, U{‘”), we can obtain
ga<01 ,Vullwl) ga<0"+1,Vu"+l>,ﬁT+l
12 1242 12 1242
<P [ elm P SR

+ 8 K2 vy ||* + 522 |yt * 4522 ||Fr (5.20)

tn+]

+8d7K*\k f V| dt + 84> M2||u||?
tVl

tn+1

+8d” M2 w7 || +8d’2M2kf o1 dt.
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Now, we estimate other terms of F(Y"*!, U*!);

2a (71,7 1) < 20 Ched D () [+ -5 ),
2aRe|(diyt, ) g2a<Re2 yrt 2*%1” 4y 2>,

N

4a(1-a)|D(051), D(¥)

a1 - a)<65||p<yn+l)
2a| (w7, D (") )| <2 <€6||D<Y"”) i

46’6
2aRe <dtun+1 n+1 Yn 1> <

. ||D<®;”1>||2>,
).
2),

qfn+1

n+1
Yl

n+1 n+l
+ 1 ”dtu - u

A (e )| < 2 fu |+ gl

—n+l 2 2
2a|(D(0), Ty | < ||up +v2||U"’”||2+2a2||V(I)"”
—n+1
w7 | < Jug || v g+ 5 gkl
2
/\|(dt0"+1—0t"+1,u'f+1> <12 U{”l +Z||dt0"+1 th+1 .

|<)lGZ’+1 vlli‘f”) < )L2(2+d,”VY"” ) un+1

n+1

<d M2+ d|[vYy|,,) e sz |vor ’

(5.21)

Combining the estimates in (5.18)—(5.21), we obtain the estimate for F(Yl'”l, U;’“):

(Y, Uy ) < 2a(Ches + (1 - a)es + 6 ) || D (Y1) " Ches||D(vi) ’

2 'Af2
+ (MTM + aRezd’2M2> ek

8d'2K?2\2
€3

+2a(3Re? +15) | vy

urt ? +8d”M2||lu|)?

+ {d’”VY{’“w +3+90% + 247 +

12 12
+v2<_r,ﬁ+)§+4+8"l€I3<A >||u"”||2 2“’“: . ?

n+l _ ~n+l

P

+ (aRezd'zMZ + 3d 5

3aLr2 2 g _
M >||qy;||2+za<%+ e +2a2> |vor |
5
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2 o
+<2e6 2)

+ 84 MWy + 3| dpa? - ||

+8d K2 Voy || + 2| dwy? 'y iudtw“ g |

T o

1 2
n+1 n+1
*1 ” dio"™ - o]

n+1

(d VY2, +d*M?) -

<uRe2d’2M2k + 1.5d’3M2k>

¢+l g+l
x f |2t + = sz [ vor|” +8a? M2k f low|2dt
tn tn

tn+1
+ 8d’2K2kJ‘ | Vug|2dt + %()L —A1)>M*
tVl
(5.22)

Choosing e; = (1 — a/12C2Re’a), € = (1 - a/12a), e3 = (2a(l — a)/6C%), es = (1 -
a/6C%<), €5 =1/6, €5 = (1 — a)/6, and substituting (5.17) and (5.22) into (5.16) yields

s-1
aRe [ Y7+ 3 U]+ 2a(1 - @) Y k[ D (i) ur |’
n=0

2 s-1

+kZ

n=0
1202 7242 s-1

o _7a  BATGKA 17 o, 2

+<v)q v<2(1_a)+ R L HV A k;)”u1 I

s-1
<G; kZ
n=0

2
n+1 n+1
Yl CDl

n+1
ul

2 s-1
+k > (Ca(1+[VYTL,,))
n=0

2 s—1
+ C5kZ |
n=0

+ cﬁksi |y
1=0

" gkgndt@’f*l

1
e LS e
4 n=0

(5.23)

s-1 2 s5-1 2 a s-1
Lk 3w+ ek T v |+ Sk 3|t |
n=0 n=0 2 n=0
% Sz: n+1 n+1 2 3(Xd C%( ksii n+l _ n+1
“= o

n+1

+kz (a*m2+ || vY7l,,) ||t +k2<aRe2d’2M2+1.5d’3M2>||ut||§,0
n:O

vz s—1 1
+ K2 ol + 8K (MPloilfg + K2l ) + k35 (4= 4a)* M.
n=0
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According to the approximating properties and the definition (3.5), we can get

un+1 O.n+1

2
+h?
3

| V!

)

2 s-1
<C <kz <h4
n=0

4 2 2 2
< C(RHllullG5 + Hllol),

s-1
k2
n=0

g ksi v
n=0

(5.24)
s-1 2 s—1 2 s-1 2 s—1 2 s-1 2
kZ' (I)TH + kZ| qul + kz pn+1 _ﬁn+1 < C<h6kz un+1 5 + h4kz O.n+1 )
n=0 n=0 n=0 n=0 n=0
. s-1 . 2
n+
+h kz(]) p 2>
< C(Blulls + H ol + h lIplI5,)
(5.25)
s-1 2
kY ||d@r||” < chéli, (5.26)
n=0
s—1 2
k||| < chti (5.27)
n=0
< n+l _  n+l 2 1 2 2
kz dtu Uy < 3k ||utt||010, (528)
n=0
e n+l _ _n+l 2 1 2 2
kS |dto or!||" < 5K lloull- (5.29)
n=0
Combining the inequalities (5.24)—(5.29) with (5.23), we yield
s |12 A s |12 e n+1 2 v nu |2
aRe [ ¥ + 2+ k3 (201 - [ D () [+ T
n=0
s-1 2 2 2
<Ckz< Y+ +|u;1+1 +||v1r1"||m|u;1+1 >+c:v2|||at|||31
n=0
2 s-1 (5.30)

2
2 2 2 2 2
+ CK2 (Il 1 + llowlly o + lall o + lowlio )

n+1
O

v
+ k2N,
n=0
+ ChO|[[ulllg 5 + CH*llo I3, + Ch*| || [l]5., + CHllulll 5 + ChOllulllG 5

1
+ CHI0lIR, + Chlonll, + 5 (A= ha)*TMY,
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with v chosen such that

2842 C2 K22 -
Vs %(2(1? @) i a(l i<0£) " 117 +54%+ ﬁ) ’ (5:31)

Applying the induction hypothesis (IH2) and the discrete Gronwall’s lemma [29] to (5.30),
we have

317+ |Us | < Hik, b, v), (5.32)
where

4 2 2 2 2 4 2 4 2
H(k, b, ) = C(h*l[ulls 5 + hllluellf 5 + K101 + F ol + H [Pl [5 )
2 2 2 2 2
+ CR (1l + Nl + lloullys + llowlFo) (5.33)

+C(lloillB +l0il1 2 0) + CAL = )T

That is to say, under the induction hypotheses (IH1) and (IH2), we establish that the
inequality (5.32) is right for all 1 < s < n, and consequently for all n : 0 < n < T/k, the
inequality (5.32) is right. In the next subsection, we will prove that the induction hypotheses
(IH1) and (IH2) are right.

Let us continue to prove the inequality (5.1).

Using triangle inequality, the estimate (5.32), approximation properties (5.5), and
(5.24)-(5.25), we have

n|||? nl|||? 2 2 2 2
=t + o =ctlll, < MaEo+ Mt + MUl + 1212
’ ' (5.34)

< H(k, b, ) + (||l 5 + B lol, 2)-

Similarly, by means of triangle inequality, the estimate (5.32) and (5.30), approximation
properties (5.5) and (5.24)-(5.25), we can obtain

2 2
h h 2 2 2 2
w=st{|[, o= o], < Iralis + i, + HelGo+ s,

' / (5.35)

< C(T)(H(k, b, ) + Kl|[ull}; + H*lolIE ).

Thus, we complete the proof of Substep 1.1. That is the inequality (5.1) is right if the induction
hypotheses (IH1) and (IH2) are right.

Substep 1.2. In this subsection, we will prove that the two induction hypotheses (IH1)
and (IH2) for j = 1 are right. We first verify the induction hypothesis (IH1).
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Assume (IH1) is right for any n = 0,1, ..., s — 1, we will prove that (IH1) is right for
n = s. By approximating properties (5.5), inverse inequality [26], and (5.32), we have

h,s
< ”u1 -u®

Il < L+ ]+ M

[ee]

< CH472||Y?|| + Chd/2|| @5 || + M (5.36)

< c(kh-d’/2 vl /2  pd)/2 | @) 2 | G2y pd2 () )q)) +M

As C(kh™#/2 4 y~@/2 4 p(1-d/2 4 p@=d)/2 | p3-d)/2 4 p=d'/2() — )1)) independent of s, we can
choose k,v < h¥/2/C, A - Ay < h#/2/C, and get ||uhs+1|| <M +6.

We can get ||0h S+1|Iw < M + 6 by the same method. Define K = M + 6, we confirm
(IH1) is right for n = s.

Now we establish that the induction hypothesis (IH2) is right.

Assume (IH2) is right for any n = 0,1,...,s — 1, we will prove that (IH2) is right for
n = s. Using inverse inequality [26], Korn's inequality, and (5.30), we have

s-1

SHIVY! ], = Zk“vwl
n=0 =

n=0

. <as Y10 = 0>

< Ch‘d'/zsz_lk”VY{’”
n=0

(5.37)

) s5-1 2 1/2

<Ch‘d/2\/ks<2k”VY1"+l >
n=0
< CVT (kW72 o2 4 g2 4 p@D/2 4 =21 - 1)) <1,

with the choosing k, v, A — Ay < h¥/2/6C~/T and h®4)/2, h(1-d)/2 | p=d)/2 < 1/6CV/T.

Step 2. We will show that the inequality (5.2) is true.

In order to get the inequality (5.2), we also need induction hypotheses (IH1) and (IH2)
for j = 2. As the procedure of proof is almost same as Step 1, we only give the different places
with Step 1.

Now, we combine the correction problem (4.3)-(4.4) with (5.8) and introduce the
approximation error ej*!, ef*!. This gives

2a Re(dte"“, ) ()Ldte"”, ) + 2ac (Re ul e, ) + 20(( nl D(v))
+4a(l - a) <D< "+1> D(v)> +A1b(u’;", eg“,—) + (eg“,—) —2a<D< g“),%)
=2a(p™!, V- v) + 2aRe(du™! - !, v) + 2aRec(up” - u, u™,v) (5.38)
- (Ao{‘”,?) + <J\dto”+1,7'> + (- )Ll)b(u’; " gl o"“,?)

+ (= db(w, 0™ 7) + A (ga ()", Vup™), 7) = 4(8a(0™, VuT), 7).
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Substituting ef*! = Y + @2, et = U + ¥, v = Y* and T = U into (5.38), we

obtain
(el - )« g (uz |- nuzi?)
+4a(l-a)(D(vz*), D(v2)) + 2a (U, D (¥ 1)) + (uz, uZ”)

+ b (up upt ) - 2a(D (), T, ) + 2ac(Reu™, v, v3)

Yn+1 un+1

S 2“<pn+1lv . Y2n+1> +2a Re(dtu"” n+1 Yn 1> <J\d O.n+1’u;21+1>
+2aRec<uhn _ un+1,Y2n+1> _)le< hn 1Pn+1 ll;Hl)
_ <Ao.tn+1,U2 > + A(ga<oh’", Vu;"n>,ﬁ2 ) _ A(ga <O‘n+1,Vun+1>,ag+1>

—2ac<Reu2 (1)"+1 Yn+1> 4a(1—a)(D<(D"+1> D<Y2n+1>>

(5.39)

— 225, D(VF)) - (- b (ul, v, T
+ (= d)b (w0 uZ”)+2a(D(cpg+l),U§”) (s, uZ”)

- 2aRe(di@y, v71) — (AW U ) - (L= b (ul”, up, T, ).
Comparing (5.39) with (5.12), we find that they are only different on the following terms:
~(A - AQb(uZ’”,‘P”” u,” 1) (- )Ll)b<u’; o, uZ”). (5.40)

So we will only deal with these terms. We have

d'k?

2
[p(u v, W) < IIV‘P"“ ] o)
172
< %chz n+l un+1 +,02||u;1,u”2/
(5.41)
ntl 7701 d'k* n+l n+l 217 7|2
[ICEA AT <T|vu1 i |+ o2 u)
112 Ap=2
< T g | | 0Pz

To conclude, repeat the proof of the first statement of Theorem 5.1, replacing u;’ nn o{' "

Y], @f, U} and ¥ by u2" og ", Y], @, Ul and W), respectively, using Korn inequality,
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Table 1: Defect step approximation for A = 5.0.

1/h lllellloso r lllewllles0 r lllexllloo r lllexlllo r
4 0.06643 — 0.003406 — 0.02316 — 0.01945 —
8 0.01957 1.76 0.001178 1.53 0.006350 1.87 0.004860 2.00
16 0.005087 1.94 3.18le -4 1.89 0.001598 1.99 0.001174 2.05

32 0.001469 1.79 8.135e¢ - 5 1.97 4.268e — 4 1.90 2.937e -4 2.00

Table 2: Correction step approximation for A = 5.0.

1/h lleallloso r llle2lles,0 r llle2lloo r llle2lllo r
4 0.06643 — 0.003410 — 0.02316 — 0.01945 —
8 0.01957 1.76 0.001180 1.53 0.006347 1.87 0.004861 2.00
16 0.005087 1.94 3.191e -4 1.89 0.001590 2.00 0.001173 2.05

32 0.001284 1.99 8.151e -5 1.97 3.995e - 4 1.99 2917e -4 2.01

approximation properties (5.5), (5.24)—(5.29), and the bound ||Y1”+1||2 + ||l,I{‘+1||2 < H(k,h,v).
Hence, we can obtain

h h h h
(=], = o=zl # [lu=wll,, + o -2l < B Rm- G2
0,0 0,0 0,1 0,0
]

6. Numerical Results

In this section, numerical results for the defect correction method applied to viscoelastic fluid
flow are presented using two test problems. The first example is a known analytical solution
to verify numerical convergence rates for the defect correction method. The second example
simulates viscoelastic flow through a four-to-one contraction flow, a prototypical problem for
viscoelastic fluid flow. As mentioned above, continuous piecewise quadratic elements were
used for modeling the velocity, and continuous piecewise linear elements were used for the
pressure and stress. The constitutive equation was stabilized using an SUPG discretization
with parameter v. In this paper, we will not investigate the influence of the parameter v, thus,
we set v = 0.6 h.

The defect correction algorithms are implemented using public domain finite element
software [30]. Linear systems are solved using the UMFPACK solver. We use the stopping
criterion defined by max{||uf’ - uf’_lll, ||ol.h - lh_ < 1078 for the iterative solver in both
the defect step and the correction step of the method. We also set the maximum number
of iteration equal to 15.

Example 6.1 (Analytical solution). The theoretical convergence rates were verified by
considering fluid flow across a unit square with a known solution. As in [7, 31], Q = [0, 117,
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Table 3: Defect step approximation for A = 1000.

1/h lllellloso r lllewllles0 r lllexllloo r lllexlllo r
4 0.06710 — 0.003523 — 0.02352 — 0.01959 —
8 0.01962 1.77 0.001210 1.54 0.006419 1.87 0.004885 2.00
16 0.005090 1.95 3.255¢ — 4 1.89 0.001613 1.99 0.001178 2.05

32 0.001493 1.77 8.319¢ -5 1.97 4.306e — 4 191 2.949¢ - 4 1.99

Table 4: Correction step approximation for A = 1000.

/h_ llezllleo r llleallloo,0 r lle2lllo,0 r llle2lllo,1 r
4 0.06710 — 0.003526 — 0.02352 — 0.01959 —
8 0.01962 1.77 0.001213 1.54 0.006416 1.87 0.004886 2.00
16 0.005090 1.95 3.266e — 4 1.89 0.001605 2.00 0.001178 2.05

32 0.001284 1.99 8.336e — 5 1.97 4.030e — 4 1.99 2.927e -4 2.01

and chosen functions are added to the right-hand sides of (2.1) such that the true solution to
the problem is given by

10x%(x - 1)’y (y - 1) 2y - 1)e*

‘e -10x(x - 1)(2x - 1)y*(y - 1)2e’t
6.1)

p=102x-1)(2y -1)e™,
o =2aD(u).

Let r be the experimental global rate of convergence given by r = log (Er/Er’)/log (h/W),
where h and ' denote two consecutive mesh sizes with corresponding global errors Er and
Er'. In this example, we select Re = 1, a = 0, « = 0.5. The numerical results for Example 6.1
are presented in Tables 1, 2, 3, and 4.

To reduce the influence of the time discretization error, the time step is taken to be very
small: k = O(h?).

For A = 5,1 = 1000 and the final time T = 0.1, the calculated convergence rates in
Tables 1-4 confirm what is predicted by Theorem 5.1 for continuous (P, P;, P) elements in
space. In fact, our numerical convergence rates are better than the theoretical ones. We will
find the reason in future work.

Example 6.2 (Four-to-one contraction flow). Numerical simulations of viscoelastic flow
through a planar or axisymmetric contraction have been widely studied [32, 33]. Here the
case of planar flow through a contraction geometry with a ratio of 4:1 with respect to
upstream and downstream channel widths is considered. The contraction angle is a fixed
3sr /2 and the channel lengths are sufficiently long to impose a fully developed Poiseuille flow
in the inflow and outflow channels. The geometry of the computational domain is illustrated
in Figure 1. The lower left corner of the domain corresponds to x = y = 0. The computations
of the mesh are also shown in Figure 1 with Axyi, = 0.0625 and Ay, .. = 0.015625. We
denote I'in, = {(x,y) : x = 0,0 < y < 1} and I'owt = {(x,y) : x = 8,0 < y < 0.25}.
On this domain the velocity boundary conditions are u; = (1/32)(1 - yz), u, =0, on I},
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F
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Figure 1: Plot of 4 : 1 contraction domain geometry and sample mesh.
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Figure 2: Evolution of [u*"]|2/2 (a) and [|o*"]|2/2 (b) in time with time step k = 0.1.

and u; = 2((1/16) — yz), uy = 0, on I'yy. On Iy, specified boundary conditions for o
are given as follows: 011 = (~ak(a + 1)(~y/16)*)/((a®> - 1)A>(~y/16)> = 1), 012 = O =
—a(-y/16)/((a® - 1)A*(-y/16)* = 1), o = —al(a - 1)(-y/16)*/((a® - 1)A*(-y/16)* - 1).
Symmetry conditions are imposed on the bottom of the computational domain. In this
example, the parameters Re, a, A, and a are set to 1, 8/9, 1.3, and 0, respectively.

We performed the following study: starting from rest, we measured the time that
the approximation solution reaches a steady state. The criterion to stop this process is the
following:

max ||u’,:+1 B uZ”LZ(Q) ”O'}Tl B O'Z”LZ(Q)
7

<1075, (6.2)
! "LZ(Q)

[ "LZ(Q)

where n + 1, n denote t,.1,t,, respectively.

In Figure 2, we plot the evolution of the kinetic energy ||uz+1 ||§ /2 and ||(7;l”1 ||3 /2 using
time step k = 0.1 until it reaches its steady state, where we observe they convergence towards
a steady state and also the absence of oscillations along the process.

Figure 3 presents the horizontal and vertical velocities near the reentrance corner along
the vertical line x = 4.0625 for A = 1.3. We observe that the horizontal velocity is almost
continuous, while the vertical velocity has high gradients near y = 0.11 and y = 0.23 from
Figure 3. However, we find that the solutions of the time-dependent problem can converge to
the solutions of the steady problem. Figure 4 present the streamlines of the fluid with A = 1.3.
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Figure 3: Horizontal (a) and vertical (b) velocity near reentrant corner. The marks “+” indicate results for
steady problem and “~” indicate results for the time-dependent problem at time t = 24.5 using time step
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(a)

(b)

Figure 4: Streamlines and magnitude of velocity contours for u. (a): steady problem, (b): time-dependent

problem at time t = 24.5 using k = 0.1.

We plot the streamlines for both the steady problem and the time-dependent problem at final
time t = 24.5. It is easy to observe that these two figures are almost alike.

7. Conclusions

In this paper, we present a defect correction mixed finite element method for solving the time-
dependent Johnson-Segalman viscoelastic equations. A priori error estimates for the defect
step and the first correction step of the defect correction method are derived. Finally, we
present two numerical examples. One is a known problem and the other is a benchmark

problem.
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For simplicity, in this paper, we choose the parameter v = 0.6h. More appropriate
choice of parameter v is currently under investigation. Further developments should be
extending the method to other non-Newtonian flow or other discrete scheme.

Acknowledgments

The authors would like to thank the editor and the anonymous referees for their criticism
and valuable comments, which led to the improvement of this paper. The authors want to
thank Professor J. S. Howell for meaty the discussion of part program code. This paper was
supported by the National Natural Science Foundation of China (no. 10871156, 10861014)
and the Fund of Xi’an Jiaotong University (no. 2009xjtujc30).

References

[1] J. Baranger and S. Wardi, “Numerical analysis of a FEM for a transient viscoelastic flow,” Computer
Methods in Applied Mechanics and Engineering, vol. 125, no. 1-4, pp. 171-185, 1995.

[2] V. J. Ervin and W. W. Miles, “Approximation of time-dependent viscoelastic fluid flow: SUPG
approximation,” SIAM Journal on Numerical Analysis, vol. 41, no. 2, pp. 457-486, 2003.

[3] V.J. Ervin and W. W. Miles, “Approximation of time-dependent, multi-component, viscoelastic fluid
flow,” Computer Methods in Applied Mechanics and Engineering, vol. 194, no. 18-20, pp. 2229-2255, 2005.

[4] T.]J. Hughes and A. N. Brooks, A multidimensional Upwind Scheme with No Crosswind Diffusion, in Finite
Element Methods for Convection Dominated Flows, New York, NY, USA, 1979.

[5] M. Bensaada and D. Esselaoui, “Error estimates for a stabilized finite element method for the Oldroyd
B model,” Journal of Mathematical Analysis and Applications, vol. 325, no. 2, pp. 1042-1059, 2007.

[6] V.].Ervin and N. Heuer, “Approximation of time-dependent, viscoelastic fluid flow: Crank-Nicolson,
finite element approximation,” Numerical Methods for Partial Differential Equations, vol. 20, no. 2, pp.
248-283, 2004.

[7] J. C. Chrispell, V. J. Ervin, and E. W. Jenkins, “A fractional step 6—method approximation of time-
dependent viscoelastic fluid flow,” Journal of Computational and Applied Mathematics, vol. 232, no. 2,
pp- 159-175, 2009.

[8] A. Bonito, P. Clément, and M. Picasso, “Mathematical and numerical analysis of a simplified time-
dependent viscoelastic flow,” Numerische Mathematik, vol. 107, no. 2, pp. 213-255, 2007.

[9] P. Nithiarasu, “A fully explicit characteristic based split (CBS) scheme for viscoelastic flow
calculations,” International Journal for Numerical Methods in Engineering, vol. 60, no. 5, pp. 949-978,
2004.

[10] H. K. Lee, “Analysis of a defect correction method for viscoelastic fluid flow,” Computers and
Mathematics with Applications, vol. 48, no. 7-8, pp. 1213-1229, 2004.

[11] V. ]. Ervin and H. Lee, “Defect correction method for viscoelastic fluid flows at high Weissenberg
number,” Numerical Methods for Partial Differential Equations, vol. 22, no. 1, pp. 145-164, 2006.

[12] V.J. Ervin, J. S. Howell, and H. Lee, “A two-parameter defect-correction method for computation of
steady-state viscoelastic fluid flow,” Applied Mathematics and Computation, vol. 196, no. 2, pp. 818-834,
2008.

[13] X. L. Luo, “An incremental difference formulation for viscoelastic flows and high resolution FEM
solutions at high Weissenberg numbers,” Journal of Non-Newtonian Fluid Mechanics, vol. 79, no. 1, pp.
57-75,1998.

[14] ].Petera, “A new finite element scheme using the Lagrangian framework for simulation of viscoelastic
fluid flows,” Journal of Non-Newtonian Fluid Mechanics, vol. 103, no. 1, pp. 1-43, 2002.

[15] J. S. Howell, “Computation of viscoelastic fluid flows using continuation methods,” Journal of
Computational and Applied Mathematics, vol. 225, no. 1, pp. 187-201, 2009.

[16] K. Bhmer and H. J. Stetter, Defect Correction Methods-Theory and Applications, vol. 5 of Computing
Supplementum, Springer, Vienna, Austria, 1984.

[17] R. Minero, M. J. H. Anthonissen, and R. M. M. Mattheij, “A local defect correction technique for time-
dependent problems,” Numerical Methods for Partial Differential Equations, vol. 22, no. 1, pp. 128-144,
2006.



Discrete Dynamics in Nature and Society 25

[18] V. J. Ervin, W. J. Layton, and J. M. Maubach, “Adaptive defect-correction methods for viscous
incompressible flow problems,” SIAM Journal on Numerical Analysis, vol. 37, no. 4, pp. 1165-1185,
2000.

[19] W. Layton, H. Lee, and J. A. Peterson, “A defect-correction method for the incompressible Navier-
Stokes equations,” Applied Mathematics and Computation, vol. 129, no. 1, pp. 1-19, 2002.

[20] Q.Liuand Y. R. Hou, “A two-level defect-correction method for Navier-Stokes equations,” Bulletin of
the Australian Mathematical Society, vol. 81, no. 3, pp. 442-454, 2010.

[21] A. Labovschii, “A defect correction method for the time-dependent Navier-Stokes equations,”
Numerical Methods for Partial Differential Equations, vol. 25, no. 1, pp. 1-25, 2009.

[22] Y. Zhang, Y. Hou, and B. Mu, “Defect correction method for time-dependent viscoelastic fluid flow,”
International Journal of Computer Mathematics, vol. 88, no. 7, pp. 1546-1563, 2011.

[23] R.B.Bird, R.C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, John Wiley and Sons, New
York, NY, USA, 1987.

[24] C. Guillopé and J. C. Saut, “Existence results for the flow of viscoelastic fluids with a differential
constitutive law,” Nonlinear Analysis. Theory, Methods & Applications, vol. 15, no. 9, pp. 849-869, 1990.

[25] M. Renardy, Mathematical Analysis of Viscoelastic Flows, vol. 73 of CBMS-NSF Regional Conference Series
in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa,
USA, 2000.

[26] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, vol. 15 of Texts in
Applied Mathematics, Springer, New York, NY, USA, 1994.

[27] V. Girault and P. A. Raviart, Finite Element methods for Navier-Stokes Equations, vol. 5 of Springer Series
in Computational Mathematics, Springer, Berlin, Germany, 1986.

[28] P. Clément, “Approximation by finite element functions using local regularization,” RAIRO Analyse
Numerique, vol. 9, no. R-2, pp. 77-84, 1975.

[29] J. G. Heywood and R. Rannacher, “Finite-element approximation of the nonstationary Navier-Stokes
problem. IV. Error analysis for second-order time discretization,” SIAM Journal on Numerical Analysis,
vol. 27, no. 2, pp. 353-384, 1990.

[30] E Hecht, O. Pironneau, A. Le Hyaric, and K. Ohtsuka, “FreeFem++,” 2009, http:/ /www.freefem.org/
ff++.

[31] H. Lee, “A multigrid method for viscoelastic fluid flow,” SIAM Journal on Numerical Analysis, vol. 42,
no. 1, pp. 109-129, 2004.

[32] F. PT. Baaijens, “Mixed finite element methods for viscoelastic flow analysis: a review,” Journal of
Non-Newtonian Fluid Mechanics, vol. 79, no. 2-3, pp. 361-385, 1998.

[33] R.G. Owens and T. N. Phillips, Computational Rheology, Imperial College Press, London, UK, 2002.



-

Advances in

Operations Research

/
—
)

Advances in

DeC|S|on SC|ences

Mathematical Problems
in Engineering

Algebra

2

Journal of
Probability and Statistics

The Scientific
\(\(orld Journal

International Journal of

Combinatorics

Journal of

Complex Analysis

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Journal of

Mathematics

Journal of

DISBJBLL alhematics

International Journal of

Stochastic Analysis

Journal of

Function Spaces

Abstract and
Applied Analysis

Journal of

Applied Mathematics

ol

w2 v (P
/

e

\jtl (1)@" W, E

International Journal of
Differential Equations

ces In

I\/lathémamcal Physics

Discrete Dynamics in
Nature and Society

Journal of

Optimization



