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We give a new construction of the weighted g-Bernoulli numbers and polynomials of higher order
by using multivariate p-adic g-integral on Z,.

1. Introduction

Let p be a fixed prime number. Throughout this paper, Z, Z,, Q,, C, and C,, will, respectively,
denote the ring of rational integers, the ring of p-adic rational integers, the field of p-adic
rational numbers, the complex number field, and the completion of the algebraic closure of
Qp- The p-adic norm of C, is defined by |x|, = 1/p" where x = p"s/t with (p,s) = (p,t) =
(s,t) = 1, € Q. In this paper, we assume a € Q and Z, = NU {0}. Let g € C, with [g - 1|, <
p Y/ ®1 and let [x]; = (1-4g%)/(1 - q). Note that lim; .1 [x], = x (see [1-13]). Recently, the
g-Bernoulli numbers with weight a are defined by

2 ifn=1,

=1 a(qB+1) - - (E“]q o (11)
if n ,

with the usual convention about replacing (ﬁ(“))" by ﬁif’,;, (see [4]).
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The g-Bernoulli polynomials with weight a are also defined by as

5 (x z":< >[x]nl azxﬂm)

=0 (1.2)

= ([ 1o +q”‘xﬂ(“)> , forn>0.

For f € UD(Z,) = the space of uniformly differentiable functions on Z,, the p-adic g-integral
on Zy, is defined by

I,(f) = f Fdgx) = Jim 'S o, (13)

qu

(see [4-12]). From (1.3), we note that
q"Iy(fa) = 1,(f) + (9 - 1)Zq f0 + Zq f, (1.4)

where f,(x) = f(x + n), (see [1-12]).
We have the Witt formula for the g-Bernoulli numbers and polynomials with weight a
as follows (see [4, 5, 12]):

0= [ Blpdito, B0 = [ e g, (15)

P

From (1.4) and (1.5), we have

n

lalx al +1
) 1.6
T, e

A (x) =

(see [4]). By (1.6), we easily get limqﬁlﬁfﬁ)’ (x) = B,(x), where B, (x) are the Bernoulli pol-
ynomials of degree 7.

To give the new construction of the weighted g-Bernoulli numbers and polynomials of
higher order, we first use the multivariate p-adic g-integral on Z,. The purpose of this paper
is to give the higher-order g-Bernoulli numbers and polynomials with weight a and to derive
a new explicit formulas by these numbers and polynomials.
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2. On the Higher Order g-Bernoulli Numbers with Weight o

For h; (i=1,2,...,k) € Z,, we consider a sequence of p-adic rational numbers as expansion
of the weighted g-Bernoulli numbers and polynomials of order k as follows:

B ey = [ [ e ndng= Oy ) i), @)
Zy Zy

(k“ (hi,hy, ... e | x) = f f [x + 21 + -+ + Xk e qu 0D dy e (1) - dpg ().
(2.2)

From (2.1) and (2.2), we can derive the following equations:

i< >(_1)1[(al+h1)(al+h2)---(cxl+hk) 23

(ka)
Pri (i bz, ) = al + il [al + ol - [al + ],

Bot (i, ha, ... i | x)

! m /N e (el ) (ad o) (al + Ty
- ,x Z<l>( RL [al + ] [al + hal - [al + Tl

(2.4)
By (2.3) and (2.4), we get
i (_1)1 alx (al+h1)(al+h2) "‘(dl+hk)
1=0 9 [al+h1]q[al+h2]q--~[cxl+hk]q’
(2.5)
(" L/l hy)-- h
- n-l _alx (q _ \m=lp_qn-l s (as+hy)--- (as + hy)
_ %(z)mq“ g (1- )" [al] ZO<S>( D st Tl fas s
Therefore, by (2.5), we obtain the following theorem.
Theorem 2.1. For h; (i=1,2,...,k) € Z,, and k € N, we have
i n (1)t (al + hy)(al + hy) -+ (al + hy)
=0 \ ! [“l+h1]q[“l+h2]q~-[al+hk]q
(2.6)

i L/
— n-l _alx n-l n-I _1y\s ((XS + hl) (“S + hk)
_Z< >[x]"“ 7 (=) lal; Zs:0<s>( D s+ hnl, - las + Il

1=0
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From (1.3) and (1.4), we note that

th fz [x1+x+ 1]Zaqx1(h1‘1)dyq(x1)
' (2.7)

:I [x1 +x]0q D gy (x) + [x]h1 (g = 1) +n[x] 1L.
" Tal,

ZP
Therefore, by (2.7), we obtain the following theorem.
Theorem 2.2. For n € Z.., we have

hl,ﬁ(l u)(hl |x+ 1) ﬁ(l ”)(hl Ix) hl(q 1) +n[ ]Z_lﬁ- (28)
q

From (2.2) and (2.3), we have

axﬂ(k“)(ahl +a,ahy +a,...,ahe +a | .X')

= quxf J‘ [xl + o+ Xk +x]Zan}(:lxj(ahf"'a_l)d#q(xl)...d#q(xk)
Zy Z

(2.9)
=(q"-1) f f [o1 + -+ x5k + x];;lqull xf‘(ahr1>dﬂq(xl) < dpg (k)
Z, z

+J f [xl+...+xk+x]ZﬂqZ}llxj(l’lhj—l)d‘uq(xl)...d‘uq(xk)‘

Therefore, by (2.9), we obtain the following proposition.

Proposition 2.3. For n € Z., we have

axﬂ ka)(dhl ta,ahy +a,..., ah +a| x)
2.10
_ a1\ Gk B .
=" 1>ﬁ (ahy, ..., ahg | x) + fpg (ahy, ..., ahg | X).

n+l,q
By (2.2), we get

Bo (i ha, ... i | x)

=J‘ f [x+x1+...+xk];laqz}(:lxj(hf_l)dﬂq(xl)...d‘uq(xk)
Zyp Z
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s ++ S5+ X n
Z q211h91 SITT ok T A k +xl+"'+xk]
ZP Z, %

x g/ = D dpaga (1) -+ dpg ()

_ [dlg & S bysi glea) () h 51+"'+Sk+x>
q Sireer =

(2.11)
where d € N.
Therefore, by (2.11), we obtain the following theorem.
Theorem 2.4. Forn € Z, and d € N, we have
(ka) [d]n < > hys; k) S1+- -+ S +x
(b, b | ) = > AR (e ) S ) @a2)
]q S1,...,5k=0
Let d(> 0) be a fixed integer. For N € N, we set
X =X, =1lim z X1=7Z
= X4 = pae deZ/ 1 = %p,
N
X*= |J (a+dpz,), (2.13)
O<a<dp
(a’p)zl

a+dpNz, = {xex|xsa<modde>},

where a € Z satisfies the condition 0 < a < dp™.
Let y be a primitive Dirichlet character with conductor d € N. Then we consider the
generalized g-Bernoulli numbers with weight a of order k as follows:

Ni’f;‘f&(hl,hz,...,hk){ f Hx(xl [y + -+ 2] gEo 5D gy () - dpg ()
X
(2.14)

From (2.14), we have

o S: ~(k,a S1t+---+S
ﬁ;(/lkxq(hlr h2; hk) Z qZJ 1hjs; <1_[X(S])>ﬂr(z],ch) (hl,. . -rhk | 1Tk>
Sl

SkO

(2.15)



6 Discrete Dynamics in Nature and Society

References

[1] L. Carlitz, “Expansions of g-Bernoulli numbers,” Duke Mathematical Journal, vol. 25, pp. 355-364, 1958.

[2] A.Bayad and T. Kim, “Identities involving values of Bernstein, g-Bernoulli, and g-Euler polynomials,”
Russian Journal of Mathematical Physics, vol. 18, pp. 133143, 2011.

[3] M. Cenkci, Y. Simsek, and V. Kurt, “Multiple two-variable p-adic g-L-function and its behavior at
s = 0,” Russian Journal of Mathematical Physics, vol. 15, no. 4, pp. 447-459, 2008.

[4] T. Kim, “On the weighted g-Bernoulli numbers and polynomials,” Advanced Studies in Contemporary
Mathematics, vol. 21, pp. 207-215, 2011.

[5] T. Kim, “g-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients,”
Russian Journal of Mathematical Physics, vol. 15, no. 1, pp. 51-57, 2008.

[6] T. Kim, “g-Volkenborn integration,” Russian Journal of Mathematical Physics, vol. 9, no. 3, pp. 288-299,
2002.

[7] G.Kim, B. Kim, and J. Choi, “The DC algorithm for computing sums of powers of consecutive integers
and Bernoulli numbers,” Advanced Studies in Contemporary Mathematics, vol. 17, no. 2, pp. 137-145,
2008.

[8] Y.-H. Kim, W. Kim, and C. S. Ryoo, “On the twisted g-Euler zeta function associated with twisted
g-Euler numbers,” Proceedings of the Jangjeon Mathematical Society, vol. 12, no. 1, pp. 93-100, 2009.

[9] H. Ozden, I. N. Cangul, and Y. Simsek, “Remarks on g-Bernoulli numbers associated with Daehee
numbers,” Advanced Studies in Contemporary Mathematics, vol. 18, no. 1, pp. 41-48, 2009.

[10] C.S. Ryoo, “On the generalized Barnes type multiple g-Euler polynomials twisted by ramified roots
of unity,” Proceedings of the Jangjeon Mathematical Society, vol. 13, no. 2, pp. 255-263, 2010.

[11] Y. Simsek, “Special functions related to Dedekind-type DC-sums and their applications,” Russian
Journal of Mathematical Physics, vol. 17, no. 4, pp. 495-508, 2010.

[12] Y. Simsek, “Generating functions of the twisted Bernoulli numbers and polynomials associated with
their interpolation functions,” Advanced Studies in Contemporary Mathematics, vol. 16, no. 2, pp. 251-
278, 2008.

[13] H. M. Srivastava, T. Kim, and Y. Simsek, “g-Bernoulli numbers and polynomials associated with
multiple g-zeta functions and basic L-series,” Russian Journal of Mathematical Physics, vol. 12, no. 2,
pp. 241-268, 2005.



-

Advances in

Operations Research

/
—
)

Advances in

DeC|S|on SC|ences

Mathematical Problems
in Engineering

Algebra

2

Journal of
Probability and Statistics

The Scientific
\(\(orld Journal

International Journal of

Combinatorics

Journal of

Complex Analysis

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Journal of

Mathematics

Journal of

DISBJBLL alhematics

International Journal of

Stochastic Analysis

Journal of

Function Spaces

Abstract and
Applied Analysis

Journal of

Applied Mathematics

ol

w2 v (P
/

e

\jtl (1)@" W, E

International Journal of
Differential Equations

ces In

I\/lathémamcal Physics

Discrete Dynamics in
Nature and Society

Journal of

Optimization



