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A periodic delay single-species difference system with feedback control is established. With the
help of analysis method and Lyapunov function, a good understanding of the permanence and
global attractivity of the system is gained. Numerical simulations are presented to verify the
validity of the proposed criteria. Our results show that feedback control has no influence on the
permanence while it has influence on the global attractivity of the system.

1. Introduction

In 1978, Ludwig et al. [1] considered a single-species system which is modeled by

x′(t) = x(t)[a − bx(t)] − h(x), (1.1)

where x(t) is the density of species x at time t, a is the intrinsic growth rate, b is the competing
rate, and h(x)-term represents predation. To be specific, Murray [2] took h(x) in the form of
cx2(t)/(d + x2(t)), and the dynamic behavior of x(t) is then governed by

x′(t) = x(t)[a − bx(t)] − cx2(t)
d + x2(t)

, (1.2)

where cx2(t)/(d+x2(t)) is an S-shaped function and a, b, c, andd are positive constants. For
the relevant ecology sense of system (1.2), we refer the readers to [1, 2] and the references
cited therein.
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It seems reasonable to assume that the reproduction of species x will not be
instantaneous, but mediated by a delay required for gestation of species x. Thus, a revised
version is

x′(t) = x(t)[a − bx(t − τ)] − cx2(t)
d + x2(t)

, (1.3)

where the constant delay τ is positive. It is evident that all the coefficients of system (1.3) are
assumed to be constant. However, in the real world, the coefficients are not fixed constants
owing to the variation of environments. The influence of a varying environment is important
for evolutionary theory as the selective forces on systems in such a fluctuating medium differ
from those in a stable environment. In addition, as we know, ecosystems are often disturbed
by unpredictable forces and, so, species population may experience changes. In ecology,
an interesting issue is whether or not an ecosystem can withstand those unpredictable
disturbances which persist for a finite period of time. In the language of control, we call the
disturbance functions control variables. For more discussion on this direction, we refer the
readers to [3–8].

Considering the possible effects of fluctuating environment and feedback control on
system (1.3), we obtain the following periodic system:

x′(t) = x(t)[a(t) − b(t)x(t − τ)] − c(t)x2(t)
d(t) + x2(t)

− g(t)x(t)u(t),

u′(t) = −e(t)u(t) + h(t)x(t − τ),
(1.4)

where u(t) is the control variable. We assume that coefficients a(t), b(t), c(t), d(t), g(t), e(t),
and h(t) are continuous and bounded above and below by positive constants and e(t) ∈ (0, 1).

Following the same idea and method in [9–12], one can easily derive the discrete
analogue of system (1.4), which takes the form of

x(k + 1) = x(k) exp
{
a(k) − b(k)x(k − l) − c(k)x(k)

d(k) + x2(k)
− g(k)u(k)

}
,

Δu(k) = −e(k)u(k) + h(k)x(k − l),
(1.5)

where k ∈ {0, 1, 2, . . .}, l is a positive integer, all the coefficients a(k), b(k), c(k), d(k), g(k),
e(k), and h(k) are positive bounded sequences and e(k) ∈ (0, 1). Δ is the first forward
difference operator Δu(k) = u(k + 1) − u(k). For biological reasons, we only consider
the solution (x(k), u(k)) of system (1.5) with initial value x(−l), x(−l + 1), . . . , x(−1) ≥ 0,
(x(0), u(0)) > 0. The principle aim of this paper is to explore the permanence and global
attractivity of system (1.5). To the best of our knowledge, no work has been done for system
(1.5).

For the sake of simplicity and convenience, the notations and definitions below will
be used through this paper: Z+ and � � denote the set of nonnegative integers and the
greatest integer function, respectively. We denote fU = supk∈Z+f(k), fL = infk∈Z+f(k) for
any bounded nonnegative sequence {f(k)}. Meanwhile, we denote the product of f(k) from
k = α to k = β by

∏k=β
k=αf(k) with the understanding that

∏k=β
k=αf(k) = 1 for all α > β.
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Definition 1.1. System (1.5) is said to be permanent if there exist positive constants x, x and u,
u such that

x � lim
k→+∞

inf x(k) � lim
k→+∞

supx(k) � x,

u � lim
k→+∞

infu(k) � lim
k→+∞

supu(k) � u.
(1.6)

Definition 1.2. The positive solutions of system (1.5) are globally attractive if any two positive
solutions (x(k), u(k)) and (x∗(k), u∗(k)) of system (1.5) satisfy

lim
k→+∞

|x(k) − x∗(k)| = 0, lim
k→+∞

|u(k) − u∗(k)| = 0. (1.7)

The organization of this paper is as follows. In the next Sections 2 and 3, two
main results on permanence and global attractivity of system (1.5) are given, respectively.
Numerical simulations are present to illustrate the validity of our main results in Section 4,
and a brief conclusion is provided to summarize the paper in the final section.

2. Permanence

This section is concerned with the permanence of system (1.5). We first introduce the
following lemmas which are useful for establishing our result.

Lemma 2.1 (see [4]). Assume the constant A > 0 and y(0) > 0, and further suppose that

(1) if

y(k + 1) ≤ Ay(k) + B(k), k = 1, 2, . . . , (2.1)

then for any integer p ≤ k,

y(k) ≤ Apy
(
k − p

)
+

p−1∑
i=0

AiB(k − i − 1). (2.2)

Especially, if A < 1 and B(k) is bounded above with respect toM, then

lim
k→+∞

supy(k) ≤ M

1 −A. (2.3)

(2) If

y(k + 1) ≥ Ay(k) + B(k), k = 1, 2, . . . , (2.4)
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then for any integer p ≤ k,

y(k) ≥ Apy
(
k − p

)
+

p−1∑
i=0

AiB(k − i − 1). (2.5)

Especially, if A < 1 and B(k) is bounded below with respect tom, then

lim
k→+∞

infy(k) ≥ m

1 −A. (2.6)

Lemma 2.2 (see [10]). Assume that y(k) satisfies y(n1) > 0 and

y(k + 1) ≤ y(k) exp
[
r(k)

(
1 − αy(k)

)]
(2.7)

for k ∈ [n1,+∞), where α is a positive constant and n1 ∈ Z+. Then

lim
k→+∞

supy(k) ≤ 1
αrU

exp
(
rU − 1

)
. (2.8)

Lemma 2.3 (see [10]). Assume that y(k) satisfies y(n2) > 0 and

y(k + 1) ≥ y(k) exp
[
r(k)

(
1 − αy(k)

)]
(2.9)

for k ∈ [n2,+∞), limk→+∞ supy(k) ≤ M, where α is a positive constant such that αM > 1 and
n2 ∈ Z+. Then

lim
k→+∞

infy(k) ≥ 1
α

exp
[
rU(1 − αM)

]
. (2.10)

Now, we state the permanence of system (1.5).

Theorem 2.4. System (1.5) is permanent provided that

2aL
√
dL > cU. (2.11)

Proof. It follows from the first equation of system (1.5) that

x(k + 1) ≤ x(k) exp{a(k)}. (2.12)

Let x(k) = exp{y(k)}, then (2.12) can be rewritten as

y(k + 1) − y(k) ≤ a(k). (2.13)
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Summing both sides of (2.13) from k − l to k − 1 yields

k−1∑
i=k−l

[
y(i + 1) − y(i)

]
≤

k−1∑
i=k−l

a(i) ≤ aUl, (2.14)

which implies that

y(k − l) ≥ y(k) − aUl, (2.15)

and hence

x(k − l) ≥ x(k) exp
(
−aUl

)
. (2.16)

Following the above result, again from the first equation of system (1.5), we have

x(k + 1) ≤ x(k) exp
{
a(k) − b(k) exp

(
−aUl

)
x(k)

}
. (2.17)

By applying Lemma 2.2 to (2.17), we can obtain that

lim
k→+∞

supx(k) ≤
exp

[
aU(l + 1) − 1

]
bL

def= x. (2.18)

For any constant ε > 0, it follows from (2.18) that there exists a n1 ∈ Z+ large enough such
that

x(k) ≤ x + ε, for k ≥ n1, (2.19)

which, together with the second equation of system (1.5), leads to

u(k) ≤ −e(k)u(k) + h(k)(x + ε), for k ≥ n1 + l, (2.20)

that is,

u(k + 1) ≤
(

1 − eL
)
u(k) + hU(x + ε), for k ≥ n1 + l. (2.21)

Combing (2.21) with Lemma 2.1(1) and setting ε → 0 in (2.21), one has

lim
k→+∞

supu(k) ≤ h
Ux

eL
def= u. (2.22)

For any sufficient small constant ε > 0, it follows from (2.18) and (2.22) that there exists
n2 > n1 + l such that

x(k) ≤ x + ε, u(k) ≤ u + ε, for k ≥ n2. (2.23)
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Thus, by (2.23) and the first equation of system (1.5), we have

x(k + 1) = x(k) exp
{
a(k) − b(k)x(k − l) − c(k)x(k)

d(k) + x2(k)
− g(k)u(k)

}

≥ x(k) exp
{
a(k) − b(k)x − c(k)

d(k)/x(k) + x(k)
− g(k)u

}

≥ x(k) exp

{
a(k) − b(k)x − c(k)

2
√
d(k)

− g(k)u
}

(2.24)

for k ≥ n2. Let x(k) = exp{y(k)}, then (2.24) is equivalent to

y(k + 1) − y(k) ≥
{
a(k) − b(k)x − c(k)

2
√
d(k)

− g(k)u
}
. (2.25)

For convenience of exposition, we set R(k) = {a(k)−b(k)x−c(k)/2
√
d(k)−g(k)u}. Summing

both sides of (2.25) from k − l to k − 1 leads to

k−1∑
i=k−l

(
y(i + 1) − y(i)

)
≥

k−1∑
i=k−l

R(i). (2.26)

This implies that

y(k − l) ≤ y(k) −
k−1∑
i=k−l

R(i), (2.27)

and hence,

x(k − l) ≤ x(k) exp

{
−
k−1∑
i=k−l

R(i)

}
. (2.28)

From the second equation of system (1.5), we have

u(k + 1) = (1 − e(k))u(k) + h(k)x(k − l)

≤
(

1 − eL
)
u(k) + h(k)x(k − l)

def= Au(k) + B(k),

(2.29)
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where A = 1 − eL and B(k) = h(k)x(k − l). Then, for any integer p ≤ k − l, combing (2.28),
(2.29) with Lemma 2.1 (1), we have

u(k) ≤ Apu
(
k − p

)
+

p−1∑
i=0

AiB(k − i − 1)

= Apu
(
k − p

)
+

p−1∑
i=0

Aih(k − i − 1)x(k − i − 1 − l)

≤ Apu
(
k − p

)
+

p−1∑
i=0

AihUx(k) exp

⎧⎨
⎩−

k−1∑
j=k−(i+1+l)

R
(
j
)
⎫⎬
⎭.

(2.30)

Since e(k) ∈ (0, 1), we obtain that 0 < A < 1. So

0 ≤ Apu
(
k − p

)
≤ uAp −→ 0, for p −→ +∞. (2.31)

By the assumption of Theorem 2.4, for any solution (x(k), u(k)) of system (1.5), there exists
an integer q > 0 such that gUApu(k − p) < (1/2)(aL − cU/2

√
dL) for p > q. In fact, we can

choose q = max{1, �logA((a
L − cU)/(2

√
dL)/2gUu)� + 1}. Then

u(k) ≤ Aqu
(
k − q

)
+

q−1∑
i=0

AihUx(k) exp

⎧⎨
⎩−

k−1∑
j=k−(i+1+l)

R
(
j
)
⎫⎬
⎭

≤ uAq +

{
q−1∑
i=0

AihU exp
[
−(i + 1 + l)RL

]}
x(k), for k > q.

(2.32)

Since
∑q−1

i=0 A
ihU exp[−(i+1+ l)RL] is bounded above, letK1 = {

∑q−1
i=0 A

ihU exp[−(i+1+ l)RL]},
then we have

u(k) ≤ uAq +K1x(k), for k > q, (2.33)

which, together with (2.24) and (2.28), leads to

x(k + 1) = x(k) exp
{
a(k) − b(k)x(k − l) − c(k)x(k)

d(k) + x2(k)
− g(k)u(k)

}

≥ x(k) exp

⎧⎪⎨
⎪⎩

⎡
⎢⎣a(k) − c(k)(

2
√
d(k)

) − uAqg(k)

⎤
⎥⎦ −

[
K1g(k) + exp

(
−lRL

)
b(k)

]
x(k)

⎫⎪⎬
⎪⎭

≥ x(k) exp
{
S1(k)

[
1 −

(
S2(k)
S1(k)

)
x(k)

]}
,

(2.34)
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where S1(k) = a(k) − c(k)/(2
√
d(k)) − uAqg(k), S2(k) = K1g(k) + exp(−lRL)b(k). Note that

SU2
SL1

x =
gUK1 + bU exp

(
−lRL

)
aL − cU/

(
2
√
dL
)
− uAqgU

× x

≥
bU exp

(
−lRL

)
aL

×
exp

(
aU(l + 1) − 1

)
bL

≥
bU exp

(
−laL

)
aL

×
exp

(
aL(l + 1) − 1

)
bU

≥
exp

(
aL − 1

)
aL

> 1,

(2.35)

where we use the inequality exp(x− 1) > x for x > 0. Therefore, by Lemma 2.3, it follows that

lim
k→+∞

inf x(k) ≥
SL1
SU2

exp

[
SU1

(
1 −

SU2
SL1

x

)]
def= x. (2.36)

For any constant ε > 0, by (2.36) we know that there exists a sufficiently large integer n3 >
n2 + l such that

x(k) ≥ x − ε, for k ≥ n3. (2.37)

Hence, it follows from (2.37) and the second equation of system (1.5) that

u(k + 1) ≥
(

1 − eU
)
u(k) + hL

(
x − ε

)
, for k ≥ n3. (2.38)

Applying Lemma 2.1(2) and setting ε → 0 in (2.38), we have

lim
k→+∞

infu(k) ≥ hL

eU
x

def= u. (2.39)

Consequently, combing (2.18), (2.22), and (2.36) with (2.39), system (1.5) is permanent. This
completes the proof.

3. Global Attractivity

On the basis of permanence, in this section we further provide sufficient conditions that
guarantee the positive solutions of system (1.5) are globally attractive. To do so, we first give
the following lemma.
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Lemma 3.1. For any two positive solutions (x(k),u(k)) and (x∗(k),u∗(k)) of system (1.5), one has

ln
x(k + 1)
x∗(k + 1)

= ln
x(k)
x∗(k)

− b(k)[x(k) − x∗(k)] − c(k)J(k) − g(k)[u(k) − u∗(k)]

+ b(k)
k−1∑
s=k−l

{
P(s)

{
a(s) − b(s)x∗(s − l) − c(s)x∗(s)

d(s) + x∗(s)2
− g(s)u∗(s)

}

× [x(s) − x∗(s)] −Q(s)x(s){b(s)[x(s − l) − x∗(s − l)]

+ c(s)J(s) + g(s)[u(s) − u∗(s)]
}}

,

(3.1)

where

J(s) =
{[d(s) − x(s)x∗(s)] × [x(s) − x∗(s)]}{[

d(s) + x(s)2
]
×
[
d(s) + x∗(s)2

]} ,

P(s) = exp

{
η(s)

[
a(s) − b(s)x∗(s − l) − c(s)x∗(s)

d(s) + x∗(s)2
− g(s)u∗(s)

]}

Q(s) = exp

{
ξ(s)

[
a(s) − b(s)x(s − l) − c(s)x(s)

d(s) + x(s)2
− g(s)u(s)

]

+ (1 − ξ(s))
[
a(s) − b(s)x∗(s − l) − c(s)x∗(s)

d(s) + x∗(s)2
− g(s)u∗(s)

]}

η(s), ξ(s) ∈ (0, 1).

(3.2)

Proof. It follows from system (1.5) that we have

ln
x(k + 1)
x∗(k + 1)

− ln
x(k)
x∗(k)

= ln
x(k + 1)
x(k)

− ln
x∗(k + 1)
x∗(k)

=

[
a(k) − b(k)x(k − l) − c(k)x(k)

d(k) + x(k)2
− g(k)u(k)

]

−
[
a(k) − b(k)x∗(k − l) − c(k)x∗(k)

d(k) + x∗(k)2
− g(k)u∗(k)

]

= −b(k)[x(k − l) − x∗(k − l)] − c(k)J(k) − g(k)[u(k) − u∗(k)].
(3.3)
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Hence,

ln
x(k + 1)
x∗(k + 1)

= ln
x(k)
x∗(k)

− c(k)J(k) − g(k)[u(k) − u∗(k)]

− b(k){[x(k) − x∗(k)] − [x(k) − x(k − l)] + [x∗(k) − x∗(k − l)]}

= ln
x(k)
x∗(k)

− c(k)J(k) − g(k)[u(k) − u∗(k)]

− b(k)[x(k) − x∗(k)] + b(k){[x(k) − x(k − l)] − [x∗(k) − x∗(k − l)]}.

(3.4)

Note that

[x(k) − x(k − l)] − [x∗(k) − x∗(k − l)] =
k−1∑
s=k−l

[x(s + 1) − x(s)] −
k−1∑
s=k−l

[x∗(s + 1) − x∗(s)]

=
k−1∑
s=k−l
{[x(s + 1) − x∗(s + 1)] − [x(s) − x∗(s)]},

(3.5)

[x(s + 1) − x∗(s + 1)] − [x(s) − x∗(s)]

= x(s) exp

[
a(s) − b(s)x(s − l) − c(s)x(s)

d(s) + x(s)2
− g(s)u(s)

]

− x∗(s) exp

[
a(s) − b(s)x∗(s − l) − c(s)x∗(s)

d(s) + x∗(s)2
− g(s)u∗(s)

]
− [x(s) − x∗(s)]

= x(s)

{
exp

[
a(s) − b(s)x(s − l) − c(s)x(s)

d(s) + x(s)2
− g(s)u(s)

]

− exp

[
a(s) − b(s)x∗(s − l) − c(s)x∗(s)

d(s) + x∗(s)2
− g(s)u∗(s)

]}

+ [x(s) − x∗(s)]
{

exp

[
a(s) − b(s)x∗(s − l) − c(s)x∗(s)

d(s) + x∗(s)2
− g(s)u∗(s)

]
− 1

}
.

(3.6)

By the mean value theorem, one has

[x(s + 1) − x∗(s + 1)] − [x(s) − x∗(s)]

= P(s)

{
a(s) − b(s)x∗(s − l) − c(s)x∗(s)

d(s) + x∗(s)2
− g(s)u∗(s)

}
[x(s) − x∗(s)]

−Q(s)x(s)
{
b(s)[x(s − l) − x∗(s − l)] + c(s)J(s) + g(s)[u(s) − u∗(s)]

}
.

(3.7)
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Then we can easily obtain (3.1) by substituting (3.5) and (3.7) into (3.4). The proof is
complete.

Now, we state our main result on the global attractivity of system (1.5).

Theorem 3.2. If the assumption of Theorem 2.4 holds and, further, suppose there exist positive
constants ρ and δ such that

λ
def= min

{
ρφ − δhU, δeL − ρϕ

}
> 0, (3.8)

where φ, ϕ are defined by (3.27) and (3.28), respectively. Then the positive solutions of system (1.5)
are globally attractive.

Proof. Let (x(k), u(k)) and (x∗(k), u∗(k)) be any two positive solutions of system (1.5). To
prove Theorem 3.2, we first consider the following three steps for the first equation of system
(1.5).

Step 1. Let V11(k) = | lnx(k) − lnx∗(k)|. It follows from (3.1) that

∣∣∣∣ln x(k + 1)
x∗(k + 1)

∣∣∣∣ ≤
∣∣∣∣ln x(k)

x∗(k)
− b(k)[x(k) − x∗(k)]

∣∣∣∣ + c(k)|J(k)| + g(k)|u(k) − u∗(k)|

+ b(k)
k−1∑
s=k−l

{
P(s)β(s)|x(s) − x∗(s)| + c(s)Q(s)x(s)|J(s)|

+ Q(s)x(s)
[
b(s)|x(s − l) − x∗(s − l)| + g(s)|u(s) − u∗(s)|

]}

≤
∣∣∣∣ln x(k)

x∗(k)
− b(k)[x(k) − x∗(k)]

∣∣∣∣ + γ(k)|x(k) − x∗(k)| + g(k)|u(k) − u∗(k)|

+ b(k)
k−1∑
s=k−l

{[
P(s)β(s) + γ(s)Q(s)x(s)

]
|x(s) − x∗(s)|

+ Q(s)x(s)
[
b(s)|x(s − l) − x∗(s − l)| + g(s)|u(s) − u∗(s)|

]}
,

(3.9)

where

β(s) = a(s) + b(s)x∗(s − l) + c(s)

2
√
d(s)

+ g(s)u∗(s),

γ(s) =
c(s)(d(s) + x(s)x∗(s))

d(s)2
.

(3.10)

By the mean value theorem, we get

x(k) − x∗(k) = exp[lnx(k)] − exp[lnx∗(k)] = θ(k) ln
x(k)
x∗(k)

, (3.11)
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that is,

ln
x(k)
x∗(k)

=
1

θ(k)
[x(k) − x∗(k)], (3.12)

where θ(k) lies between x(k) and x∗(k), then

∣∣∣∣ln x(k)
x∗(k)

− b(k)[x(k) − x∗(k)]
∣∣∣∣

=
∣∣∣∣ln x(k)

x∗(k)

∣∣∣∣ −
∣∣∣∣ln x(k)

x∗(k)

∣∣∣∣ +
∣∣∣∣ln x(k)

x∗(k)
− b(k)[x(k) − x∗(k)]

∣∣∣∣

=
∣∣∣∣ln x(k)

x∗(k)

∣∣∣∣ − 1
θ(k)

|x(k) − x∗(k)| +
∣∣∣∣ 1
θ(k)

[x(k) − x∗(k)] − b(k)[x(k) − x∗(k)]
∣∣∣∣

=
∣∣∣∣ln x(k)

x∗(k)

∣∣∣∣ − 1
θ(k)

|x(k) − x∗(k)| +
∣∣∣∣ 1
θ(k)

− b(k)
∣∣∣∣|x(k) − x∗(k)|

=
∣∣∣∣ln x(k)

x∗(k)

∣∣∣∣ −
[

1
θ(k)

−
∣∣∣∣ 1
θ(k)

− b(k)
∣∣∣∣
]
|x(k) − x∗(k)|.

(3.13)

According to Theorem 2.4, there exists a n0 ∈ Z+ such that {x(k), x∗(k)} ≤ x and {u(k),
u∗(k)} ≤ u for all k ≥ n0. Therefore, for all k ≥ n0, we can obtain that

ΔV 11 = V11(k + 1) − V11(k)

≤ −
[

1
θ(k)

−
∣∣∣∣ 1
θ(k)

− b(k)
∣∣∣∣
]
|x(k) − x∗(k)| + γ(k)|x(k) − x∗(k)|

+ g(k)|u(k) − u∗(k)|

+ b(k)
k−1∑
s=k−l

{[
P(s)β(s) + γ(s)Q(s)x

]
|x(s) − x∗(s)|

+ b(s)Q(s)x|x(s − l) − x∗(s − l)| + g(s)Q(s)x|u(s) − u∗(s)|
}
.

(3.14)

Step 2. Let

V12(k) =
k−1+l∑
s=k

b(s)
k−1∑
i=s−l

{[
P(i)β(i) + γ(i)Q(i)x

]
|x(i) − x∗(i)|

+ b(i)Q(i)x|x(i − l) − x∗(i − l)| + g(i)Q(i)x|u(i) − u∗(i)|
}
.

(3.15)
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Then

ΔV 12 = V12(k + 1) − V12(k)

=
k+l∑

s=k+1

b(s)
{[
P(k)β(k) + γ(k)Q(k)x

]
|x(k) − x∗(k)|

+ b(k)Q(k)x|x(k − l) − x∗(k − l)| + g(k)Q(k)x|u(k) − u∗(k)|
}

− b(k)
k−1∑
i=k−l

{[
P(i)β(i) + γ(i)Q(i)x

]
|x(i) − x∗(i)|

+ b(i)Q(i)x|x(i − l) − x∗(i − l)| + g(i)Q(i)x|u(i) − u∗(i)|
}
.

(3.16)

Step 3. Let

V13(k) = x
k−1∑

w=k−l
b(w + l)Q(w + l)|x(w) − x∗(w)|

w+2l∑
s=w+l+1

b(s). (3.17)

By a simple calculation, it derives that

V13 = V13(k + 1) − V13(k)

=
k+2l∑

s=k+l+1

b(s)b(k + l)Q(k + l)x|x(k) − x∗(k)|

−
k+l∑

s=k+1

b(s)b(k)Q(k)x|x(k − l) − x∗(k − l)|.

(3.18)

Now, we can define

V1(k) = V11(k) + V12(k) + V13(k). (3.19)

Then for all k ≥ n0, it follows from (3.14)–(3.18) that

V1 = V1(k + 1) − V1(k)

≤ −
[

1
θ(k)

−
∣∣∣∣ 1
θ(k)

− b(k)
∣∣∣∣
]
|x(k) − x∗(k)| + γ(k)|x(k) − x∗(k)| + g(k)|u(k) − u∗(k)|

+
k+l∑

s=k+1

b(s)g(k)Q(k)x|u(k) − u∗(k)| +
k+2l∑

s=k+l+1

b(s)b(k + l)Q(k + l)x|x(k) − x∗(k)|

+
k+l∑

s=k+1

b(s)
{[
P(k)β(k) + γ(k)Q(k)x

]
|x(k) − x∗(k)|

}
.

(3.20)
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Figure 1: Permanence of system (4.1) with x(−1) = 0.04 and {x(0), u(0)} = {0.0265, 0.0008}. (a) and (b)
show x for k ∈ [0, 1000] and x for k ∈ [980, 1000], respectively. (c) and (d) show u for k ∈ [0, 1000] and u
for k ∈ [980, 1000], respectively.

For the second equation of system (1.5), we will consider the following two steps.

Step 1. Let V21(k) = |u(k) − u∗(k)|. Then

V21 = V21(k + 1) − V21(k)

= |u(k + 1) − u∗(k + 1)| − |u(k) − u∗(k)|

= |(1 − e(k))[u(k) − u∗(k)] + h(k)[x(k − l) − x∗(k − l)]| − |u(k) − u∗(k)|

≤ (1 − e(k))|u(k) − u∗(k)| − |u(k) − u∗(k)| + h(k)|x(k − l) − x∗(k − l)|

≤ −e(k)|u(k) − u∗(k)| + h(k)|x(k − l) − x∗(k − l)|.

(3.21)
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Figure 2: Global attractivity of system (4.1) with different initial values. x with x(−1) = 0.04, {x(0), u(0)} =
{0.0265, 0.0008} and x∗ with x∗(−1) = 0.05, {x∗(0), u∗(0)} = {0.0274, 0.0014}. (a) and (b) show (x, x∗) for
k ∈ [0, 1000] and for k ∈ [980, 1000], respectively. (c) and (d) show (u, u∗) for k ∈ [0, 1000] and for
k ∈ [980, 1000], respectively.

Step 2. Let V22(k) =
∑k−1

w=k−l h(w + l)|x(w) − x∗(w)|. Then

V22 = V22(k + 1) − V22(k)

=
k∑

w=k+1−l
h(w + l)|x(w) − x∗(w)| −

k−1∑
w=k−l

h(w + l)|x(w) − x∗(w)|

= h(k + l)|x(k) − x∗(k)| − h(k)|x(k − l) − x∗(k − l)|.

(3.22)
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So we can define

V2(k) = V21(k) + V22(k). (3.23)

Then it follows from (3.21) and (3.22) that

V2 = V2(k + 1) − V2(k)

≤ h(k + l)|x(k) − x∗(k)| − e(k)|u(k) − u∗(k)|.
(3.24)

Now, we could define

V (k) = ρV1(k) + δV2(k), (3.25)

where ρ, δ are mentioned in (3.8).
Obviously, V (k) ≥ 0 for all k ∈ Z+ and V (n0 + l) < +∞. Therefore, combining (3.20)

and (3.24), for all k ≥ n0 + l, we have

ΔV = ρΔV 1 + δΔV 2

≤ ρ
{
−
[

1
θ(k)

−
∣∣∣∣ 1
θ(k)

− b(k)
∣∣∣∣
]
+ γ(k) +

k+2l∑
s=k+l+1

b(s)b(k + l)Q(k + l)x

+
k+l∑

s=k+1

b(s)
[
P(k)β(k) + γ(k)Q(k)x

]}
|x(k) − x∗(k)| + δh(k + l)|x(k) − x∗(k)|

+ ρ

{
g(k) +

k+l∑
s=k+1

b(s)g(k)Q(k)x

}
|u(k) − u∗(k)| − δe(k)|u(k) − u∗(k)|

≤ −ρ
{

min
(
bL,

2
x
− bU

)
− γU − lbU�

}
|x(k) − x∗(k)| + δhU|x(k) − x∗(k)|

−
{
δeL − ρ

(
gU + lbUgUQUx

)}
|u(k) − u∗(k)|

≤ −
(
ρφ − δhU

)
|x(k) − x∗(k)| −

(
δeL − ρϕ

)
|u(k) − u∗(k)|

≤ −λ{|x(k) − x∗(k)| + |u(k) − u∗(k)|},
(3.26)

where

� = bUQUx + PUβU + γUQUx,

φ = min
(
bL,

2
x
− bU

)
− γU − lbU�,

(3.27)
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ϕ = gU + lbUgUQUx. (3.28)

Summing both sides of (3.26) from n0 + l to k, it derives that

k∑
s=n0+l

[V (s + 1) − V (s)] ≤ −λ
k∑

s=n0+l

{|x(s) − x∗(s)| + |u(s) − u∗(s)|}, (3.29)

which implies

V (k + 1) + λ
k∑

s=n0+l

{|x(s) − x∗(s)| + |u(s) − u∗(s)|} ≤ V (n0 + l) ≤ V (0). (3.30)

It follows from the above inequality that

+∞∑
s=n0+l

{|x(s) − x∗(s)| + |u(s) − u∗(s)|} ≤ V (0)
λ

< +∞, (3.31)

that is,

lim
k→+∞

{|x(k) − x∗(k)| + |u(k) − u∗(k)|} = 0, (3.32)

and we can easily obtain that

lim
k→+∞

|x(k) − x∗(k)| = 0, lim
k→+∞

|u(k) − u∗(k)| = 0, (3.33)

which implies that the positive solutions of system (1.5) are globally attractive, this completes
the proof.

4. Numerical Simulations

To verify the feasibilities of our main results, we consider a specific example:

x(k + 1) = x(k) exp
{
[0.0069 + 0.00069 sin(k)] − [0.25 − 0.0025 sin(k)]x(k − 1)

− [0.0011 + 0.00011 sin(k)]x(k)
[4.02 + 0.402 sin(k)] + x2(k)

− [0.034 − 0.0034 sin(k)]u(k)
}
,

u(k + 1) = {1 − [0.99 + 0.0099 sin(k)]}u(k) + [0.042 − 0.0042 sin(k)]x(k − 1).
(4.1)

Obviously, 2aL
√
dL ≈ 0.0236, cU ≈ 0.0012, that is, 2aL

√
dL > cU. Then the assumption

of Theorem 2.4 is satisfied, which indicates that system (4.1) is permanent (see Figure 1).
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We assume ρ = 20 and δ = 1.5, by a simple computation, we have φ ≈ 0.0049,
ϕ ≈ 0.0584, λ ≈ 0.0286, then the sufficient conditions of Theorem 3.2 are satisfied. Thus, the
positive solutions of system (4.1) are globally attractive. From Figure 2, we can see that x(k)
and u(k) tend to x∗(k) and u∗(k), respectively.

5. Conclusion

We conclude with a brief discussion of our results. The sufficient condition required for the
result of Theorem 2.4 does not depend on the size of the feedback control. However, the
sufficient conditions required for the result of Theorem 3.2 show that the feedback control
has an effect on the global attractivity of system (1.5).
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