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We investigate the generalizedHyers-Ulam stability of the functional inequalities ‖f((x+y+z)/4)+
f((3x−y−4z)/4)+f((4x+3z)/4)‖ ≤ ‖2f(x)‖ and ‖f((y−x)/3)+f((x−3z)/3)+f((3x+3z−y)/3)‖ ≤
‖f(x)‖ in non-Archimedean normed spaces in the spirit of the Th. M. Rassias stability approach.

1. Introduction
Ulam [1] gave a talk before the Mathematics Club of the University of Wisconsin in which
he discussed a number of unsolved problems. Among these was the following question
concerning the stability of homomorphisms.

Let (G1, ·) be a group and let (G2, ∗) be a metric group with the metric d(·, ·). Given ε > 0,
does there exist a δ > 0, such that if a mapping h : G1 → G2 satisfies the inequality d(h(x ·
y), h(x) ∗ h(y)) < δ for all x, y ∈ G1, then there exists a homomorphism H : G1 → G2 with
d(h(x),H(x)) < ε for all x ∈ G1?

In other words, under what condition does there exist a homomorphism near an
approximate homomorphism? The concept of stability for functional equation arises when
we replace the functional equation by an inequality which acts as a perturbation of the
equation. In 1941, Hyers [2] gave the first affirmative answer to the question of Ulam for
Banach spaces. Let f : E → E′ be a mapping between Banach spaces such that

∥
∥f

(

x + y
) − f(x) − f(y)∥∥ ≤ δ (1.1)
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for all x, y ∈ E, and for some δ > 0. Then there exists a unique additive mapping T : E → E′

such that

∥
∥f(x) − T(x)∥∥ ≤ δ (1.2)

for all x ∈ E. Moreover, if f(tx) is continuous in t ∈ R for each fixed x ∈ E, then T is linear. In
1978, Rassias [3] proved the following theorem.

Theorem 1.1. Let f : E → E′ be a mapping from a normed vector space E into a Banach space E′

subject to the inequality

∥
∥f

(

x + y
) − f(x) − f(y)∥∥ ≤ ε(‖x‖p + ∥

∥y
∥
∥
p) (1.3)

for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. Then there exists a unique additive
mapping T : E → E′ such that

∥
∥f(x) − T(x)∥∥ ≤ 2ε

2 − 2p
‖x‖p (1.4)

for all x ∈ E. If p < 0 then inequality (1.3) holds for all x, y /= 0, and (1.4) for x /= 0. Also, if the
function t �→ f(tx) from R into E′ is continuous in real t for each fixed x ∈ E, then T is linear.

In 1991, Gajda [4] answered the question for the case p > 1, which was raised by
Rassias. This new concept is known as Hyers-Ulam-Rassias stability of functional equations.
The reader is referred to [5–13] for a number of results in this domain of research.

In 1994, a generalization of the Rassias theorem was obtained by Găvruţa as follows
[14].

Suppose (G,+) is an abelian group, E is a Banach space, and that the so-called
admissible control function ϕ : G ×G → R satisfies

ϕ̃
(

x, y
)

:= 2−1
∞∑

n=0

2−nϕ
(

2nx, 2ny
)

<∞ (1.5)

for all x, y ∈ G. If f : G → E is a mapping with

∥
∥f

(

x + y
) − f(x) − f(y)∥∥ ≤ ϕ(x, y) (1.6)

for all x, y ∈ G, then there exists a uniquemapping T : G → E such that T(x+y) = T(x)+T(y)
and ‖f(x) − T(x)‖ ≤ ϕ̃(x, x) for all x, y ∈ G.

During the last decades, several stability problems of functional equations have been
investigated by a number of mathematicians, see [15–17] and references therein for more
detailed information.

By a non-Archimedean field we mean a fieldK equipped with a function (valuation) | · |
fromK into [0, 1) such that |r| = 0 if and only if r = 0, |rs| = |r||s|, and |r + s| ≤ max{|r|, |s|} for
all r, s ∈ K. Clearly |1| = | − 1| = 1 and |n| ≤ 1 for all n ∈ N.
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Let X be a vector space over a scalar field K with a non-Archimedean nontrivial
valuation | · |. A function ‖ · ‖ : X → R is a non-Archimedean norm (valuation) if it satisfies
the following conditions:

(i) ‖x‖ = 0 if and only if x = 0;

(ii) ‖rx‖ = |r|‖x‖ (r ∈ K, x ∈ X);

(iii) the strong triangle inequality (ultrametric), namely,

∥
∥x + y

∥
∥ ≤ max

{‖x‖,∥∥y∥∥} (

x, y ∈ X)

. (1.7)

Then (X, ‖ · ‖) is called a non-Archimedean space. Due to the fact that

‖xn − xm‖ ≤ max
{∥
∥xj+1 − xj

∥
∥ : m ≤ j ≤ n − 1

}

(n > m), (1.8)

a sequence {xn} is Cauchy if and only if {xn+1 − xn} converges to zero in a non-Archimedean
space. By a complete non-Archimedean space we mean one in which every Cauchy sequence
is convergent (see [18–22]).

Gilányi [23] and Rätz [24] showed that if f satisfies the functional inequality

∥
∥
∥2f(x) + 2f

(

y
) − f

(

xy−1
)∥
∥
∥ ≤ f(xy), (1.9)

then f satisfies the Jordan-von Neumann functional equation

2f(x) + 2f
(

y
)

= f
(

xy
)

+ f
(

xy−1
)

. (1.10)

Gilányi [23] and Fechner [25] proved the generalized Hyers-Ulam stability of the functional
inequality (1.3).

Cho and Kim [26] proved the generalized Hyers-Ulam stability of the following
functional inequalities:

∥
∥
∥
∥
f

(
x − y
2

− z
)

+ f
(

y
)

+ 2f(z)
∥
∥
∥
∥
≤
∥
∥
∥
∥
f

(
x + y
2

+ z
)∥
∥
∥
∥
+ ϕ

(

x, y, z
)

,

∥
∥f(x) + f

(

y
)

+ 2f(z)
∥
∥ ≤

∥
∥
∥
∥
2f

(
x + y
2

+ z
)∥
∥
∥
∥
+ ϕ

(

x, y, z
)

,

(1.11)

which are associated with Jordan-von Neumann-type Cauchy-Jensen additive functional
equations.

Now, we consider the following functional inequality:

∥
∥
∥
∥
f

(
x + y + z

4

)

+ f
(
3x − y − 4z

4

)

+ f
(
4x + 3z

4

)∥
∥
∥
∥
≤ ∥
∥2f(x)

∥
∥, (1.12)

∥
∥
∥
∥
f

(
y − x
3

)

+ f
(
x − 3z

3

)

+ f
(
3x + 3z − y

3

)∥
∥
∥
∥
≤ ∥
∥f(x)

∥
∥, (1.13)

which is associated with Cauchy additive functional equation.
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The purpose of this paper is to prove that if f satisfies the inequalities (1.12) and
(1.13), which satisfies certain conditions, then f is Cauchy additive, and thus we prove
the generalized Hyers-Ulam stability of the functional inequalities (1.12) and (1.13) in non-
Archimedean normed spaces.

2. Stability of Functional Inequality (1.12)

In this section, we prove the generalized Hyers-Ulam stability of the functional inequality
(1.12). Throughout this section, we assume that S is an additive semigroup and X is a
complete non-Archimedean space.

We need the following lemma in the main results.

Lemma 2.1. Let f : S → X be a mapping such that

∥
∥
∥
∥
f

(
x + y + z

4

)

+ f
(
3x − y − 4z

4

)

+ f
(
4x + 3z

4

)∥
∥
∥
∥
≤ ∥
∥2f(x)

∥
∥ (2.1)

for all x, y, z ∈ S. If |3| > |2|, then the mapping f is Cauchy additive.

Proof. Letting x = y = z = 0 in (2.1), we get |3|‖f(0)‖ ≤ |2|‖f(0)‖. So, f(0) = 0. Letting
x = z = 0 and replacing y by 4y in (2.1), we get ‖f(y) + f(−y)‖ ≤ |2|‖f(0)‖ for all y ∈ S. So,
f(−y) = −f(y) for all y ∈ S. Setting x = 0 in (2.1), we obtain

∥
∥
∥
∥
f

(
y + z
4

)

+ f
(−y − 4z

4

)

+ f
(
3z
4

)∥
∥
∥
∥
≤ |2|∥∥f(0)∥∥. (2.2)

So,

f

(
y + z
4

)

+ f
(−y − 4z

4

)

+ f
(
3z
4

)

= 0 (2.3)

for all y, z ∈ S. Replacing y by 2z in (2.3), we get

2f
(
3z
4

)

= f
(
3z
2

)

(2.4)

for all z ∈ S. Using (2.4), we obtain f(2z) = 2f(z) and f(4z) = 4f(z) for all z ∈ S. Letting
x = 0, w1 = (y + z)/4 and w2 = (y − 4z)/4, in (2.1)we get

f(w1) + f(w2) = f(w1 +w2) (2.5)

for all w1, w2 ∈ S. Hence, f is additive.

Theorem 2.2. Let ϕ : S × S × S → R
+ ∪ {0} be a function such that

lim
n→∞

max

[

ϕ
(

2nx, 2ny, 2nz
)

|2|n ,
ϕ
(−2nx,−2ny,−2nz)

|2|n
]

= 0 (2.6)
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for all x, y, z ∈ S and let the limit

ϕ̃(z) := lim
n→∞

max

{

max

[

ϕ
(

0, 2.2iz, 2iz
)

|2|i
,
ϕ
(

0,−2.2iz,−2iz)

|2|i
]

; 0 ≤ i < n
}

(2.7)

exists for all z ∈ S. Suppose that f : S → X with f(0) = 0 is a mapping satisfying

∥
∥
∥
∥
f

(
x + y + z

4

)

+ f
(
3x − y − 4z

4

)

+ f
(
4x + 3z

4

)∥
∥
∥
∥
≤ |2|∥∥f(x)∥∥ + ϕ

(

x, y, z
)

(2.8)

for all x, y, z ∈ S. Then there exists an additive mapping h : S → X such that

∥
∥
∥
∥

f(z) − f(−z)
2

− h(z)
∥
∥
∥
∥
≤ 1

|2|2
ϕ̃(z) (2.9)

for all z ∈ S. Moreover, if

lim
k→∞

lim
n→∞

max

{

max

[

ϕ
(

0, 2.2iz, 2iz
)

|2|i
,
ϕ
(

0,−2.2iz,−2iz)

|2|i
]

; k ≤ i < n + k

}

= 0 (2.10)

then h is the unique additive mapping satisfying (2.9).

Proof. Putting x = 0 and y = 2z in (2.8), we get

∥
∥
∥
∥
2f

(
3z
4

)

+ f
(−3z

2

)∥
∥
∥
∥
≤ ϕ(0, 2z, z) (2.11)

for all z ∈ S. Replacing z by 4z/3 in (2.11), we obtain

∥
∥2f(z) + f(−2z)∥∥ ≤ ϕ

(

0,
8z
3
,
4z
3

)

(2.12)

for all z ∈ S. Replacing z by −z in (2.12), we get

∥
∥2f(−z) + f(2z)∥∥ ≤ ϕ

(

0,
−8z
3
,
−4z
3

)

(2.13)

for all z ∈ S. Let g(z) := (f(z) − f(−z))/2. It follows from (2.12) and (2.13) that

∥
∥g(2z) − 2g(z)

∥
∥ ≤ 1

|2| max
[

ϕ

(

0,
8z
3
,
4z
3

)

, ϕ

(

0,
−8z
3
,
−4z
3

)]

(2.14)



6 Discrete Dynamics in Nature and Society

for all z ∈ S. Replacing z by 2n−1z in (2.14), we get

∥
∥
∥
∥
∥

g(2nz)
2n

− g
(

2n−1z
)

2n−1

∥
∥
∥
∥
∥
≤ 1

|2|n+1
max

[

ϕ

(

0,
8.2n−1z

3
,
4.2n−1z

3

)

, ϕ

(

0,
−8.2n−1z

3
,
−4.2n−1z

3

)]

(2.15)

for all z ∈ S. It follows from (2.6) and (2.15) that the sequence {g(2nz)/2n} is Cauchy. Since
X is complete, we conclude that {g(2nz)/2n} is convergent. Set h(z) := limn→∞(g(2nz)/2n)
for all z ∈ S. Using induction one can show that

∥
∥
∥
∥

g(2nz)
2n

− g(z)
∥
∥
∥
∥

≤ 1

|2|2
max

{

max

[

ϕ
(

0, 8.2kz/3, 4.2kz/3
)

|2|k
,
ϕ
(

0,−8.2kz/3,−4.2kz/3)

|2|k
]

; 0 ≤ k < n
}

(2.16)

for all z ∈ S and n ∈ N. By taking n to approach infinity in (2.16) and using (2.7) one obtains
(2.9).

It follows from (2.8) that

∥
∥
∥
∥
h

(
x + y + z

4

)

+ h
(
3x − y − 4z

4

)

+ h
(
4x + 3z

4

)∥
∥
∥
∥

= lim
n→∞

1
|2|n

∥
∥
∥
∥
g

(

2n
(
x + y + z

4

))

+ g
(

2n
(
3x − y − 4z

4

))

+ g
(

2n
(
4x + 3z

4

))∥
∥
∥
∥

= lim
n→∞

1

|2|n+1

∥
∥
∥
∥
∥

f
(

2n
(

x + y + z
))

4
+
f
(

2n
(

3x − y − 4z
))

4
+
f(2n(4x + 3z))

4

−f
(

2n
(−x − y − z))

4
− f

(

2n
(−3x + y + 4z

))

4
− f(2n(−4x − 3z))

4

∥
∥
∥
∥
∥

≤ 1
|2|n

∥
∥f(2nz) − f(−2nz)∥∥ + lim

n→∞
1
|2| max

[

ϕ
(

2nx, 2ny, 2nz
)

|2|n ,
ϕ
(−2nx,−2ny,−2nz)

|2|n
]

= |2|‖h(z)‖
(2.17)

for all x, y, z ∈ S. So,
∥
∥
∥
∥
h

(
x + y + z

4

)

+ h
(
3x − y − 4z

4

)

+ h
(
4x + 3z

4

)∥
∥
∥
∥
≤ |2|‖h(z)‖ (2.18)

for all x, y, z ∈ S. By Lemma 2.1, the mapping h : S → X is additive.
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Now, let T : S → X be another additive mapping satisfying (2.9). Then we have

‖h(z) − T(z)‖ =
1

|2|k
∥
∥
∥h

(

2kz
)

− T
(

2kz
)∥
∥
∥

≤ 1

|2|k
max

[∥
∥
∥T

(

2kz
)

− g
(

2kz
)∥
∥
∥,

∥
∥
∥g

(

2kz
)

− h
(

2kz
)∥
∥
∥

]

≤ 1

|2|2
lim
k→∞

lim
n→∞

max

{

max

[

ϕ
(

0, 2.2iz, 2iz
)

|2|i
,
ϕ
(

0,−2.2iz,−2iz)

|2|i
]

; k ≤ i < i + k
}

= 0
(2.19)

for all z ∈ S. Therefore h = T . This completes the proof of the uniqueness of h.

Corollary 2.3. Let p > 1 and θ be positive real numbers, and let f : S → X be a mapping satisfying
∥
∥
∥
∥
f

(
x + y + z

4

)

+ f
(
3x − y − 4z

4

)

+ f
(
4x + 3z

4

)∥
∥
∥
∥
≤ |2|∥∥f(x)∥∥ + θ

(‖x‖p + ∥
∥y

∥
∥
p + ‖z‖p)

(2.20)

for all x, y, z ∈ S. If |2| < 1 then there exists a unique additive mapping h : S → X such that

∥
∥
∥
∥

f(z) − f(−z)
2

− h(z)
∥
∥
∥
∥
≤ 2θ

|2|2
‖z‖p (2.21)

for all z ∈ S.

Proof. Defining ϕ : S × S × S → X by ϕ(x, y, z) := θ(‖x‖p + ‖y‖p + ‖z‖p)we have

lim
n→∞

max

[

ϕ
(

2nx, 2ny, 2nz
)

|2|n ,
ϕ
(−2nx,−2ny,−2nz)

|2|n
]

= lim
n→∞

θ|2|np
|2|n

(‖x‖p + ∥
∥y

∥
∥
p + ‖z‖p) = 0,

ϕ̃(z) := lim
n→∞

max

{

max

[

ϕ
(

0, 2.2iz, 2iz
)

|2|i
,
ϕ
(

0,−2.2iz,−2iz)

|2|i
]

; 0 ≤ i < n
}

= lim
n→∞

max

{

|2|(i+1)p + |2|ip
|2|i

θ‖z‖p; 0 ≤ i < n
}

≤ 2θ‖z‖p,

lim
k→∞

lim
n→∞

max

{

max

[

ϕ
(

0, 2.2iz, 2iz
)

|2|i
,
ϕ
(

0,−2.2iz,−2iz)

|2|i
]

; k ≤ i < n + k

}

≤ lim
k→∞

|2|kpθ‖z‖p = 0

(2.22)

for all z ∈ S.
Applying Theorem 2.2, we conclude the required result.
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Corollary 2.4. Let ψ : R
+ ∪ {0} → R

+ ∪ {0} be a function satisfying

ψ(|2|r) ≤ ψ(|2|)ψ(r) (r ≥ 0), ψ(|2|) < |2|. (2.23)

Let θ > 0, let S be a normed space and let f : S → X fulfill the inequality

∥
∥
∥
∥
f

(
x + y + z

4

)

+ f
(
3x − y − 4z

4

)

+ f
(
4x + 3z

4

)∥
∥
∥
∥

≤ |2|∥∥f(x)∥∥ + θ
[

ψ(‖x‖) + ψ(∥∥y∥∥) + ψ(‖z‖)]
(2.24)

for all x, y, z ∈ S. Then there exists a unique additive mapping h : S → X such that

∥
∥
∥
∥

f(z) − f(−z)
2

− h(z)
∥
∥
∥
∥
≤ 2θ

|2|2
ψ(‖z‖) (2.25)

for all z ∈ S.

Proof. Defining ϕ : S × S × S → X by ϕ(x, y, z) := θ[ψ(‖x‖) + ψ(‖y‖) + ψ(‖z‖)] we have

lim
n→∞

max

[

ϕ
(

2nx, 2ny, 2nz
)

|2|n ,
ϕ
(−2nx,−2ny,−2nz)

|2|n
]

≤ θ lim
n→∞

max
[(

ψ(|2|)
|2|

)n
(

ϕ
(

x, y, z
)

, ϕ
(−x,−y,−z))

]

= 0,

ϕ̃(z) := lim
n→∞

max

{

max

[

ϕ
(

0, 2.2iz, 2iz
)

|2|i
,
ϕ
(

0,−2.2iz,−2iz)

|2|i
]

; 0 ≤ i < n
}

= 2θψ(‖z‖),

lim
k→∞

lim
n→∞

max

{

max

[

ϕ
(

0, 2.2iz, 2iz
)

|2|i
,
ϕ
(

0,−2.2iz,−2iz)

|2|i
]

; k ≤ i < n + k

}

≤ lim
k→∞

(
ψ(|2|)
|2|

)k

ψ(‖z‖) = 0

(2.26)

for all z ∈ S.
Applying Theorem 2.2, we conclude the required result.

Theorem 2.5. Let ϕ : S × S × S → R
+ ∪ {0} be a function such that

lim
n→∞

max
{|2|nϕ(2−nx, 2−ny, 2−n), |2|nϕ(−2−nx,−2−ny,−2−nz)} = 0 (2.27)
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for all x, y, z ∈ S and let the limit

ϕ̃(z) := lim
n→∞

max
{

max
[

|2|nϕ
(

0, 2.2−iz, 2−iz
)

, |2|nϕ
(

0,−2.2−iz,−2−iz
)]

; 0 ≤ i < n
}

(2.28)

exist for all z ∈ S. Suppose that f : S → X with f(0) = 0 is a mapping satisfying

∥
∥
∥
∥
f

(
x + y + z

4

)

+ f
(
3x − y − 4z

4

)

+ f
(
4x + 3z

4

)∥
∥
∥
∥
≤ |2|∥∥f(x)∥∥ + ϕ

(

x, y, z
)

(2.29)

for all x, y, z ∈ S. Then there exists an additive mapping h : S → X such that

∥
∥
∥
∥

f(z) − f(−z)
2

− h(z)
∥
∥
∥
∥
≤ 1

|2| ϕ̃(z) (2.30)

for all z ∈ S. Moreover, if

lim
k→∞

lim
n→∞

max
{

max
[

|2|iϕ
(

0, 2.2−iz, 2−iz
)

, |2|iϕ
(

0,−2.2−iz,−2−iz
)]

; k ≤ i < n + k
}

= 0 (2.31)

then h is the unique additive mapping satisfying (2.30).

Proof. It follows from (2.14) that

∥
∥
∥2g

(z

2

)

− g(z)
∥
∥
∥ ≤ 1

|2| max
{

ϕ

(

0,
4z
3
,
2z
3

)

, ϕ

(

0,
−4z
3
,
−2z
3

)}

(2.32)

for all z ∈ S. Hence,

∥
∥
∥2ng

(

2−nz
) − 2(n+1)g

(

2−(n+1)z
)∥
∥
∥ ≤ |2|nmax

{

ϕ

(

0,
4.2−nz

3
,
2.2−nz

3

)

, ϕ

(

0,
−4.2−nz

3
,
−2.2−nz

3

)}

(2.33)

for all z ∈ S. It follows from (2.27) and (2.33) that the sequence {2ng(2−nz)} is a Cauchy
sequence for all z ∈ S. Since X is complete, the sequence {2ng(2−nz)} converges. So, one can
define the mapping h : S → X by h(z) := limn→∞{2ng(2−nz)} for all z ∈ S.

The rest of the proof is similar to the proof of Theorem 2.2.

Remark 2.6. We can obtain similar results to Corollary 2.3 for p < 1 and Corollary 2.4.

3. Stability of Functional Inequality (1.13)

We prove the generalized Hyers-Ulam stability of the functional inequality (1.13). Through-
out this section, we assume that S is an additive semigroup and X is a complete non-
Archimedean space.

We need the following lemma in the main results.
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Lemma 3.1. Let f : S → X be a mapping such that

∥
∥
∥
∥
f

(
y − x
3

)

+ f
(
x − 3z

3

)

+ f
(
3x + 3z − y

3

)∥
∥
∥
∥
≤ ∥
∥f(x)

∥
∥ (3.1)

for all x, y, z ∈ S. If f(0) = 0, then the mapping f is Cauchy additive.

Proof. Letting x = y = 0 in (3.1), we get

∥
∥f(−z) + f(z)∥∥ ≤ ∥

∥f(0)
∥
∥ = 0 (3.2)

for all z ∈ S. Hence, f(−z) = −f(z) for all z ∈ S. Letting x = 0 and y = 6z in (3.1), we get

∥
∥f(2z) − 2f(z)

∥
∥ ≤ ∥

∥f(0)
∥
∥ = 0 (3.3)

for all z ∈ S. Hence,

f(2z) = 2f(z) (3.4)

for all z ∈ S. Letting x = 0 and y = 9z in (3.1), we get

∥
∥f(3z) − f(z) − 2f(z)

∥
∥ ≤ ∥

∥f(0)
∥
∥ = 0 (3.5)

for all z ∈ S. Hence,

f(3z) = 3f(z) (3.6)

for all z ∈ S. Letting x = 0 in (3.1), we get

∥
∥
∥
∥
f

(
y

3

)

+ f(−z) + f
(

z − y

3

)∥
∥
∥
∥
≤ ∥
∥f(0)

∥
∥ = 0 (3.7)

for all x, y, z ∈ S. So,

f

(
y

3

)

+ f(−z) + f
(

z − y

3

)

= 0 (3.8)

for all x, y, z ∈ S. Let t1 = z − y/3 and t2 = y/3 in (3.8). Then

f(t2) − f(t1 + t2) + f(t1) = 0 (3.9)

for all t1, t2 ∈ S. So, f is additive.
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Theorem 3.2. Let ϕ : S × S × S → [0,∞) be a function such that

lim
n→∞

ϕ
(

2nx, 2ny, 2nz
)

|2|n = 0 (3.10)

for all x, y, z ∈ S and let the limit

ϕ̃(z) := lim
n→∞

max

{

max

[

ϕ
(

0, 6.2iz, 2iz
)

|2|i
,
|2|ϕ(0, 3.2iz, 2iz)

|2|i
]

; 0 ≤ i < n
}

(3.11)

exist for all z ∈ S. Suppose that f : S → X with f(0) = 0 is a mapping satisfying

∥
∥
∥
∥
f

(
y − x
3

)

+ f
(
x − 3z

3

)

+ f
(
3x + 3z − y

3

)∥
∥
∥
∥
≤ ∥
∥f(x)

∥
∥ + ϕ

(

x, y, z
)

(3.12)

for all x, y, z ∈ S. Then there exists an additive mapping T : S → X such that

∥
∥f(z) − T(z)∥∥ ≤ 1

|2| ϕ̃(z) (3.13)

for all z ∈ S. Moreover, if

lim
k→∞

lim
n→∞

max

{

max

[

ϕ
(

0, 6.2iz, 2iz
)

|2|i
,
|2|ϕ(0, 3.2iz, 2iz)

|2|i
]

; k ≤ i < n + k

}

= 0 (3.14)

then T is the unique additive mapping satisfying (3.13).

Proof. Letting x = 0 and y = 6z in (3.12), we get

∥
∥f(2z) + 2f(−z)∥∥ ≤ ϕ(0, 6z, z) (3.15)

for all z ∈ S. Putting x = 0 and y = 3z in (3.12), we get

∥
∥2f(z) + 2f(−z)∥∥ ≤ |2|ϕ(0, 3z, z) ≤ ϕ(0, 3z, z) (3.16)

for all z ∈ S. It follows from (3.15) and (3.16) that

∥
∥f(2z) − 2f(z)

∥
∥ ≤ max

{

ϕ(0, 6z, z), ϕ(0, 3z, z)
}

(3.17)

for all z ∈ S. Replacing z by 2n−1z in (3.17), we get

∥
∥
∥
∥
∥

f(2nz)
2n

− f
(

2n−1z
)

2n−1

∥
∥
∥
∥
∥
≤ 1

|2|n max
[

ϕ
(

0, 6.2n−1z, 2n−1z
)

, ϕ
(

0, 3.2n−1z, 2n−1z
)]

(3.18)
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for all z ∈ S. It follows from (3.10) and (3.18) that the sequence {f(2nz)/2n} is Cauchy. Since
X is complete, we conclude that {f(2nz)/2n} is convergent. Set T(z) := limn→∞(f(2nz)/2n)
for all z ∈ S. Using induction one can show that

∥
∥
∥
∥

f(2nz)
2n

− f(z)
∥
∥
∥
∥
≤ 1

|2| max

{

max

[

ϕ
(

0, 6.2kz, 2kz
)

|2|k
,
|2|ϕ(0, 3.2kz, 2kz)

|2|k
]

; 0 ≤ k < n
}

(3.19)

for all z ∈ S and n ∈ N. By taking n to approach infinity in (3.19) and using (3.11) one obtains
(3.13).

Replacing x, y, and z by 2nx,2ny, and 2nz, respectively, in (3.12) we get

∥
∥
∥
∥
∥
f

(

2n
(

y − x)

3.2n

)

+ f
(
2n(x − 3z)

3.2n

)

+ f

(

2n
(

3x + 3z − y)

3.2n

)∥
∥
∥
∥
∥

≤
∥
∥
∥
∥

f(2nx)
2n

∥
∥
∥
∥
+

1
|2|n ϕ

(

2nx, 2ny, 2nz
)

(3.20)

for all x, y, z ∈ S. Taking the limit as n → inf ty and using (3.10) we get

∥
∥
∥
∥
T

(
y − x
3

)

+ T
(
x − 3z

3

)

+ T
(
3x + 3z − y

3

)∥
∥
∥
∥
≤ ‖T(x)‖ (3.21)

for all x, y, z ∈ S. By Lemma 3.1, the mapping T : S → X is additive.
If T ′ is another additive mapping satisfying (3.13), then

∥
∥T(z) − T ′(z)

∥
∥ =

1

|2|k
∥
∥
∥T

(

2kz
)

− T ′
(

2kz
)∥
∥
∥

≤ 1

|2|k
max

[∥
∥
∥T

(

2kz
)

− f
(

2kz
)∥
∥
∥,

∥
∥
∥f

(

2kz
)

− T ′
(

2kz
)∥
∥
∥

]

≤ 1
|2| limk→∞

lim
n→∞

max

{

max

[

ϕ
(

0, 6.2iz, 2iz
)

|2|i
,
|2|ϕ(0, 3.2iz, 2iz)

|2|i
]

; k ≤ i < i + k
}

= 0
(3.22)

for all z ∈ S. Therefore T ′ = T . This proves the uniqueness of T . Hence, the mapping T : S →
X is a unique additive mapping satisfying (3.13).

Corollary 3.3. Let p > 1 and θ be positive real numbers, and let f : S → X be a mapping satisfying

∥
∥
∥
∥
f

(
y − x
3

)

+ f
(
x − 3z

3

)

+ f
(
3x + 3z − y

3

)∥
∥
∥
∥
≤ ∥
∥f(x)

∥
∥ + θ

(‖x‖p + ∥
∥y

∥
∥
p + ‖z‖p) (3.23)
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for all x, y, z ∈ S. If |2| < 1 then there exists a unique additive mapping T : S → X such that

∥
∥f(z) − T(z)∥∥ ≤ 2θ

|2| ‖z‖
p (3.24)

for all z ∈ S.

Proof. Letting ϕ(x, y, z) := θ(‖x‖p + ‖y‖p + ‖z‖p) in Theorem 3.2, we obtain the result.

Corollary 3.4. Let ψ : [0,∞) → [0,∞) be a function satisfying

ψ(|2|r) ≤ ψ(|2|)ψ(r) (r ≥ 0), ψ(|2|) < |2|. (3.25)

Let θ > 0, let S be a normed space, and let f : S → X fulfill the inequality

∥
∥
∥
∥
f

(
y − x
3

)

+ f
(
x − 3z

3

)

+ f
(
3x + 3z − y

3

)∥
∥
∥
∥
≤ ∥
∥f(x)

∥
∥ + θ

[

ψ(‖x‖) + ψ(∥∥y∥∥) + ψ(‖z‖)]

(3.26)

for all x, y, z ∈ S. Then there exists a unique additive mapping T : S → X such that

∥
∥f(z) − T(z)∥∥ ≤ 2θ

|2|ψ(‖z‖) (3.27)

for all z ∈ S.

Proof. If we define ϕ(x, y, z) := θ[ψ(‖x‖) + ψ(‖y‖) + ψ(‖z‖)] in Theorem 3.2, then we get the
result.

Remark 3.5. We can formulate a similar statement to Theorem 3.2 in which we can define the
sequence T(z) := limn→∞2nf(z/2n) under suitable conditions on the function ϕ and ψ and
then obtain similar results to Corollary 3.3 for p < 1 and Corollary 3.4.
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