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We give some new identities on the Bernoulli and Euler numbers by using the bosonic p-adic
integral on Zp and reflection symmetric properties of Bernoulli and Euler polynomials.

1. Introduction

Let p be a fixed prime number. Throughout this paper Zp,Qp, and Cp will denote the ring of
p-adic rational integers, the field of p-adic rational numbers, and the completion of algebraic
closure of Qp. Let UD(Zp) be the space of uniformly differentiable functions on Zp. For f ∈
UD(Zp), the bosonic p-adic integral on Zp is defined by

I
(
f
)
=
∫

Zp

f(x)dμ(x) = lim
N→∞

pN−1∑

x=0

f(x)μ
(
x + pNZp

)
= lim

N→∞
1
pN

pN−1∑

x=0

f(x). (1.1)

From (1.1), we note that

I
(
f1
)
= I

(
f
)
+ f ′(0), where f1(x) = f(x + 1), (1.2)
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see [1]. As is well known, the ordinary Bernoulli polynomials are defined by the generating
function as follows:

F(t, x) =
t

et − 1
ext = eB(x)t =

∞∑

n=0

Bn(x)
tn

n!
, (1.3)

see [1–19], where we use the technical notation by replacing Bn(x) by Bn(x)(n ≥ 0),
symbolically. In the special case, x = 0, Bn(0) = Bn are called the n-th ordinary Bernoulli
numbers. That is, the generating function of ordinary Bernoulli numbers is given by

F(t) = F(t, 0) =
t

et − 1
=

∞∑

n=0

Bn
tn

n!
, (1.4)

see [1–19]. From (1.4), we can derive the following relation:

B0 = 1, (B + 1)n − Bn = δ1,n, (1.5)

see [1, 10], where δ1,n is the Kronecker symbol.
By (1.3) and (1.4), we easily get

Bn(x) =
n∑

l=0

(
n

l

)

Blx
n−l =

n∑

l=0

(
n

l

)

Bn−lxl. (1.6)

By (1.2) and (1.3), we easily get

∫

Zp

e(x+y)tdμ
(
y
)
=

t

et − 1
ext =

∞∑

n=0

Bn(x)
tn

n!
, (1.7)

see [1, 10]. From (1.7), we can derive Witt’s formula for the n-th Bernoulli polynomials as
follows:

∫

Zp

(
x + y

)n
dμ

(
y
)
= Bn(x), where n ∈ Z+, (1.8)

see [11]. By (1.1) and (1.8), we easily see that

∫

Zp

(
y + 1 − x

)n
dμ

(
y
)
= (−1)n

∫

Zp

(
y + x

)n
dμ

(
y
)
. (1.9)

Thus, by (1.8) and (1.9), we get reflection symmetric relation for the Bernoulli polynomials
as follows:

Bn(1 − x) = (−1)nBn(x) where n ∈ Z+. (1.10)



Discrete Dynamics in Nature and Society 3

The ordinary Euler polynomials are defined by the generating function as follows:

Fe(t, x) =
2

et + 1
ext =

∞∑

n=0

En(x)
tn

n!
. (1.11)

with the usual convention about replacing En(x) by En(x) (see [8, 9]). In the special case,
x = 0, En(0) = En are called the n-th Euler numbers (see [8, 9]).

From (1.11), we note that

2
et + 1

ext =
2

1 + e−t
e−(1−x)t =

∞∑

n=0
(−1)nEn(1 − x)

(t)n

n!
, (1.12)

By comparing the coefficients on both sides of (1.11) and (1.12), we obtain the following
reflection symmetric relation for Euler polynomials as follows:

En(x) = (−1)nEn(1 − x), where n ∈ Z+. (1.13)

The equations (1.10) and (1.13) are useful in deriving our main results in this paper.
For n, k ∈ Z+, the Bernstein polynomials are defined by

Bk,n(x) =

(
n

k

)

xk(1 − x)n−k, (1.14)

see [13]. By (1.14), we easily get Bk,n(x) = Bn−k,n(1 − x).
In this paper we consider the p-adic integrals for the Bernoulli and Euler polynomials.

From those p-adic integrals, we derive some new identities on the Bernoulli and Euler
numbers.

2. Identities on the Bernoulli and Euler Numbers

First, we consider the p-adic integral on Zp for the nth ordinary Bernoulli polynomials as
follows:

I1 =
∫

Zp

Bn(x)dμ(x) =
n∑

l=0

(
n

l

)

Bn−l

∫

Zp

xldμ(x)

=
n∑

l=0

(
n

l

)

Bn−lBl, where n ∈ Z+.

(2.1)

On the other hand, by (1.3) and (1.10), one gets

I1 = (−1)n
∫

Zp

Bn(1 − x)dμ(x). (2.2)
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From (1.5), (1.6), (1.8), and (2.2), one notes that

I1 = (−1)n
n∑

l=0

(
n

l

)

Bn−l

∫

Zp

(1 − x)ldμ(x)

= (−1)n
n∑

l=0

(
n

l

)

Bn−l(l + Bl + δ1,l)

= (−1)nnBn−l(1) + (−1)n
n∑

l=0

(
n

l

)

Bn−lBl + (−1)nnBn−l.

(2.3)

Equating (2.1) and (2.3), one gets

(
1 + (−1)n+1

) n∑

l=0

(
n

l

)

Bn−lBl = (−1)nn(δ1,n−l + Bn−1) + (−1)nnBn−1

= 2(−1)nnBn−l + (−1)nnδ1,n−1.
(2.4)

Let n ∈ N with n ≡ 1 (mod 2). Then, by (2.4), one has

2n−1∑

l=0

(
2n − 1

l

)

B2n−1−lBl = −(2n − 1)B2n−2. (2.5)

Therefore, by (2.4) and (2.5), we obtain the following theorem.

Theorem 2.1. For n ∈ N, one has

(
1 + (−1)n+1

) n∑

l=0

(
n

l

)

Bn−lBl = 2(−1)nnBn−1 + (−1)nnδ1,n−1. (2.6)

In particular,

2n−1∑

l=0

(
2n − 1

l

)

B2n−1−lBl = −(2n − 1)B2n−2. (2.7)

By the same motivation, let us also consider the p-adic integral on Zp for Euler polynomials
as follows:

I2 =
∫

Zp

En(x)dμ(x) =
n∑

l=0

(
n

l

)

En−l

∫

Zp

xldμ(x)

=
n∑

l=0

(
n

l

)

En−lBl, where n ∈ Z+.

(2.8)
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On the other hand, by (1.12) and (1.13), one gets

I2 = (−1)n
∫

Zp

En(1 − x)dμ(x) = (−1)n
n∑

l=0

(
n

l

)

En−l

∫

Zp

(1 − x)ldμ(x)

= (−1)n
n∑

l=0

(
n

l

)

En−l(l + Bl + δ1,l)

= n(−1)nEn−l(1) + (−1)n
n∑

l=0

(
n

l

)

En−lBl + (−1)nnEn−l.

(2.9)

From (1.12) and the definition of Euler numbers, one has

En(x) =
n∑

l=0

(
n

l

)

Elx
n−l =

n∑

l=0

(
n

l

)

En−lxl = (E + x)n, (2.10)

E0 = 1, (E + 1)n + En = 2δ0,n, (2.11)

see [8, 9] with the usual convention of replacing En by En. By (2.9), (2.10), and (2.11), one
gets

I2 = n(−1)n(2δ0,n−1 − En−1) + (−1)nnEn−1 + (−1)n
n∑

l=0

(
n

l

)

En−lBl. (2.12)

Equating (2.8) and (2.12), one has

(
1 + (−1)n−1

) n∑

l=0

(
n

l

)

En−lBl = 2n(−1)nδ0,n−1. (2.13)

Therefore, by (2.13), we obtain the following theorem.

Theorem 2.2. For n ∈ N ∪ {0}, one has

(
1 + (−1)n−1

) n∑

l=0

(
n

l

)

En−lBl = 2(−1)nnδ0,n−1. (2.14)

In particular,

2n+1∑

l=0

(
2n + 1

l

)

E2n+1−lBl = 0, for n ∈ N. (2.15)



6 Discrete Dynamics in Nature and Society

Let us consider the following p-adic integral on Zp for the product of Bernoulli and
Euler polynomials as follows:

I3 =
∫

Zp

Bm(x)En(x)dμ(x)

=
m∑

k=0

n∑

�=0

(
m

k

)(
n

�

)

Bm−kEn−�

∫

Zp

xk+�(x)dμ(x)

=
m∑

k=0

n∑

�=0

(
m

k

)(
n

�

)

Bm−kEn−�Bk+�.

(2.16)

On the other hand, by (1.10) and (1.13), one gets

I3 = (−1)m+n
∫

Zp

Bm(1 − x)En(1 − x)dμ(x)

= (−1)m+n
m∑

k=0

n∑

�=0

(
m

k

)(
n

�

)

Bm−kEn−�

∫

Zp

(1 − x)k+�dμ(x)

= (−1)m+n
m∑

k=0

n∑

�=0

(
m

k

)(
n

�

)

Bm−kEn−�(k + � + Bk+� + δ1,k+�)

= (−1)m+nmBm−1(1)En(1) + (−1)m+nnBm(1)En−1(1)

+ (−1)m+n
m∑

k=0

n∑

�=0

(
m

k

)(
n

�

)

Bm−kEn−�Bk+� + (−1)m+n(mBm−1En + nBmEn−1).

(2.17)

Equating (2.16) and (2.17), one gets

(
(−1)m+n+1 + 1

) m∑

k=0

n∑

�=0

(
m

k

)(
n

�

)

Bm−kEn−�Bk+�

= (−1)m+nm(Bm−1 + δ1,m−1)(2δ0,n − En)

+ (−1)m+nn(Bm + δ1,m)(2δ0,n−1 − En−1) + (−1)m+n(nBmEn−1 +mBm−1En).

(2.18)

For n ∈ N, by (2.18), one gets

(
(−1)m+1 + 1

) m∑

k=0

2n∑

�=0

(
m

k

)(
2n

�

)

Bm−kE2n−�Bk+�

= (−1)m+12n(Bm + δ1,m)E2n−1 + (−1)m(2nBmE2n−1)

= (−1)m+12nδ1,mE2n−1.

(2.19)

Therefore, by (2.19), one obtains the following theorem.
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Theorem 2.3. For n ∈ N, one has

(
(−1)m+1 + 1

) m∑

k=0

2n∑

�=0

(
m

k

)(
2n

�

)

Bm−kE2n−�Bk+� = (−1)m+12nδ1,mE2n−1. (2.20)

In particular, form ∈ N, one has

2m+1∑

k=0

2n∑

�=0

(
2m + 1

k

)(
2n

�

)

B2m+1−kE2n−�Bk+� = 0. (2.21)

By the same motivation, we consider the p-adic integral on Zp for the product of
Bernoulli and Bernstein polynomials as follows:

I4 =
∫

Zp

Bm(x)Bk,n(x)dμ(x) where m,n, k ∈ N ∪ {0}. (2.22)

From (1.6) and (1.14), one gets

I4 =
m∑

�=0

(
m

�

)

Bm−�

∫

Zp

x�Bk,n(x)dμ(x)

=

(
n

k

)
m∑

�=0

(
m

�

)

Bm−�

∫

Zp

xk+�(1 − x)n−kdμ(x)

=

(
n

k

)
m∑

�=0

n−k∑

j=0
(−1)j

(
m

�

)(
n − k

j

)

Bm−�Bk+�+j .

(2.23)

On the other hand,

I4 = (−1)m
∫

Zp

Bm(1 − x)Bn−k,n(1 − x)dμ(x)

= (−1)m
(
n

k

)
m∑

�=0

k∑

j=0
(−1)j

(
m

�

)(
k

j

)

Bm−�
(
n − k + j + � + Bn−k+�+j + δ1,n−k+�+j

)

= (−1)m
(
n

k

)

(n − k)Bm(1)δ0,k + (−1)m
(
n

k

)

mBm−1(1)δ0,k − (−1)m
(
n

k

)

mBm(1)kδ0,k−1

+ (−1)m
(
n

k

)
m∑

�=0

k∑

j=0
(−1)j

(
m

�

)(
k

j

)

Bm−�Bn−k+�+j

+ (−1)m
(
n

k

)

(mBm−1 − kBm)δn,k + (−1)m
(
n

k

)

Bmδn,k+1.

(2.24)
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Equating (2.23) and (2.24), one gets

(−1)m
m∑

�=0

n−k∑

j=0
(−1)j

(
m

�

)(
n − k

j

)

Bm−�Bk+�+j

= ((n − k)Bm(1) +mBm−1(1))δ0,k − kBm(1)δ0,k−1 + (mBm−1 − kBm)δn,k

+ Bmδn,k+1 +
m∑

�=0

k∑

j=0
(−1)j

(
m

�

)(
k

j

)

Bm−�Bn−k+�+j .

(2.25)

By (2.25), we obtain the following theorem.

Theorem 2.4. For n,m ∈ N, one has

2m∑

�=0

2n∑

j=0
(−1)j

(
2m

�

)(
2n

j

)

B2m−�B�+j = 2nB2m +
2m∑

�=0

(
2m

�

)

B2m−�B2n+�. (2.26)

Now, we consider the p-adic integral on Zp for the product of Euler and Bernstein
polynomials as follows:

I5 =
∫

Zp

Em(x)Bk,n(x)dμ(x)

=
m∑

�=0

(
m

�

)

Em−�

∫

Zp

x�Bk,n(x)dμ(x)

=

(
n

k

)
m∑

�=0

n−k∑

j=0
(−1)j

(
m

�

)(
n − k

j

)

Em−�Bk+�+j .

(2.27)

On the other hand, by (1.13) and (1.14), one gets

I5 = (−1)m
∫

Zp

Bn−k,n(1 − x)Em(1 − x)dμ(x)

= (−1)m
(
n

k

)
m∑

�=0

k∑

j=0
(−1)j

(
m

�

)(
k

j

)

Em−�

∫

Zp

(1 − x)n−k+�+jdμ(x)

= (−1)m
(
n

k

)
m∑

�=0

k∑

j=0
(−1)j

(
m

�

)(
k

j

)
(
n − k + � + j + Bn−k+�+j + δ1,n−k+�+j

)
Em−�
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= (−1)m(n − k)

(
n

k

)

Em(1)δ0,k + (−1)m
(
n

k

)

mEm−1(1)δ0,k − (−1)m
(
n

k

)

Em(1)kδ0,k−1

+ (−1)m
(
n

k

)
m∑

�=0

k∑

j=0
(−1)j

(
m

�

)(
k

j

)

Em−�Bn−k+�+j

+ (−1)m
(
n

k

)

(δn,k+1Em + δn,k(mEm−1 − kEm)).
(2.28)

Equating (2.27) and (2.28), one gets

(−1)m
m∑

�=0

n−k∑

j=0
(−1)j

(
m

�

)(
n − k

j

)

Em−�Bk+�+j

= (n − k)Em(1)δ0,k +mδ0,kEm−1(1) − kEm(1)δ0,k−1

+
m∑

�=0

k∑

j=0
(−1)j

(
m

�

)(
k

j

)

Em−�Bn−k+�+j

+ δn,k+1Em + (mEm−1 − kEm)δn,k.

(2.29)

Therefore, by (2.11) and (2.29), we obtain the following theorem.

Theorem 2.5. For n,m ∈ N, one has

2m∑

�=0

2n∑

j=0
(−1)j

(
2m

�

)(
2n

j

)

E2m−�B�+j = −2mE2m−1 + B2m+2n. (2.30)

Finally, we consider the p-adic integral onZp for the product of Euler, Bernoulli, and Bernstein
polynomials as follows:

I6 =
∫

Zp

Br(x)Es(x)Bk,n(x)dμ(x)

=

(
n

k

)
r∑

�=0

s∑

j=0

(
r

�

)(
s

j

)

Br−�Es−j

∫

Zp

xk+�+j(1 − x)n−kdμ(x)

=

(
n

k

)
r∑

�=0

s∑

j=0

n−k∑

i=0
(−1)i

(
r

�

)(
s

j

)(
n − k

i

)

Br−�Es−jBk+�+i+j .

(2.31)

On the other hand, by (1.10), (1.13), and (1.14), one gets

I6 = (−1)r+s
∫

Zp

Br(1 − x)Es(1 − x)Bn−k,n(1 − x)dμ(x)

= (−1)r+s
(
n

k

)
r∑

�=0

s∑

j=0

k∑

i=0
(−1)i

(
r

�

)(
s

j

)(
k

i

)

Br−�Es−j

∫

Zp

(1 − x)n−k+�+i+jdμ(x).

(2.32)
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Equating (2.31) and (2.32), we easily see that

(−1)r+s
r∑

�=0

s∑

j=0

n−k∑

i=0
(−1)i

(
r

�

)(
s

j

)(
n − k

i

)

Br−�Es−jBk+�+i+j

=
r∑

�=0

s∑

j=0

k∑

i=0
(−1)i

(
r

�

)(
s

j

)(
k

i

)
(
n − k + � + i + j + Bn−k+�+i+j + δ1,n−k+�+i+j

)
Br−�Es−j

= (n − k)Br(1)Es(1)δ0,k + rBr−1(1)δ0,kEs(1) + sBr(1)Es−1(1)δ0,k

− kBr(1)Es(1)δ0,k−1 +
r∑

�=0

s∑

j=0

k∑

i=0
(−1)i

(
r

�

)(
s

j

)(
k

i

)

Br−�Es−jBn−k+�+i+j

+ δn,k+1BrEs + (rBr−1Es + sBrEs−1 − kBrEs)δn,k.
(2.33)

Therefore, by (1.5) and (2.11), we obtain the following theorem.

Theorem 2.6. For r, n, s ∈ N, one has

2r∑

�=0

2s∑

j=0

2n∑

i=0
(−1)i

(
2r

�

)(
2s

j

)(
2n

i

)

B2r−�E2s−jB�+i+j

= −2sB2rE2s−1 +
r∑

�=0

(
2r

2l

)

B2r−2lB2n+2l+2s − r
s∑

j=1

(
2s

2j − 1

)

E2s−2j+1B2n+2r+2j−2.

(2.34)
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