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Without assuming the symmetry and irreducibility of the outer-coupling weight configuration
matrices, we investigate the pinning synchronization of delayed neural networks with nonlinear
inner-coupling. Some delay-dependent controlled stability criteria in terms of linear matrix
inequality (LMI) are obtained. An example is presented to show the application of the criteria
ob-tained in this paper.

1. Introduction and Model Description

In the past few decades, the problem of control and synchronization in complex networks
has attracted increasing attention. There are attempts to control the dynamics of a complex
network and guide it to a desired state, such as an equilibrium point or a periodic orbit of
the network. Since a complex network has a large number of nodes, it is difficult to control
it by adding controllers to all nodes. To reduce the number of the controllers, Wang and
Chen investigated pinning control for complex networks [1]. Pinning control applies local
feedback injections to a small fraction of nodes on a large-size network, thereby achieving
some intended global performances over the entire network.

In [1], Wang and Chen showed that, due to the extremely inhomogeneous connectivity
distribution of scale-free networks, it is much effective to pin some most-highly connected
nodes than to pin randomly selected nodes. In [2], Li et al. further investigated the control
of complete random networks and scale-free networks via virtual control and showed that
the control actions applied to the pinned nodes can be propagated to the rest of network
nodes through the couplings in the network and eventually result in the synchronization of
the whole network. In [3], Chen et al. proved that, if the coupling strength is large enough,



2 Discrete Dynamics in Nature and Society

then even one single pinning controller is able to control network. In the sequel, [4–9] also
studied the global pinning controllability of complex networks and some sufficient pinning
conditions were established. The common feature of the work in [1–9] is that there are
no coupling delays in the network. However, due to the limited speeds of transmission
and spreading as well as traffic congestion, signals traveling through a network are often
associated with time delays, which are very common in biological and physical networks.
Therefore, time delays should be modeled in order to simulate more realistic networks. In
[10–13], the pinning synchronization of complex networks with homogeneous time delay
is studied. In [14], Xiang et al. considered the pinning control of complex networks with
heterogeneous delays via linearized method.

The previous researches on pinning control of complex dynamical networks have
mainly focused on such networks with some specific coupling schemes. That is, there is
a common outer-coupling strength for all connections and the inner-coupling is linear.
Moreover, most of the existed studies assume the coupling configuration matrices are
symmetric. In a real neural network, however, this is not always the case. Many real neural
networks are direct graphs, such as the WWW, whose coupling configuration matrix is not
symmetric. Additionally, as pointed in [15–17], synchronization is influenced not only by the
topology, but also by the strength of the connections. So, we should consider nonuniform
coupling strength while studying complex dynamical networks. Xiang et al. [14] considered
the pinning control of complex networks with nonuniform coupling strength. In [18], Zhou et
al. investigated the pinning adaptive synchronization of complex network with nonuniform
coupling strength as well as time delay under the assumption of the symmetry of the
nondelayed and delayed outer-coupling weight configuration matrices, they introduced
some specific pinning control technique.

Motivated by the above discussion, we consider a general complex dynamical network
described by [18]

ẋi(t) = f(xi(t), t) +
N∑

j=1

aijg
(
xj(t)

)
+

N∑

j=1

bijh
(
xj(t − τ(t))

)
, i = 1, 2, . . . ,N, (1.1)

where xi(t) denotes the state vector of the ith node, f : R
n×R

+ → R
n represents the activity of

an individual subsystem, g : R
n → R

n and h : R
n → R

n are the inner-coupling and delayed
inner-coupling vector functions, and τ(t) is the coupling delay function. aij and bij are the
nondelayed and delayed outer-coupling strength, respectively. If there is a link from node i
to node j (j /= i), then aij > 0 and bij > 0; otherwise, aij = bij = 0, and aii = −∑N

j=1,j /= i aij , bii =
−∑N

j=1,j /= i bij , i = 1, 2, . . . ,N. We will give some synchronization criteria by adding nonlinear
and adaptive feedback controllers to a small fraction of nodes of network (1.1).

Let C([−τ, 0],Rn) be the Banach space of continuous functions mapping [−τ, 0] into
R

n with the norm ‖φ‖ = sup−τ≤θ≤0‖φ(θ)‖, where τ = supt∈R+{τ(t)}. For the complex network
(1.1), its initial conditions are given by xi(t) = φi(t) ∈ C([−τ, 0],Rn). We always assume that
(1.1) has a unique solution with respect to initial conditions.

2. Preliminaries

In this section, we present some lemmas and assumptions required throughout this paper.
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Lemma 2.1 (see [19] (Schur Complement)). The following linear matrix inequality (LMI)

(
S11 S12

ST
12 S22

)
< 0, (2.1)

where S11 = ST
11, S22 = ST

22, is equivalent to the following condition:

S22 < 0, S11 − S12S
−1
22S

T
12 < 0. (2.2)

Lemma 2.2 (see [18]). Assume that M is a diagonal matrix whose ikth (1 ≤ ik ≤ N, 1 ≤ k ≤ l, 1 ≤
l ≤ N) diagonal elements arem and the others are 0, wherem > 0 is a constant. Then, for a symmetric
matrix G which has the same dimension with M, G −M < 0 is equivalent to Gl < 0 when m is large
enough, where Gl denotes the minor matrix of the matrix G by removing all the ikth row-column pairs
of G.

Assumption 1. Suppose that the delay function τ(t) is differentiable and satisfies τ̇(t) ≤ α,
where 0 ≤ α < 1 is a constant.

Assumption 2 (see [3]). Assume that there is a positive definite diagonal matrix P =
diag(p1, p2, . . . , pn) and a diagonal matrix Δ = diag(δ1, δ2, . . . , δn), such that f satisfies the
following inequality:

(
x − y

)T
P
(
f(x) − f

(
y
) −Δ

(
x − y

)) ≤ −η(x − y
)T(

x − y
)

(2.3)

for some η > 0, all x, y ∈ R
n, and t > 0.

Assumption 3. Assume that there exist positive constants β1 and β2 such that

β1
∥∥x − y

∥∥2 ≤ (x − y
)T(

g(x) − g
(
y
)) ≤ ∥∥x − y

∥∥∥∥g(x) − g
(
y
)∥∥ ≤ β2

∥∥x − y
∥∥2 (2.4)

for all x, y ∈ R
n.

Assumption 4. Assume that there exists a positive constant μ > 0 satisfying

∥∥h(x) − h
(
y
)∥∥ ≤ μ

∥∥x − y
∥∥ (2.5)

for all x, y ∈ R
n.

Remark 2.3. In [18], the delayed inner-coupling vector function h was required to satisfy

e1
∥∥x − y

∥∥2 ≤ (x − y
)T(

h(x) − h
(
y
)) ≤ ∥∥x − y

∥∥∥∥h(x) − h
(
y
)∥∥ ≤ e2

∥∥x − y
∥∥2 (2.6)

for all x, y ∈ R
n, where e1 and e2 are positive constants. Obviously, our assumption is weaker

than that.
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3. Synchronization Criteria of Directed Networks

The objective in this section is to stabilize network (1.1) onto a homogeneous trajectory
satisfying ṡ(t) = f(s(t), t), where s(t) ∈ R

n is a solution of an isolate node. To achieve this
goal, we first add feedback pinning controllers to a small fraction of nodes in the network.
The pinning controlled network is described as follows:

ẋi(t) = f(xi(t), t) +
N∑

j=1

aijg
(
xj(t)

)
+

N∑

j=1

bijh
(
xj(t − τ(t))

)
+ ui(t), (3.1)

with nonlinear feedback controllers given by

ui(t) = −di

(
g(xi(t)) − g(s(t))

)
, i = 1, 2, . . . ,N, (3.2)

where the feedback gain satisfies di > 0 for i = 1, 2, . . . , l and di = 0 for i = l + 1, . . . ,N.
For the convenience of later use, we introduce some notations employed through this

section. We let p = min1≤j≤n{pj}; |x| = (|x1|, |x2|, . . . , |xn|)T for all x ∈ R
n; D = diag(d1, d2,

. . . , dl, 0, . . . , 0);
˜̃A = diag(a11, a22, . . . , aNN), Ã = A − ˜̃A; ei(t) = xi(t) − s(t) ∈ R

n, g(ei(t)) =
g(ei(t)+s(t))−g(s(t)), h(ei(t−τ(t))) = h(ei(t−τ(t))+s(t−τ(t)))−h(s(t−τ(t))), i = 1, 2, . . . ,N;
ẽj(t) = (e1j(t), e2j(t), . . . , eNj(t))

T ∈ R
N , g̃j(e(t)) = (gj(e1(t)), gj(e2(t)), . . . , gj(eN(t)))T ∈

R
N , h̃j(e(t − τ(t))) = (hj(e1(t − τ(t))), hj(e2(t − τ(t))), . . . , hj(eN(t − τ(t))))T ∈ R

N , j =
1, 2, . . . , n; ‖A‖2 =

√
λmax(ATA) for all A ∈ R

N×N .

Theorem 3.1. Under the Assumptions 1–4, the pinning controlled directed network (3.1) is globally
asymptotically stable at the homogenous trajectory s(t) if there exist positive diagonal matrices R and
Q, such that

pjδjIN + β1p
˜̃A − β1pD +

p2j

4
ÃR−1ÃT < 0,

−ηIN + μ2Q + β22R +
(1 − α)p2j

4
BQ−1BT < 0

(3.3)

for j = 1, 2, . . . , n.

Proof. From Lemma 2.1, conditions (3.3) are equivalent to

Ω1 =

⎛
⎜⎝

pjδjIN + β1p
˜̃A − β1pD

pj

2
Ã

pj

2
ÃT −R

⎞
⎟⎠ < 0,

Ω2 =

⎛
⎜⎝

−ηIN + μ2Q + β22R
pj

2
B

pj

2
BT −(1 − α)Q

⎞
⎟⎠ < 0.

(3.4)
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We consider a Lyapunov function as

V (t) =
1
2

N∑

i=1

eTi (t)Pei(t) + μ2
n∑

j=1

∫ t

t−τ(t)
ẽTj (s)Qẽj(s)ds. (3.5)

Differentiating the function V (t) along the trajectories of (3.1), one obtains

dV (t)
dt

=
N∑

i=1

eTi (t)P

⎧
⎨

⎩f(xi(t)) − f(s(t)) −Δei(t) + Δei(t) +
N∑

j=1

aijg
(
ej(t)

)

+
N∑

j=1

bijh
(
ej(t − τ(t))

) − dig(ei(t))

⎫
⎬

⎭ + μ2
n∑

j=1

ẽTj (t)Qẽj(t)

− μ2
n∑

j=1

(1 − τ̇(t))ẽTj (t − τ(t))Qẽj(t − τ(t)).

(3.6)

From Assumption 3, one can obtain

N∑

i=1

eTi Paiig(ei(t)) =
N∑

i=1

aii

n∑

j=1

eij(t)pjgj(ei(t)) ≤ p
N∑

i=1

aii

n∑

j=1

eij(t)gj(ei(t))

= p
N∑

i=1

aiie
T
i (t)g(ei(t)) ≤ β1p

N∑

i=1

aiie
T
i (t)ei(t).

(3.7)

Similar to (3.7), we can get

N∑

i=1

eTi Pdig(ei(t)) ≥ β1p
N∑

i=1

die
T
i (t)ei(t). (3.8)

It follows from (3.7) and (3.8), and combining with Assumptions 1-2, we can derive

dV (t)
dt

≤ −η
N∑

i=1

eTi (t)ei(t) +
N∑

i=1

eTi (t)PΔei(t) + β1p
N∑

i=1

aiie
T
i (t)ei(t)

+
N∑

i=1

N∑

j=1,j /= i

aije
T
i (t)Pg

(
ej(t)

)
+

N∑

i=1

N∑

j=1

bije
T
i (t)Ph

(
ej(t − τ(t))

)

− β1p
N∑

i=1

die
T
i (t)ei(t) + μ2

n∑

j=1

ẽTj (t)Qẽj(t) − μ2
n∑

j=1

(1 − α)ẽTj (t − τ(t))Qẽj(t − τ(t))

= −η
n∑

j=1

ẽTj (t)ẽj(t) +
n∑

j=1

pjδj ẽ
T
j (t)ẽj(t) + β1p

n∑

j=1

ẽTj (t)
˜̃Aẽj(t)
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+
n∑

j=1

ẽTj (t)Ãg̃j(e(t)) −
n∑

j=1

g̃T
j (e(t))Rg̃j(e(t)) +

n∑

j=1

g̃T
j (e(t))Rg̃j(e(t))

+
n∑

j=1

ẽTj (t)Bh̃j(e(t − τ(t))) + μ2
n∑

j=1

ẽTj (t)Qẽj(t)

− β1p
n∑

j=1

ẽTj (t)Dẽj(t) − μ2
n∑

j=1

(1 − α)ẽTj (t − τ(t))Qẽj(t − τ(t)).

(3.9)

From Assumption 4, one can obtain

n∑

j=1

h̃T
j (e(t − τ(t)))Qh̃j(e(t − τ(t))) =

n∑

j=1

N∑

i=1

qih
2
j (ei(t − τ(t)))

=
N∑

i=1

qi‖h(ei(t − τ(t)))‖2 ≤ μ2
N∑

i=1

qie
T
i (t − τ(t))ei(t − τ(t))

= μ2
n∑

j=1

ẽTj (t − τ(t))Qẽj(t − τ(t)).

(3.10)

Similar to (3.10), from Assumption 3, we can derive

n∑

j=1

g̃T
j (e(t))Rg̃j(e(t)) =

n∑

j=1

N∑

i=1

rig
2
j (ei(t))

=
N∑

i=1

ri
∥∥g(ei(t))

∥∥2 ≤ β22

N∑

i=1

rie
T
i (t)ei(t) = β22

n∑

j=1

ẽTj (t)Rẽj(t).

(3.11)

From (3.7)–(3.11), we can get

dV (t)
dt

=
n∑

j=1

(
ẽTj (t), g̃

T
j (e(t))

)
Ω1

(
ẽj(t)

g̃j(e(t))

)

+
n∑

j=1

(
ẽTj (t), h̃

T
j (e(t − τ(t)))

)
Ω2

(
ẽj(t)

h̃j(e(t − τ(t)))

)
< 0.

(3.12)

From Lyapunov stability theory, the controlled system (3.1) is globally asymptotically stable
at s(t). This completes the proof.

Remark 3.2. It is hard to compare our results with existing ones, because the issues are
different. However, from the aspect of the network model, network (1.1) contains the models
studied in [1–13], moreover, because the coupling configuration matrices A and B are
assumed to be asymmetric, which are more consistent with the real-world network.
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In the coupled system (3.1), if di, i = 1, 2, . . . , l are defined as

ḋi(t) = εie
T
i (t)ei(t), i = 1, 2, . . . , l, (3.13)

where εi are positive constants, then the controller ui(t) = −di(t)(g(xi(t)) − g(s(t))) is said to
be adaptive pinning controller. In the following, wewill prove that under some conditions the
system (3.1)would get global synchronization with nonlinear adaptive pinning controllers.

Theorem 3.3. Under the Assumptions 1–4, the controlled directed network (3.1) is globally
asymptotically stable with adaptive pinning controllers (3.13) if there exist positive diagonal matrices
R and Q, such that (

pjδjIN + β1p
˜̃A +

p2j

4
ÃR−1ÃT

)

l

< 0,

−ηIN + μ2Q + β22R +
(1 − α)p2j

4
BQ−1BT < 0,

(3.14)

for j = 1, 2, . . . , n.

Proof. Construct the Lyapunov function as

V (t) =
1
2

N∑

i=1

eTi (t)Pei(t) + μ2
n∑

j=1

∫ t

t−τ(t)
ẽTj (s)Qẽj(s)ds + β1p

l∑

i=1

(
di(t) − d̂

)2

2εi
, (3.15)

where d̂ is a sufficiently large positive constant to be determined. From Lemma 2.2, when d̂
is large enough,

(
pjδjIN + β1p

˜̃A +
p2j

4
ÃR−1ÃT

)

l

< 0 (3.16)

is equivalent to

pjδjIN + β1p
˜̃A − β1pD̂ +

p2j

4
ÃR−1ÃT < 0, (3.17)

where D̂ = diag(d̂, . . . , d̂︸ ︷︷ ︸
l

, 0 . . . , 0︸ ︷︷ ︸
N−l

).

Differentiating the function V (t) along the trajectories of (3.1), and combining with
(3.8), one can obtain

dV (t)
dt

≤
N∑

i=1

eTi P

⎧
⎨

⎩f(xi(t)) − f(s(t)) +
N∑

j=1

aijg
(
ej(t)

)
+

N∑

j=1

bijh
(
ej(t − τ(t))

)
⎫
⎬

⎭

− β1p
N∑

i=1

di(t)eTi (t)ei(t) + μ2
n∑

j=1

ẽTj (t)Qẽj(t)
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− μ2
n∑

j=1

(1 − τ̇(t))ẽTj (t − τ(t))Qẽj(t − τ(t)) + β1p
l∑

i=1

(
di(t) − d̂

)
eTi (t)ei(t)

=
N∑

i=1

eTi P

⎧
⎨

⎩f(xi(t)) − f(s(t)) +
N∑

j=1

aijg
(
ej(t)

)
+

N∑

j=1

bijh
(
ej(t − τ(t))

)
⎫
⎬

⎭

− β1p
l∑

i=1

d̂eTi (t)ei(t) + μ2
n∑

j=1

ẽTj (t)Qẽj(t)

− μ2
n∑

j=1

(1 − τ̇(t))ẽTj (t − τ(t))Qẽj(t − τ(t)).

(3.18)

The remaining part of the proof is similar to that of Theorem 3.1, hence we omit it.

To make Theorem 3.3 more applicable, we let P = IN, R = ‖Ã‖2IN,Q = ‖B‖2IN , then
we can easily obtain the following corollary.

Corollary 3.4. Under the Assumptions 1–4, the pinning controlled directed network (3.1) is globally
asymptotically stable at the homogenous trajectory s(t) if the following conditions are satisfied:

max
l+1≤i≤N

{aii} < −
4δ∗ +

∥∥∥Ã
∥∥∥
2

4β1
,

(
μ2 +

1 − α

4

)
‖B‖2 + β22

∥∥∥Ã
∥∥∥
2
< η,

(3.19)

where δ∗ = max1≤j≤n{δj}.

Remark 3.5. According to this corollary, we can rearrange network nodes in ascending order
based on their in-degrees −aii [7] and choose the first l network nodes as pinned candidates
to satisfy the first pinning condition of this corollary.

4. Numerical Simulation

In this section, a simple example is used to explain the effectiveness of the proposed network
synchronization criteria.

Example 4.1. We consider a directed network consisting of three identical Hindmarsh-Rose
(HR) neuron systems [19], which is described by

ẋi(t) = f(xi(t), t) +
N∑

j=1

aijg
(
xj(t)

)
+

N∑

j=1

bijh
(
xj(t − τ(t))

)
, (4.1)
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where x(t) = (x1(t), x2(t), x3(t))
T is the state variable of the ith node,

f(x(t), t) =

⎛
⎜⎜⎝

f1(x(t))

f2(x(t))

f3(x(t))

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

a1x
2
1(t) − x3

1(t) − x2(t) − x3(t)

(a1 + b1)x2
1(t) − x2(t)

b2(a2x1(t) − x3(t) + a3)

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

0 −1 −1
0 −1 0

b2a2 0 −b2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x1(t)

x2(t)

x3(t)

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

a1x
2
1(t) − x3

1(t)

(a1 + b1)x2
1(t)

b2a3

⎞
⎟⎟⎠.

(4.2)

According to the discussion in [18], g(xj(t)) and h(xj(t−τ(t))) are realistically specified
as g(xj(t)) = (g1(xj1(t)), 0, 0))

T and h(xj(t − τ(t))) = (h1(xj1(t − τ(t))), 0, 0)T , so we can select
g(xj(t)) = (xj1(t), 0, 0)

T and h(xj(t− τ(t))) = ((1/10) sinxj1(t− τ(t)), 0, 0)T , then we can easily
drive that β1 = β2 = 1, μ = 1/10. We let

A =
(
aij

)
=

⎛
⎜⎜⎝

−2 1 1

1 −1 0

2 2 −4

⎞
⎟⎟⎠, B =

(
bij
)
=

⎛
⎜⎜⎝

−0.1 0.1 0

0.03 −0.03 0

0.1 0 −0.1

⎞
⎟⎟⎠, (4.3)

and τ(t) = 1, a1 = 0.1, a2 = 1.5, a3 = 0.1, b1 = 1.1, b2 = 0.1. In this case, α = 0 and the boundM
of the first variable in the HR equation is 0.5. If we let P = I3, Δ = 3I3, then we have

(
x − y

)T
P
(
f(x) − f

(
y
) −Δ

(
x − y

))

=
(
x − y

)T

⎛
⎜⎜⎝

−3 −1 −1
0 −4 0

0.15 0 −3.1

⎞
⎟⎟⎠
(
x − y

)
+
(
x − y

)T

⎛
⎜⎜⎝

0.1
(
x2
1 − y2

1

) − (x3
1 − y3

1

)

1.2
(
x2
1 − y2

1

)

0

⎞
⎟⎟⎠.

(4.4)

Note that

(
x − y

)T

⎛
⎜⎜⎝

0.1
(
x2
1 − y2

1

) − (x3
1 − y3

1

)

1.2
(
x2
1 − y2

1

)

0

⎞
⎟⎟⎠

=
(
x1 − y1

)2[0.1
(
x1 + y1

) −
(
x2
1 + x1y1 + y2

1

)]
+ 1.2

(
x1 + y1

)(
x1 − y1

)(
x2 − y2

)

≤ 0.2M
(
x1 − y1

)2 + 2.4M
∣∣x1 − y1

∣∣∣∣x2 − y2
∣∣

=
∣∣x − y

∣∣T

⎛
⎜⎜⎝

0.1 0.6 0

0.6 0 0

0 0 0

⎞
⎟⎟⎠
∣∣x − y

∣∣.

(4.5)
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Figure 1: State trajectories xir(t)(1 ≤ i ≤ 3, 1 ≤ r ≤ 3) of network (4.1) without control.

It follows that

(
x − y

)T
P
(
f(x) − f

(
y
) −Δ

(
x − y

))

≤ ∣∣x − y
∣∣T

⎛
⎜⎜⎝

−2.9 1 1

0 −4 0

0.15 0 −3.1

⎞
⎟⎟⎠
∣∣x − y

∣∣ +
∣∣x − y

∣∣T

⎛
⎜⎜⎝

−0.0875 0.6 0

0.6 0 0

0 0 0

⎞
⎟⎟⎠
∣∣x − y

∣∣

=
∣∣x − y

∣∣T

⎛
⎜⎜⎝

−2.9875 1.1 0.575

1.1 −4 0

0.575 0 −3.1

⎞
⎟⎟⎠
∣∣x − y

∣∣ ≤ −2.0513(x − y
)T(

x − y
)
.

(4.6)

So, we can select η = 2.0513. Moreover, if we let R = 2.01I3, Q = I3, l = 2, then, by simple
computation, we can get

(
pjδjIN + β1p

˜̃A +
p2j

4
ÃR−1ÃT

)

l

=

⎛
⎜⎜⎝

1.2488 0 0.2488

0 2.1244 0.2488

0.2488 0.2488 −0.0048

⎞
⎟⎟⎠

2

= −0.0048 < 0,

−ηIN + μ2Q + β22R +
(1 − α)p2j

4
BQ−1BT =

⎛
⎜⎜⎝

−0.0263 −0.0015 −0.0025
−0.0015 −0.03085 0.00075

−0.0025 0.00075 −0.0263

⎞
⎟⎟⎠ < 0

(4.7)
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Figure 2: Synchronization errors xir − sr(1 ≤ i ≤ 3, 1 ≤ r ≤ 3) of network (4.1) for pinning the first two
neurons.

for j = 1, 2, 3. So, according to Theorem 3.3, when the first two neurons are pinned, the
directed network (4.1) with adaptive pinning controllers is globally asymptotically stable at
the homogenous trajectory s(t). Figure 1 shows the state variables xir(t) (1 ≤ i ≤ 3, 1 ≤ r ≤ 3)
of network (4.1)with initial values as xi(0) = (0.1+0.1i, 0.2+0.1i, 0.3+0.1i)T , 1 ≤ i ≤ 3 without
control. Figure 2 shows the synchronization errors eir(t)(1 ≤ i ≤ 3, 1 ≤ r ≤ 3) for pinning the
first two neurons. From Figure 2, it is easy to see that the errors between the synchronized
states converge to zero under the given conditions.

Remark 4.2. Since the nondelayed and delayed couplingmatricesA and B are asymmetric, the
theorem in [18] fails to conclude whether the dynamical system (4.1) can be synchronized.
However, one can obtain the global synchronization using our results.

5. Conclusion

In this paper, on the basis of the previous work, we investigated the stabilization problem
of delayed complex dynamical networks with nonlinear inner-coupling by pinning a small
fraction of nodes. By using Lyapunov stability theory and linear matrix inequality (LMI)
approach, some sufficient conditions ensuring the pinning synchronization are obtained. A
comparison between our results and the previous results implies that our results establish a
new set of pinning synchronization criteria for delayed complex dynamical networks with
nonlinear inner-coupling. As an example, a network consisting of 3 identical Hindmarsh-
Rose neuron systems is studied.
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