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We first propose the concept of almost periodic time scales and then give the definition of almost
periodic functions on almost periodic time scales, then by using the theory of calculus on time
scales and some mathematical methods, some basic results about almost periodic differential
equations on almost periodic time scales are established. Based on these results, a class of high-
order Hopfield neural networks with variable delays are studied on almost periodic time scales,
and some sufficient conditions are established for the existence and global asymptotic stability of
the almost periodic solution. Finally, two examples and numerical simulations are presented to
illustrate the feasibility and effectiveness of the results.

1. Introduction

It is well known that in celestial mechanics, almost periodic solutions and stable solutions to
differential equations or difference equations are intimately related. In the same way, stable
electronic circuits, ecological systems, neural networks, and so forth exhibit almost periodic
behavior. A vast amount of researches have been directed toward studying these phenomena
(see [1–6]). Also, the theory of calculus on time scales (see [7] and references cited therein)
was initiated by Stefan Hilger in his Ph.D. thesis in 1988 [8] in order to unify continuous and
discrete analysis, and it has a tremendous potential for applications and has recently received
much attention since his foundational work. Therefore, it is meaningful to study that on time
scales which can unify the continuous and discrete situations. However, there are no concepts
of almost periodic time scales and almost periodic functions on time scales, so that it is
impossible for us to study almost periodic solutions to differential equations on time scales.

Motivated by the above, the main purpose of this paper is to propose the concept
of almost periodic time scales and then give the definition of almost periodic functions
on almost periodic time scales, then establish some basic results about almost periodic
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differential equations on almost periodic time scales by using the theory of calculus on
time scales and some mathematical methods. Furthermore, based on these results, as an
application, we consider the following high-order Hopfield neural networks with variable
delays on time scales:

xΔ
i (t) = −ci(t)xi(t) +

n∑

j=1

aij(t)fj
(
xj
(
t − γij(t)

))

+
n∑

j=1

n∑

l=1

bijl(t)gj
(
xj
(
t − σijl(t)

))
gl
(
xl
(
t − vijl(t)

))
+ Ii(t), i = 1, 2, . . . , n,

(1.1)

where n corresponds to the number of units in a neural network, xi(t) corresponds to the
state vector of the ith unit at the time t, ci(t) represents the rate with which the ith unit will
reset its potential to the resting state in isolation when disconnected from the network and
external inputs, aij(t) and bijl(t) are the first- and second-order connection weights of the
neural network, γij(t) ≥ 0, σijl(t) ≥ 0 and vijl(t) ≥ 0 correspond to the transmission delays,
Ii(t) denote the external inputs at time t, and fj and gj are the activation functions of signal
transmission.

2. Almost Periodic Differential Equations on Time Scales

In this section, we will establish some basic results about almost periodic differential equa-
tions on almost periodic time scales.

Let T be a nonempty closed subset (time scale) of R. The forward and backward jump
operators σ, ρ : T → T and the graininess μ : T → R

+ are defined, respectively, by

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}, μ(t) = σ(t) − t. (2.1)

A point t ∈ T is called left-dense if t > inf T and ρ(t) = t, left-scattered if ρ(t) < t,
right-dense if t < supT and σ(t) = t, and right-scattered if σ(t) > t. If T has a left-scattered
maximum m, then T

k = T \ {m}, otherwise T
k = T. If T has a right-scattered minimum m,

then Tk = T \ {m}, otherwise Tk = T.
A function f : T → R is right-dense continuous provided it is continuous at right-

dense point in T and its left-side limits exist at left-dense points in T. If f is continuous at
each right-dense point and each left-dense point, then f is said to be a continuous function
on T.

For y : T → R and t ∈ T
k, we define the delta derivative of y(t), yΔ(t), to be the

number (if it exists) with the property that for a given ε > 0, there exists a neighborhood U
of t such that

∣∣∣
[
y(σ(t)) − y(s)] − yΔ(t)[σ(t) − s]

∣∣∣ < ε|σ(t) − s|, (2.2)

for all s ∈ U.
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Let y be right-dense continuous, if YΔ(t) = y(t), then we define the delta integral by

∫ t

a

y(s)Δs = Y (t) − Y (a). (2.3)

A function p : T → R is called regressive provided 1 + μ(t)p(t)/= 0 for all t ∈ T
k. The

set of all regressive and rd-continuous functions p : T → R will be denoted by R = R(T) =
R(T,R). We define the set R+ = R+(T,R) = {p ∈ R : 1 + μ(t)p(t) > 0, ∀t ∈ T}.

If r is a regressive function, then the generalized exponential function er is defined by

er(t, s) = exp

{∫ t

s

ξμ(τ)(r(τ))Δτ

}
, (2.4)

for all s, t ∈ T, with the cylinder transformation

ξh(z) =

⎧
⎪⎨

⎪⎩

Log(1 + hz)
h

, if h/= 0,

z, if h = 0.
(2.5)

Definition 2.1 (see [7]). Let p, q : T → R are two regressive functions, define

p ⊕ q = p + q + μpq, �p = − p

1 + μp
, p � q = p ⊕ (�q). (2.6)

Lemma 2.2 (see [7]). Assume that p, q : T → R be two regressive functions, then

(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;

(ii) ep(σ(t), s) = (1 + μ(t)p(t))ep(t, s);

(iii) ep(t, s) = 1/ep(s, t) = e�p(s, t);

(iv) ep(t, s)ep(s, r) = ep(t, r);

(v) (e�p(t, s))
Δ = (�p)(t)e�p(t, s);

(vi) if a, b, c ∈ T, then
∫b
a p(t)ep(c, σ(t))Δt = ep(c, a) − ep(c, b).

Definition 2.3. A subset S of T is called relatively dense if there exists a positive number L
such that [a, a + L] ∩ s /= ∅ for all a ∈ T. The number L is called the inclusion length.

Definition 2.4. Let C be a collection of sets which is constructed by subsets of R. A time scale
T is called an almost periodic time scale with respect to C, if

C∗ =

{
± τ ∈

⋂

c∈C
c : t ± τ ∈ T, ∀t ∈ T

}

/= ∅, (2.7)

and C∗ is called the smallest almost periodic set of T.
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Remark 2.5. If C = {R}, then C∗ = {±τ ∈ R : t ± τ ∈ T, ∀t ∈ T}, C∗ is called the smallest almost
periodic set of T. If B is a set which is constructed by absolute values of all the elements in C∗,
that is B = {|τ | : τ ∈ C∗}, obviously, B is the smallest positive almost periodic set of the time
scale T. Let p = infτ∈B{τ} > 0, p is called the smallest positive period of a time scale T with
respect to C. It is easy to see that this definition includes the concept of periodic time scale
and is proper (see [9]).

Throughout this paper, we always restrict our discussion on almost periodic time
scales. In this section, we use the notation | · | to denote a norm of R

n.

Definition 2.6. Let T be an almost periodic time scale with respect to C. A function f(t) ∈
C(T,En) is called almost periodic if for any given ε > 0, the set

E
(
ε, f
)
=
{
τ ∈ C∗ :

∣∣f(t + τ) − f(t)∣∣ < ε, ∀t ∈ T
}

(2.8)

is relatively dense in T; that is, for any given ε > 0, there exists an l = l(ε) > 0 such that each
interval of length l contains at least one τ = τ(ε) ∈ T(f, ε,T) satisfying

∣∣f(t + τ) − f(t)∣∣ < ε, ∀t ∈ T. (2.9)

The set E(ε, f) is called ε-translation set of f(t), τ is called ε-translation number of f(t), and
l(ε) is called contain interval length of E(ε, f).

Obviously,E{ε, f} ⊆ C∗. So ifE{ε, f}/= ∅, thenwe can discuss almost periodic problems
on an almost periodic time scale and it is meaningful. We denote AP(T) as a set constructed
by all almost periodic functions on an almost time scale T.

Remark 2.7. If C = {R} and T = R, then C∗ = R, in this case, Definition 2.6 is equivalent
to Definition 1.1 in [10]. If C = {Z} and T = Z, then C∗ = Z, in this case, Definition 2.6 is
equivalent to the definition of the almost periodic sequences in [11, 12].

Lemma 2.8. Let f ∈ C(T,Rn) be an almost periodic function, then f(t) is bounded on T.

Proof. For given ε ≤ 1, there exists a constant l, such that in any interval of length l(ε), there
exists τ ∈ E{ε, f}, such that the inequality |f(t + τ) − f(t)| < ε, ∀t ∈ T holds. And noticing
that f ∈ C(T,Rn), then in the limited interval [0, l]

T
, there exists a number M > 0, such

that |f(t)| < M. For any given t ∈ T, we can take τ ∈ E{ε, f} ∩ [−t,−t + l]
T
, then we have

t + τ ∈ [0, l]
T
. Hence, we can obtain |f(t + τ)| < M and |f(t + τ) − f(t)| < 1. So for all t ∈ T, we

have |f(t)| < M + 1. This completes the proof.

Similar to the case of T = R, one can easily show the following theorems.

Theorem 2.9. If f, g ∈ C(T,Rn) are almost periodic, then f + g, fg are almost periodic.

Theorem 2.10. If f(t) ∈ C(T,Rn) is almost periodic, then F(t, x) is almost periodic if and only if
F(t) is bounded on T, where F(t) =

∫ t
0 f(s)Δs.

Theorem 2.11. If f(t) is almost periodic, F(·) is uniformly continuous on the value field of f(t), then
F ◦ f is almost periodic.
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Definition 2.12. Let x ∈ R
n, and A(t) be an n × n rd-continuous matrix on T, the linear system

xΔ(t) = A(t)x(t), t ∈ T (2.10)

is said to admit an exponential dichotomy on T if there exist positive constant k, α, projection
P , and the fundamental solution matrix X(t) of (2.10), satisfying

∣∣X(t)PX−1(σ(s))
∣∣
0 ≤ ke�α(t, σ(s)), s, t ∈ T, t ≥ σ(s),

∣∣X(t)(I − P)X−1(σ(s))
∣∣
0 ≤ ke�α(σ(s), t), s, t ∈ T, t ≤ σ(s),

(2.11)

where | · |0 is a matrix norm on T, (say, e.g., ifA = (aij)n×m, then we can take |A|0 =
(
∑n

i=1
∑m

j=1 |aij |2)1/2).
Consider the following almost periodic system

xΔ(t) = A(t)x(t) + f(t), t ∈ T, (2.12)

where A(t) is an almost periodic matrix function, f(t) is an almost periodic vector function.

Lemma 2.13. If the linear system (2.10) admits exponential dichotomy, then system (2.12) has a
bounded solution x(t) as follows:

x(t) =
∫ t

−∞
X(t)PX−1(σ(s))f(s)Δs −

∫+∞

t

X(t)(I − P)X−1(σ(s))f(s)Δs, (2.13)

where X(t) is the fundamental solution matrix of (2.10).

Proof. In fact,

xΔ(t) −A(t)x(t)

= XΔ(t)
∫ t

−∞
PX−1(σ(s))f(s)Δs +X(σ(t))PX−1(σ(t))f(t)

−XΔ(t)
∫+∞

t

(I − P)X−1(σ(s))f(s)Δs +X(σ(t))(I − P)X−1(σ(t))f(t)

−A(t)X(t)
∫ t

−∞
PX−1(σ(s))f(s)Δs +A(t)X(t)

∫+∞

t

(I − P)X−1(σ(s))f(s)Δs

= X(σ(t))(P + I − P)X−1(σ(t))f(t)

= f(t),
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‖x‖ = sup
t∈T

∣∣∣∣∣

∫ t

−∞
X(t)PX−1(σ(s))f(s)Δs −

∫+∞

t

X(t)(I − P)X−1(σ(s))f(s)Δs

∣∣∣∣∣

≤ sup
t∈T

(∣∣∣∣∣

∫ t

−∞
e�α(t, σ(s))Δs

∣∣∣∣∣ +
∣∣∣∣

∫+∞

t

e�α(σ(s), t)Δs
∣∣∣∣

)
k‖f‖

≤
(
1
α
− 1
�α
)
k
∥∥f
∥∥ =

2 + μα
α

k
∥∥f
∥∥,

(2.14)

where ‖ · ‖ = supt∈T
| · |. So, by Lemma 2.8, x(t) is a bounded solution of system (2.12). The

proof is complete.

Lemma 2.14 (see [7]). Let A be a regressive n × n-matrix-valued function on T. Let t0 ∈ T and
y0 ∈ R

n. Then the initial value problem

yΔ(t) = A(t)y(t), y(t0) = y0 (2.15)

has a unique solution y : T → R
n. Moreover, the solution is given by

y(t) = eA(t, t0)y0. (2.16)

Lemma 2.15. Let ci(t) be an almost periodic function on T, where ci(t) > 0, −ci(t) ∈ R+, ∀t ∈ T and

min
1≤i≤n

{
inf
t∈T

ci(t)
}

= m̃ > 0, (2.17)

then the linear system

xΔ(t) = diag(−c1(t),−c2(t), . . . ,−cn(t))x(t) (2.18)

admits an exponential dichotomy on T.

Proof. According to Lemma 2.14, one can see that

X(t) = e−c(t, t0), (2.19)

where −c = diag(−c1(t),−c2(t), . . . ,−cn(t)), is a fundamental solution matrix of (2.18).
Now, we prove that X(t) admits an exponential dichotomy on T. In fact, noticing that

−ci(t) ∈ R+, then for t ≥ σ(s), t, s ∈ T, ∀i = 1, 2, . . . , n.
If μ(θ) > 0, θ ∈ [σ(s), t)

T
, s, t ∈ T, we have

1 − μ(θ)(m̃/2)
1 + μ(θ)(m̃/2)

> 1 − μ(θ)m̃
2
> 1 − μ(θ)ci(θ) > 0, (2.20)
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then

∫ t

σ(s)

Log
(
1 − μ(θ)ci(θ)

)

μ(θ)
Δθ ≤

∫ t

σ(s)

Log
(
1 − (μ(θ)(m̃/2)/1 + μ(θ)(m̃/2)))

μ(θ)
Δθ, (2.21)

therefore

exp

{∫ t

σ(s)

Log
(
1 − μ(θ)ci(θ)

)

μ(θ)
Δθ

}
≤ exp

{∫ t

σ(s)

Log
(
1 − (μ(θ)(m̃/2)/1 + μ(θ)(m̃/2)))

μ(θ)
Δθ

}
,

(2.22)

then, we can get

e−ci(t, σ(s)) ≤ e�(m̃/2)(t, σ(s)). (2.23)

If μ(θ) = 0, θ ∈ [σ(s), t)
T
, s, t ∈ T, we can get

e−ci(t, σ(s)) = exp

{∫ t

σ(s)
−ci(θ)Δθ

}
≤ exp

{∫ t

σ(s)
−m̃
2
Δθ

}
= e�(m̃/2)(t, σ(s)). (2.24)

Hence, set P = I, then

∣∣∣X(t)PX−1(σ(s))
∣∣∣
0
=
∣∣∣e−c(t, t0)Ie−1−c(σ(s), t0)

∣∣∣
0

= |e−c(t, t0)e−c(t0, σ(s))|0
= |e−c(t, σ(s))|0
≤ n1/2e�(m̃/2)(t, σ(s)),

(2.25)

where m̃ = min1≤i≤n{inft∈Tci(t)}. We can take k = n1/2, α = m̃/2, therefore, X(t) admits an

exponential dichotomy on T with P = I. This completes the proof.

3. An Application

It is well known that high-order Hopfield neural networks (HHNNs) have been extensively
applied in psychophysics, speech, perception, robotics, adaptive pattern recognition, vision,
and image processing. There exist many results on the existence and stability of periodic and
almost periodic solutions for the neural networks with delays. We refer the reader to [13–27]
and references therein.

In fact, both continuous and discrete systems are very important in implementing and
applications. But it is troublesome to study the existence and stability of almost periodic
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solutions for continuous and discrete systems, respectively. Therefore, it is meaningful to
study that on time scales which can unify the continuous and discrete situations (see [28, 29]).
In this section, by using the concepts and results developed in previous sections, we will
study the existence and global asymptotic stability of almost periodic solution of (1.1).

The system (1.1) is supplemented with initial values given by

xi(s) = ϕi(s), s ∈ [−θ, 0]
T
, θ = max

{
γ, σ, v

}
,

γ = max
1≤i,j≤n

{
γij
}
, σ = max

1≤i,j,l≤n
{
σijl
}
, v = max

1≤i,j,l≤n
{
vijl
}
, i, j, l = 1, 2, . . . , n,

γij = sup
t∈T

γij(t), σijl = sup
t∈T

σijl(t), vijl = sup
t∈T

vijl(t),

(3.1)

where ϕi(·) ∈ C([−θ, 0]T
,R).

For the sake of convenience, we introduce the following notations:

ci = inf
t∈T

|ci(t)|, ci = sup
t∈T

|ci(t)|, aij = sup
t∈T

∣∣aij(t)
∣∣,

bijl = sup
t∈T

∣∣bijl(t)
∣∣, Ii = sup

t∈T

|Ii(t)|.
(3.2)

In this section, we assume the follwing.

(H1) ci, aij , bijl, Ii, t−γij , t−σijl, t−vijl ∈ C(T,R) are almost periodic, −ci ∈ R+ and ci >
0, for i, j, l = 1, 2, . . . , n.

(H2) There exist positive constants Mj, Nj, j = 1, 2, . . . , n such that |fj(x)| ≤ Mj,
|gj(x)| ≤Nj for j = 1, 2, . . . , n, x ∈ R.

(H3) Functions fj(u), gj(u)(j = 1, 2, . . . , n) satisfy the Lipschitz condition, that is, there
exist constants Lj,Hj > 0 such that |fj(u1) − fj(u2)| ≤ Lj |u1 − u2|, |gj(u1) − gj(u2)| ≤
Hj |u1 − u2|, j = 1, 2, . . . , n.

Let X = {ψ | ψ : T → R
n, is a continuous almost periodic function} with the norm

‖ψ‖X = supt∈T
‖ψ(s)‖. Clearly, X is a Banach space.

Definition 3.1. The almost periodic solution x∗(t) of system (1.1) is said to be globally
asymptotically stable if for any ε > 0 and t0 ∈ [−θ,+∞)

T
, there exists δ(ε) > 0 and σ =

σ(t0, ε, ϕ) > 0 such that ‖ϕ(t) − x∗(t)‖ < δ for t ∈ [−θ, 0]
T
implies ‖x(t, ϕ) − x∗(t)‖ < ε for all

t ∈ [t0 + σ,+∞)
T
.

Theorem 3.2. Assume that (H1)–(H3) hold, and suppose that

(H4) max1≤i≤n{
∑n

j=1 aijLj +
∑n

j=1
∑n

l=1 bijlNjHl +
∑n

j=1
∑n

l=1 bijlNlHj/ci} < 1,

then (1.1) has a unique almost periodic solution.
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Proof. For any given ϕ ∈ X, we consider the following almost periodic differential system:

xΔ
i (t) = −ci(t)xi(t) +

n∑

j=1

aij(t)fj
(
ϕj
(
t − γij(t)

))

+
n∑

j=1

n∑

l=1

bijl(t)gj
(
ϕj
(
t − σijl(t)

))
gl
(
ϕl
(
t − vijl(t)

))
+ Ii(t), i = 1, 2, . . . , n.

(3.3)

Since min1≤i≤n{inf ci(t)} > 0, i = 1, 2, . . . , n, t ∈ T, it follows from Lemma 2.15 that the
linear system

xΔ
i (t) = −ci(t)xi(t), i = 1, 2, . . . , n (3.4)

admits an exponential dichotomy onT. Thus, by Lemmas 2.13 and 2.15, we obtain that system
(1.1) has a bounded solution:

xϕi(t)

=
∫ t

−∞
e−ci(t, σ(s))

×
⎛

⎝
n∑

j=1

aij(t)fj
(
ϕj
(
t − γij(t)

))
+

n∑

j=1

n∑

l=1

bijl(t)gj
(
ϕj
(
t − σijl(t)

))
gl
(
ϕl
(
t − vijl(t)

))
+ Ii(t)

⎞

⎠Δs,

i = 1, 2, . . . , n
(3.5)

and it follows from Theorems 2.9–2.11 and e−ci(t, σ(s)) being almost periodic that xϕ is also
almost periodic.

Denote

max
i

⎧
⎨

⎩

∑n
j=1 aijMj +

∑n
j=1
∑n

l=1 bijlNjNl

ci

⎫
⎬

⎭ +max
i

{
Ii
ci

}
:= L (3.6)

and define a mapping T : X → X, Tϕ(t) = xϕ(t), ∀ϕ ∈ X. Set

X∗ =
{
ϕ ∈ X∣∣∥∥ϕ∥∥X ≤ L}. (3.7)

Next, let us check that Tϕ ∈ X∗. For any given ϕ ∈ X∗, it suffices to prove that
‖T(ϕ)‖ ≤ L;

∥∥T
(
ϕ
)∥∥

X = sup
t∈T

max
i

⎧
⎨

⎩

∣∣∣∣∣∣

∫ t

−∞
e−ci(t, σ(s))

⎛

⎝
n∑

j=1

aij(t)fj
(
ϕj
(
t − γij(t)

))

+
n∑

j=1

n∑

l=1

bijl(t)gj
(
ϕj
(
t − σijl(t)

))
gl
(
ϕl
(
t − vijl(t)

))
+ Ii(t)

⎞

⎠Δs

∣∣∣∣∣∣

⎫
⎬

⎭
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≤ sup
t∈T

max
i

⎧
⎨

⎩

∣∣∣∣∣∣

∫ t

−∞
e−ci(t, σ(s))

⎛

⎝
n∑

j=1

aijfj
(
ϕj
(
t − γij(t)

))

+
n∑

j=1

n∑

l=1

bijlgj
(
ϕj
(
t − σijl(t)

))
gl
(
ϕl
(
t − vijl(t)

))
⎞

⎠

∣∣∣∣∣∣

⎫
⎬

⎭ +max
i

{
Ii
ci

}
Δs

≤ sup
t∈T

max
i

⎧
⎨

⎩

∣∣∣∣∣∣

∫ t

−∞
e−ci(t, σ(s))

⎛

⎝
n∑

j=1

aijMj +
n∑

j=1

n∑

l=1

bijlNjNl

⎞

⎠

∣∣∣∣∣∣

⎫
⎬

⎭ +max
i

{
Ii
ci

}
Δs

≤ max
i

⎧
⎨

⎩

∑n
j=1 aijMj +

∑n
j=1
∑n

l=1 bijlNjNl

ci

⎫
⎬

⎭ +max
i

{
Ii
ci

}
= L,

(3.8)

which shows that Tϕ ∈ X∗. So T is a self-mapping from X∗ to X∗.
Next, we shall prove that T is a contraction of X∗.
For any ϕ, ψ ∈ X∗,

∥∥T
(
ϕ
) − T(ψ)∥∥X
= sup

t∈T

∥∥T
(
ϕ
)
(t) − T(ψ)(t)∥∥

≤ sup
t∈T

max
i

⎧
⎨

⎩

∣∣∣∣∣∣

∫ t

−∞
e−ci(t, σ(s))

⎛

⎝
n∑

j=1

aij(t)
(
fj
(
ϕj
(
t − γij(t)

)) − fj
(
ψj
(
t − γij(t)

)))

+
n∑

j=1

n∑

l=1

bijl(t)
(
gj
(
ϕj
(
t − σijl(t)

))
gl
(
ϕl
(
t − vijl(t)

))

−gj
(
ψj
(
t − σijl(t)

))
gl
(
ψl
(
t − vijl(t)

)))
⎞

⎠Δs

∣∣∣∣∣∣

⎫
⎬

⎭

≤ sup
t∈T

max
i

⎧
⎨

⎩

∣∣∣∣∣∣

∫ t

−∞
e−ci(t, σ(s))

⎛

⎝
n∑

j=1

aij(t)
(
fj
(
ϕj
(
t − γij(t)

)) − fj
(
ψj
(
t − γij(t)

)))

+
n∑

j=1

n∑

l=1

bijl(t)
(
gj
(
ϕj
(
t − σijl(t)

))∣∣gl
(
ϕl
(
t − vijl(t)

)) − gl
(
ψl
(
t − vijl(t)

))∣∣

+
∣∣gj
(
ϕj
(
t − σijl(t)

)) − gj
(
ψj
(
t − σijl(t)

))∣∣gl
(
ψl
(
t − vijl(t)

)))
⎞

⎠Δs

∣∣∣∣∣∣

⎫
⎬

⎭

≤ sup
t∈T

max
i

⎧
⎨

⎩

∣∣∣∣∣∣

⎛

⎝
n∑

j=1

aijLj +
n∑

j=1

n∑

l=1

bijlNjHl +
n∑

j=1

n∑

l=1

bijlNlHj

⎞

⎠Δs

∣∣∣∣∣∣

⎫
⎬

⎭
∥∥ϕ − ψ∥∥X
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≤ max
i

⎧
⎨

⎩

∑n
j=1 aijLj +

∑n
j=1
∑n

l=1 bijlNjHl +
∑n

j=1
∑n

l=1 bijlNlHj

ci

⎫
⎬

⎭
∥∥ϕ − ψ∥∥X

= ρ
∥∥ϕ − ψ∥∥X.

(3.9)

Because ρ < 1, so T is a contraction of X∗.
By the fixed point theorem of Banach space, T has a unique fixed point ϕ in X∗ such

that Tϕ = ϕ, ϕ is an almost periodic solution of system (1.1) in X∗. The proof is complete.

Theorem 3.3. Assume that (H1)–(H4) hold. Suppose further that (H5). Let

δi =
2ci − 2

∑n
j=1 aijLj − 2

∑n
j=1
∑n

l=1 bijl
(
NlHj +NjHl

)

(
ci +
∑n

j=1 aijLj +
∑n

j=1
∑n

l=1 bijl
(
NlHj +NjHl

))2 ,
(3.10)

and for any t0 ∈ [−θ,+∞)
T
, the following holds

∫ t

t0

(
δi − μ(s)

)
Δs −→ +∞, t −→ +∞, i = 1, 2, . . . , n. (3.11)

Then the almost periodic solution of system (1.1) is globally asymptotically stable.

Proof. According to Theorem 3.2, we know that (1.1) has an almost periodic solution x∗(t) =
(x∗

1(t), x
∗
2(t), . . . , x

∗
n(t))

T . Suppose that x(t) = (x1(t), x2(t), . . . , xn(t))
T is an arbitrary solution

of (1.1). Then it follows from system (1.1) that

(
xi(t) − x∗

i (t)
)Δ = −ci(t)

(
xi(t) − x∗

i (t)
)
+

n∑

j=1

aij(t)
(
fj
(
xj
(
t − γij(t)

)) − fj
(
x∗
j

(
t − γij(t)

)))

+
n∑

j=1

n∑

l=1

bijl(t)
(
gj
(
xj
(
t − σijl(t)

))
gl
(
xl
(
t − vijl(t)

))

−gj
(
x∗
j

(
t − σijl(t)

))
gl
(
x∗
l

(
t − vijl(t)

)))
,

(3.12)

for i = 1, 2, . . . , n, the initial condition of (3.12) is

ψi(s) = ϕi(s) − x∗
i (s), s ∈ [−θ, 0]

T
, i = 1, 2, . . . , n. (3.13)
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Let yi(t) = xi(t) − x∗
i (t), we use the Lyapunov function V (y) = yTy, where y(t) = (y1(t),

y2(t), . . . , yn(t))
T , from (3.12) we have

(
y2
i (t)
)Δ

= 2yi(t)yΔ
i (t) + μ(t)

(
yΔ
i (t)
)2

≤ 2yi(t)

⎡

⎣−ciyi(t) +
n∑

j=1

aijLj
∣∣yj
(
t − γij(t)

)∣∣

+
n∑

j=1

n∑

l=1

bijl
(
NlHj

∣∣yj
(
t − σijl(t)

)∣∣ +HlNj

∣∣yl
(
t − vijl(t)

)∣∣)
⎤

⎦

+ μ(t)

⎡

⎣−ciyi(t) +
n∑

j=1

aijLj
∣∣yj
(
t − γij(t)

)∣∣

+
n∑

j=1

n∑

l=1

bijl
(
NlHj

∣∣yj
(
t − σijl(t)

)∣∣ +HlNj

∣∣yl
(
t − vijl(t)

)∣∣)
⎤

⎦
2

≤
⎛

⎝−2ci + 2
n∑

j=1

aijLj + 2
n∑

j=1

n∑

l=1

bijl
(
NlHj +NjHl

)
⎞

⎠∥∥y
∥∥2

+ μ(t)

⎛

⎝ci +
n∑

j=1

aijLj +
n∑

j=1

n∑

l=1

bijl
(
NlHj +NjHl

)
⎞

⎠
2
∥∥y
∥∥2

= −
⎡

⎣2ci − 2
n∑

j=1

aijLj − 2
n∑

j=1

n∑

l=1

bijl
(
NlHj +NjHl

)

−μ(t)
⎛

⎝ci +
n∑

j=1

aijLj +
n∑

j=1

n∑

l=1

bijl
(
NlHj +NjHl

)
⎞

⎠
2
⎤
⎥⎦
∥∥y
∥∥2

= −
⎛

⎝ci +
n∑

j=1

aijLj +
n∑

j=1

n∑

l=1

bijl
(
NlHj +NjHl

)
⎞

⎠
2

×

⎛
⎜⎝

2ci − 2
∑n

j=1 aijLj − 2
∑n

j=1
∑n

l=1 bijl
(
NlHj +NjHl

)

(
ci +
∑n

j=1 aijLj +
∑n

j=1
∑n

l=1 bijl
(
NlHj +NjHl

))2 − μ(t)

⎞
⎟⎠
∥∥y
∥∥2

= −
⎛

⎝ci +
n∑

j=1

aijLj +
n∑

j=1

n∑

l=1

bijl
(
NlHj +NjHl

)
⎞

⎠
2
(
δi − μ(t)

)∥∥y
∥∥2.

(3.14)
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Then we can easily get

VΔ(y(t)
)
=

n∑

i=1

(
y2
i (t)
)Δ ≤ −

n∑

i=1

⎛

⎝ci +
n∑

j=1

aijLj +
n∑

j=1

n∑

l=1

bijl
(
NlHj +NjHl

)
⎞

⎠
2
(
δi − μ(t)

)∥∥y
∥∥2

≤ −ξ(t)φ(∥∥y∥∥),
(3.15)

where ξ(t) = min1≤i≤n{δi}−μ(t), φ(s) =
∑n

i=1(ci +
∑n

j=1 aijLj +
∑n

j=1
∑n

l=1 bijl(NlHj +NjHl))
2s2.

Let a(s) = (1/n)s2 and b = s2 where a, b ∈ C([0,∞),R+), it is easy to see that

(i) a(‖y‖) ≤ V (y(t)) ≤ b(‖y‖);
(ii) VΔ(y(t))|(1·1) ≤ −ξ(t)φ(‖y‖).
Let Ω be a domain in the space R

n that contains the origin of coordinates. We choose
a constant α > 0 and set Γ = {y ∈ Ω : V (y(t)) ≤ a(α)}. Assume that statement S0 has the
following form: for any ϕ ∈ Γ and ε > 0, t0 ∈ [−θ,+∞)

T
, there exists a constant ς = ς(t0, ε, ϕ) >

0 such that ‖y(t0 + ς, ϕ)‖ < ε.
Assume that statement S0 is not true, that is, there exist ϕ′ ∈ Γ and ε1 > 0 such that for

any constant ς > 0, one has ‖y(t0 + ς, ϕ′)‖ ≥ ε1. Since
∫ t

t0

ξ(s)Δs −→ +∞, t −→ +∞, (3.16)

we conclude that, for η > a(α)/φ(ε1), there exists a constant ς1 = ς1(t0, ε1, ϕ′) such that

∫ t0+ς1

t0

ξ(s)Δs > η. (3.17)

Every t ∈ [t0, t0 + ς1)T
can be represented in the form t = t0 + ς2. Hence, for all t ∈ [t0, t0 + ς1)T

,
we have ‖y(t, ϕ′)‖ ≥ ε1. Integrating the inequality from (ii), we get

V
(
y(t0 + ς1)

)

≤ V (y(t0)
) −
∫ t0+ς1

t0

ξ(t)φ
(∥∥y
∥∥)Δs < a(α) − φ(ε1)

∫ t0+ς1

t0

ξ(t)Δs ≤ a(α) − φ(ε1)η < 0,

(3.18)

which is impossible. Thus, S0 is true.
We choose an arbitrary ε > 0 and set ε1 = b−1(a(ε)) > 0. Since statement S0 is true, for

any ϕ ∈ Γ and ε > 0 there exists a constant ς = ς(t0, ε, ϕ) > 0 such that ‖y(t0 + ς, ϕ)‖ < ε1.
Since t > t0 + ς for all t ∈ [t0 + ς,+∞)

T
, we obtain the following inequality for the

solution y(t) = y(t, ϕ):

a
(∥∥y
∥∥) ≤ V (y(t)) ≤ V (y(t0 + ς)

) ≤ b(∥∥y(t0 + ς)
∥∥) < b(ε1). (3.19)

Hence, ‖y(t)‖ ≤ a−1b(ε1) = ε for all t ∈ [t0 + ς,+∞)
T
.
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Figure 1: Transient response of state x1, x2 in Example 4.1.

Thus, for any ϕ ∈ Γ and ε > 0, there is a constant ς = ς(t0, ε, ϕ) > 0 such that ‖y(t, ϕ)‖ <
ε for all t ∈ [t0 + ς,+∞)

T
. Choosing a constant δ > 0 so that b(δ) ≤ a(α), we obtain Bδ := {y ∈

R
n : ‖y‖ < δ} ⊂ Γ. Therefore, the almost periodic solution x∗(t) of system (1.1) is globally

asymptotically stable. This completes the proof.

4. Numerical Examples and Simulations

Consider the following neural networks system on time scales:

xΔ
i (t) = −ci(t)xi(t) +

2∑

j=1

aij(t)fj
(
xj
(
t − γij(t)

))

+
2∑

j=1

2∑

l=1

bijl(t)gj
(
xj
(
t − σijl(t)

))
gl
(
xl
(
t − vijl(t)

))
+ Ii(t), i = 1, 2, t > 0,

(4.1)

where

f1(x1) = g1(x1) = sin
(
3
4
x1

)
, f2(x2) = g2(x2) = cos

(
2
5
x2

)
. (4.2)

Obviously, fi(xi), gi(xi)(i = 1, 2) satisfy (H2) and (H3), and

L1 = L2 = H1 = H2 =M1 =M2 =N1 =N2 = 1. (4.3)
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Example 4.1. T = R, μ(t) ≡ 0,

a11(t) =
1
20

+
1
20

cos t, a12(t) =
1
40

+
3
40

cos
(√

2t
)
, a21(t) =

3
20

+
1
20

cos
(
4
3
t

)
,

a22(t) =
3
40

+
1
40

cos
(
1
4
t

)
, c1(t) = 1 +

1
20

sin
(
6
5
t

)
, c2(t) = 1 +

1
25

sin
(
1
3
t

)
,

I1(t) =
3
40

+
1
40

sin
(√

3t
)
, I2(t) =

1
40

+
3
40

cos
(
3
4
t

)
,

b111(t) = b222(t) =
1
80

+
1
80

sin
(√

2t
)
, b112(t) = b212(t) =

1
40

+
1
40

cos
(
4
3
t

)
,

b121(t) = b221(t) =
1
80

+
1
80

cos
(√

3t
)
, b122(t) = b211(t) =

1
80

+
1
80

sin
(
3
4
t

)
.

(4.4)

We get that (H1) is satisfied, and

c1 =
21
20
, c2 =

26
25
, c1 =

19
20
, c2 =

24
25
,

a11 =
1
10
, a12 =

1
10
, a21 =

1
5
, a22 =

1
10
,

b111 = b222 =
1
40
, b112 = b212 =

1
20
,

b121 = b221 =
1
40
, b122 = b211 =

1
40
,

(4.5)

so, we have

∑2
j=1 a1jLj +

∑2
j=1
∑2

l=1 b1jlNjHl +
∑2

j=1
∑2

l=1 b1jlNlHj

c1
=

9
19

< 1,

∑2
j=1 a2jLj +

∑2
j=1
∑2

l=1 b2jlNjHl +
∑2

j=1
∑2

l=1 b2jlNlHj

c2
=

55
96

< 1,

δ1 =
2c1 − 2

∑n
j=1 a1jLj − 2

∑n
j=1
∑n

l=1 b1jl
(
NlHj +NjHl

)

(
c1 +
∑n

j=1 a1jLj +
∑n

j=1
∑n

l=1 b1jl
(
NlHj +NjHl

))2 = 0.444 > 0,

δ2 =
2c2 − 2

∑n
j=1 a2jLj − 2

∑n
j=1
∑n

l=1 b2jl
(
NlHj +NjHl

)

(
c2 +
∑n

j=1 a2jLj +
∑n

j=1
∑n

l=1 b2jl
(
NlHj +NjHl

))2 = 0.3164 > 0.

(4.6)
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Figure 2: Phase response of state variables x1, x2 in Example 4.1.
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Figure 3: Phase response of state variables x1, x2 with time t in Example 4.1.

Thus, it is easy to see that

∫ t

t0

(
δi − μ(s)

)
Δs −→ +∞, t −→ +∞, i = 1, 2. (4.7)

The conditions of Theorems 3.2 and 3.3 is satisfied. Hence, we know that system (4.1) has an
almost periodic solution, which is asymptotically stable.

We take γij = σijl = vijl = 0.1, i, j, l = 1, 2, and the initial condition ϕ1(θ) = −0.13, ϕ2(θ) =
0.03, θ ∈ [−0.1, 0], we can give the following numerical simulation figures to show our results
are plausible and effective on time scales (see Figures 1, 2, and 3).

The numerical simulations of Figures 1, 2, and 3 in Example 4.1 show that the unique
almost periodic solution is asymptotically stable, our results are effective on time scales.
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Example 4.2. T = Z, μ(t) ≡ 1,

a11(t) = 0.003 + 0.002 cos t, a12(t) = 0.002 + 0.001 cos
(√

2t
)
,

a21(t) = 0.001 + 0.003 cos
(
4
3
t

)
, a22(t) = 0.003 + 0.001 cos

(
1
4
t

)
,

c1(t) = 0.7 + 0.05 sin
(
6
5
t

)
, c2(t) = 0.8 + 0.02 sin

(
1
3
t

)
,

I1(t) = 0.001 + 0.002 sin
(√

3t
)
, I2(t) = 0.002 + 0.001 cos

(
3
4
t

)
,

b111(t) = b222(t) = 0.001 + 0.002 sin
(√

2t
)
, b112(t) = b212(t) = 0.002 + 0.003 cos

(
4
3
t

)
,

b121(t) = b221(t) = 0.001 + 0.001 cos
(√

3t
)
, b122(t) = b211(t) = 0.003 + 0.002 sin

(
3
4
t

)
.

(4.8)

We get that (H1) is satisfied, and

c1 = 0.75, c2 = 0.82, c1 = 0.65, c2 = 0.78, a11 = 0.005,

a12 = 0.003, a21 = 0.004, a22 = 0.004,

b111 = b222 = 0.003, b112 = b212 = 0.005,

b121 = b221 = 0.002, b122 = b211 = 0.005,

(4.9)

so, we have

∑2
j=1 a1jLj +

∑2
j=1
∑2

l=1 b1jlNjHl +
∑2

j=1
∑2

l=1 b1jlNlHj

c1
= 0.058 < 1,

∑2
j=1 a2jLj +

∑2
j=1
∑2

l=1 b2jlNjHl +
∑2

j=1
∑2

l=1 b2jlNlHj

c2
= 0.049 < 1,

δ1 =
2c1 − 2

∑n
j=1 a1jLj − 2

∑n
j=1
∑n

l=1 b1jl
(
NlHj +NjHl

)

(
c1 +
∑n

j=1 a1jLj +
∑n

j=1
∑n

l=1 b1jl
(
NlHj +NjHl

))2 = 1.9712 > 1,

δ2 =
2c2 − 2

∑n
j=1 a2jLj − 2

∑n
j=1
∑n

l=1 b2jl
(
NlHj +NjHl

)

(
c2 +
∑n

j=1 a2jLj +
∑n

j=1
∑n

l=1 b2jl
(
NlHj +NjHl

))2 = 1.8202 > 1.

(4.10)

Thus, it is easy to see that

∫ t

t0

(
δi − μ(s)

)
Δs −→ +∞, t −→ +∞, i = 1, 2. (4.11)
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Figure 4: Transient response of state x1, x2 in Example 4.2.
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Figure 5: Phase response of state variables x1, x2 in Example 4.2.

The conditions of Theorems 3.2 and 3.3 is satisfied. Hence, we know that system (4.1) has an
almost periodic solution, which is asymptotically stable.

We take γij = σijl = vijl = 0.01, i, j, l = 1, 2, and the initial condition ϕ1(θ) =
−0.013,ϕ2(θ) = 0.026, θ ∈ [−0.01, 0], we can give the following numerical simulation figures
to show our results are plausible and effective on time scales (see Figures 3, 4, and 5).

The numerical simulations of Figures 4, 5, and 6 in Example 4.2 show that the unique
almost periodic solution is asymptotically stable, our results are effective on time scales.
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Figure 6: Phase response of state variables x1, x2 with time t in Example 4.2.

5. Conclusion

In this paper, some basic results about almost periodic differential equations on almost peri-
odic time scales are established, and the existence and global asymptotic stability of an almost
periodic solution for a class of high-order Hopfield neural networks on almost periodic time
scales is investigated. The results derived in this paper are meaningful.
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Birkhäuser, Boston, Mass, USA, 2001.

[8] S. Hilger, “Analysis on measure chains—a unified approach to continuous and discrete calculus,”
Results in Mathematics, vol. 18, no. 1-2, pp. 18–56, 1990.

[9] E. R. Kaufmann and Y. N. Raffoul, “Periodic solutions for a neutral nonlinear dynamical equation on
a time scale,” Journal of Mathematical Analysis and Applications, vol. 319, no. 1, pp. 315–325, 2006.



20 Discrete Dynamics in Nature and Society

[10] A. M. Fink, Almost Periodic Differential Equation, vol. 377 of Lecture Notes in Mathematics, Springer,
Berlin, Germany, 1974.

[11] A. M. Fink and G. Seifert, “Liapunov functions and almost periodic solutions for almost periodic
systems,” Journal of Differential Equations, vol. 5, pp. 307–313, 1969.

[12] D. Cheban and C. Mammana, “Invariant manifolds, global attractors and almost periodic solutions
of nonautonomous difference equations,” Nonlinear Analysis: Theory, Methods & Applications, vol. 56,
no. 4, pp. 465–484, 2004.

[13] E. B. Kosmatopoulos, M. M. Polycarpou, M. A. Christodoulou, and P. A. Ioannou, “High-order neural
network structures for identification of dynamical systems,” IEEE Transactions on Neural Networks, vol.
6, no. 2, pp. 422–431, 1995.

[14] Y. Kamp and M. Hasler, Recursive Neural Networks for Associative Memory, Wiley-Interscience Series in
Systems and Optimization, John Wiley & Sons, Chichester, UK, 1990.

[15] A. Dembo, O. Farotimi, and T. Kailath, “High-order absolutely stable neural networks,” IEEE Trans-
actions on Circuits and Systems, vol. 38, no. 1, pp. 57–65, 1991.

[16] E. B. Kosmatopoulos and M. A. Christodoulou, “Structural properties of gradient recurrent high-
order neural networks,” IEEE Transactions on Circuits and Systems II, vol. 42, no. 9, pp. 592–603, 1995.

[17] X. Yi, J. Shao, Y. Yu, and B. Xiao, “New convergence behavior of high-order hopfield neural networks
with time-varying coefficients,” Journal of Computational and Applied Mathematics, vol. 219, no. 1, pp.
216–222, 2008.

[18] X. Liao and J. Yu, “Robust stability for interval Hopfield neural networks with time delay,” IEEE
Transactions on Neural Networks, vol. 9, no. 5, pp. 1042–1045, 1998.

[19] B. Liu and L. Huang, “Almost periodic solutions for shunting inhibitory cellular neural networkswith
time-varying delays,” Applied Mathematics Letters, vol. 20, no. 1, pp. 70–74, 2007.

[20] Y. Liu, Z. You, and L. Cao, “On the almost periodic solution of generalized shunting inhibitory cellular
neural networks with continuously distributed delays,” Physics Letters A, vol. 360, no. 1, pp. 122–130,
2006.

[21] Y. Liu, Z. You, and L. Cao, “Almost periodic solution of shunting inhibitory cellular neural networks
with time varying and continuously distributed delays,” Physics Letters A, vol. 364, no. 1, pp. 17–28,
2007.

[22] Z. Gui, W. Ge, and X.-S. Yang, “Periodic oscillation for a Hopfield neural networks with neutral
delays,” Physics Letters A, vol. 364, no. 3-4, pp. 267–273, 2007.

[23] X. Liao, K.-W. Wong, Z. Wu, and G. Chen, “Novel robust stability criteria for interval-delayed Hop-
field neural networks,” IEEE Transactions on Circuits and Systems. I, vol. 48, no. 11, pp. 1355–1359,
2001.

[24] K. Gopalsamy and X. Z. He, “Stability in asymmetric Hopfield nets with transmission delays,” Physica
D, vol. 76, no. 4, pp. 344–358, 1994.

[25] Y. Zhang, “Global exponential stability and periodic solutions of delay Hopfield neural networks,”
International Journal of Systems Science, vol. 27, no. 2, pp. 227–231, 1996.

[26] B. Liu, “Almost periodic solutions for shunting inhibitory cellular neural networks without global
Lipschitz activation functions,” Journal of Computational and Applied Mathematics, vol. 203, no. 1, pp.
159–168, 2007.

[27] W. Zhao and H. Zhang, “On almost periodic solution of shunting inhibitory cellular neural networks
with variable coefficients and time-varying delays,”Nonlinear Analysis: Real World Applications, vol. 9,
no. 5, pp. 2326–2336, 2008.

[28] Y. Li, X. Chen, and L. Zhao, “Stability and existence of periodic solutions to delayed Cohen-Grossberg
BAM neural networks with impulses on time scales,”Neurocomputing, vol. 72, no. 7–9, pp. 1621–1630,
2009.

[29] Y. Li, L. Zhao, and P. Liu, “Existence and exponential stability of periodic solution of high-order
Hopfield neural network with delays on time scales,” Discrete Dynamics in Nature and Society, vol.
2009, Article ID 573534, 18 pages, 2009.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


