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We study the relation between Lyapunov function and exponential trichotomy for the linear
equation xΔ = A(t)x on time scales. Furthermore, as an application of these results, we give the
roughness of exponential trichotomy on time scales.

1. Introduction

Exponential trichotomy is important for center manifolds theorems and bifurcation theorems.
When people analyze the asymptotic behavior of dynamical systems, exponential trichotomy
is a powerful tool. The conception of trichotomy was first introduced by Sacker and Sell
[1]. They described SS-trichotomy for linear differential systems by linear skew-product
flows. Furthermore, Elaydi and Hájek [2, 3] gave the notions of exponential trichotomy for
differential systems and for nonlinear differential systems, respectively. These notions are
stronger notions than SS-trichotomy. In 1991, Papaschinopoulos [4] discussed the exponential
trichotomy for linear difference equations. And in 1999 Hong and his partners [5, 6]
studied the relationship between exponential trichotomy and the ergodic solutions of linear
differential and difference equations with ergodic perturbations. Recently, Barreira and Valls
[7, 8] gave the conception of nonuniform exponential trichotomy. From their papers, we can
see that the exponential trichotomy studied before is just a special case of the nonuniform
exponential trichotomy. For more information about exponential trichotomy we refer the
reader to papers [9–14].

Many phenomena in nature cannot be entirely described by discrete system, or by
continuous system, such as insect population model, the large population in the summer, the
number increases, a continuous function can be shown. And in the winter the insects freeze
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to death or all sleep, their number reduces to zero, until the eggs hatch in the next spring, the
number increases again, this process is a jump process. Therefore, this population model is a
discontinuous jump function, it cannot be expressed by a single differential equation, or by a
single difference equations. Is it possible to use a unified framework to represent the above
population model? In 1988, Hilger [15] first introduced the theory of time scales. From then
on, there are numerous works on this area (see [16–23]). Time scales provide a method to
unify and generalize theories of continuous and discrete dynamical systems.

In this paper, motivated by [8], we study the exponential trichotomy on time scales.
We firstly introduce (λ, μ)-Lyapunov function on time scales. Then we study the relationship
between exponential trichotomy and (λ, μ)-Lyapunov function on time scales. We obtain
that the linear equation xΔ = A(t)x admits exponential trichotomy, if it has two (λ, μ)-
Lyapunov functions with some property; conversely, the linear equation has two (λ, μ)-
Lyapunov functions, if it admits strict exponential trichotomy. At last, by using these results
we investigate the roughness of exponential trichotomy on time scales. Above all, our paper
gives a way to unify the analysis of continuous and discrete exponential trichotomy.

This paper is organized as follows. In Section 2, we review some useful notions and
basic properties on time scales. Our main results will be stated and proved in Section 3.
Finally, in Section 4, we study the roughness of exponential trichotomy on time scales.

2. Preliminaries on Time Scales

In order to make our paper independent, some preliminary definitions and theories on time
scales are listed below.

Definition 2.1. Let T be a time scale which is an arbitrary nonempty closed subset of the real
numbers. The forward jump operator is defined by

σ(t) := inf{s ∈ T : s > t}, (2.1)

while the backward jump operator is defined by

ρ(t) := sup{s ∈ T : s < t}, (2.2)

for every t ∈ T. If σ(t) = t, then t is called right-dense. And if ρ(t) = t, then t is called left-
dense. Let μ(t) := σ(t) − t be the graininess function.

For example, the set of real numbers R is a time scale with σ(t) = t and μ(t) = 0 for
t ∈ T = R and the set of integers Z is a time scale with σ(t) = t + 1 and μ(t) = 1 for t ∈ T = Z.

Definition 2.2. A function f : T → R
n is called rd-continuous if it is continuous at right-dense

points in T and left-sided limits exist at left dense points in T.

We denote the set of rd-continuous functions by Crd(T,Rn).
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Definition 2.3. We say that a function f : T → R
n is differentiable at t ∈ T, if for any ε > 0,

there exist T-neighborhood U of t and fΔ(t) ∈ R
n such that for any s ∈ U one has

∥
∥
∥f(σ(t)) − f(s) − fΔ(t)(σ(t) − s)

∥
∥
∥ ≤ ε(σ(t) − s), (2.3)

and fΔ(t) is called the derivative of f at t.

Relate to the differential properties, if f and g is differentiable at t, then we have the
following equalities:

f(σ(t)) = f(t) + μ(t)fΔ(t), (2.4)

(

fg
)Δ(t) = fΔ(t)g(t) + f(σ(t))gΔ(t). (2.5)

Definition 2.4. We say that a function p : T → R is regressive if 1 + μ(t)p(t)/= 0 for all t ∈ T.
Furthermore, if 1+μ(t)p(t) > 0, p is called positive regressive. An n×nmatrix valued function
A(t) on time scale T is called regressive if Id + μ(t)A(t) is invertible for all t ∈ T.

Let a, b be regressive. Define (a⊕b)(t) = a(t)+b(t)+μ(t)a(t)b(t) and (�a)(t) = −a(t)/(1+
μ(t)a(t)) for all t ∈ T. Then the regressive set is a Abelian group and it is not hard to verify
that the following properties hold:

(1) a � a = 0;

(2) �(�a) = a;

(3) a � b = (a − b)/(1 + μ(t)b);

(4) �(a ⊕ b) = (�a) ⊕ (�b), where a, b are regressive.

In order to make our paper intelligible, the exponential function on time scales which
we will use in our paper is defined as following. For the more general conception of
exponential function on time scales, please refer to [17].

Definition 2.5. Let p be positive regressive. We define the exponential function by

ep(t, s) = exp

{∫ t

s

1
μ(τ)

ln
(

1 + μ(τ)p(τ)
)

Δτ

}

, (2.6)

for all s, t ∈ T. Here the integral is always understood in Lebesgue’s sense and if f ∈
Crd(T,Rn), for any t ∈ T one has

∫σ(t)

t

f(s)Δs = μ(t)f(t). (2.7)

From the definition of exponential function we have that if a, b are positive regressive,
then

(1) e0(t, s) = 1 and ea(t, t) = 1;
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(2) ea(t, s) = e�a(s, t);

(3) ea(t, s)ea(s, r) = ea(t, r);

(4) ea(t, s)eb(t, s) = ea⊕b(t, s);

(5) [ea(c, t)]
Δ
t = −a(t)ea(c, σ(t)), where [ea(c, t)]

Δ
t stands for the delta derivative of

ea(c, t)with respect to t.

Lemma 2.6 (L’Hôpital’s Rule). Suppose that f and g are differentiable on T. Then if g(t) satisfies
g(t) > 0, gΔ > 0 and limt→+∞g(t) = ∞, then the existence of limt→+∞fΔ(t)/gΔ(t) implies that
limt→+∞f(t)/g(t) exists and limt→+∞f(t)/g(t) = limt→+∞fΔ(t)/gΔ(t).

3. Exponential Trichotomy and Lyapunov Function on Time Scales

From now on, we always suppose that T is a two-sides infinite time scale and the graininess
function μ(t) is bounded, which means that there exists a M > 0 such that 0 ≤ μ(t) ≤ M. We
consider the following linear equation

xΔ = A(t)x, (3.1)

where A(t) is an n × n matrix valued function on time scale T, satisfying that A(t) is rd-
continuous and regressive. To make it simple, in this paper we always require that A(t) is
regressive. If A(t) is not regressive, from [20]we can know that the linear evolution operator
T(t, τ) associated to (3.1) is not invertible and exists only for τ ≤ t which will make our
paper complicated. Here, T(t, τ) is called the linear evolution operator if T(t, τ) satisfies the
following conditions:

(1) T(τ, τ) = Id;

(2) T(t, τ)T(τ, s) = T(t, s);

(3) the mapping (t, τ) → T(t, τ)x is continuous for any fixed x ∈ R
n.

Equation (3.1) is said to admit an exponential trichotomy on time scale T if there exist
projections P(t), Q(t), R(t) : R

n → R
n for each t ∈ T such that P(t) +Q(t) + R(t) = Id,

T(t, τ)P(τ) = P(t)T(t, τ), T(t, τ)Q(τ) = Q(t)T(t, τ), T(t, τ)R(τ) = R(t)T(t, τ) (3.2)

for t, τ ∈ T and there are some constants a > b ≥ 0 and D > 1 such that for t ≥ τ, t, τ ∈ T

‖T(t, τ)P(τ)‖ ≤ Dea(τ, t), ‖T(t, τ)R(τ)‖ ≤ Deb(t, τ), (3.3)

and for t ≤ τ, t, τ ∈ T

‖T(t, τ)Q(τ)‖ ≤ Dea(t, τ), ‖T(t, τ)R(τ)‖ ≤ Deb(τ, t). (3.4)
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We say that (3.1) admits a strong exponential trichotomy on time scale T if there exist P(t),Q(t),
R(t) : R

n → R
n for each t ∈ T and constants a > b ≥ 0, D > 1 satisfying (3.2), (3.3), (3.4), as

well as a constant c with c ≥ a and c > 1 such that

‖T(t, τ)P(τ)‖ ≤ Dec(τ, t), t ≤ τ, t, τ ∈ T,

‖T(t, τ)Q(τ)‖ ≤ Dec(t, τ), t ≥ τ, t, τ ∈ T.
(3.5)

Obviously, if for any t ∈ T we have μ(t) ≡ 0 or μ(t) ≡ 1, then the notion of exponential
trichotomy on time scale T becomes the exponential trichotomy for differential equation or
difference equation, respectively.

Next, we give the notion of Lyapunov function. Consider a function V : T ×R
n → R

n.
If the following two conditions are satisfied

(H1) for each τ ∈ T set Vτ := V (τ, ·) and

Cs(Vτ) := {0} ∪ V −1
τ (−∞, 0), Cu(Vτ) := {0} ∪ V −1

τ (0,+∞). (3.6)

let rs and ru be, respectively, the maximal dimensions of linear subspaces inside
Cs(Vτ) and Cu(Vτ), then we have rs + ru = n;

(H2) for every t ≥ τ , t, τ ∈ T and x ∈ R
n, we have T(τ, t)Cs(Vt) ⊂ Cs(Vτ) and

T(t, τ)Cu(Vτ) ⊂ Cu(Vt),

then we say that the function V is a Lyapunov function.
Let

Hs
τ :=

⋂

r∈T

T(τ, r)Cs(Vr) ⊂ Cs(Vτ),

Hu
τ :=

⋂

r∈T

T(τ, r)Cu(Vr) ⊂ Cu(Vτ).
(3.7)

By the notion of Lyapunov function, we can see that there are subspaces Ds
τ(V ) and Du

τ (V )
such that Ds

τ(V ) ⊕ Du
τ (V ) = R

n. The function V is called a (λ, μ)-Lyapunov function if V is a
Lyapunov function and for t ≥ τ, t, τ ∈ T, V satisfies the following conditions:

(L1) |V (t, x)| ≤ N‖x‖,
(L2) for x ∈ Ds

τ(V ), V 2(t, T(t, τ)x) ≤ eλ(t, τ)V 2(τ, x),

(L3) for x ∈ Du
τ (V ), V 2(t, T(t, τ)x) ≥ eμ(t, τ)V 2(τ, x),

(L4) for x ∈ Ds
τ(V )

⋃
Du

τ (V ), |V (t, x)| ≥ ‖x‖/N,

where λ < μ and N is a constant with N > 1.
Furthermore, let S(t) for each t ∈ T be a symmetric invertible n × n matrix. Set

H(t, x) := 〈S(t)x, x〉. If V (t, x) := − signH(t, x)
√

|H(t, x)| is a Lyapunov function ((λ, μ)-
Lyapunov function), then V (t, x) is called a quadric Lyapunov function ((λ, μ)-quadric Lyapunov
function). Let ‖S(t)‖ := supx∈Rn |H(t, x)|/‖x‖2. Now, we state and prove our main results.
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Theorem 3.1. Suppose that (3.1) has two (λ, μ)-quadratic Lyapunov functions, V (t, x) with (r1, r2)
and W(t, x) with (l1, l2) satisfying r1 < r2 < 0 < l1 < l2. If the symmetric invertible n × n matrixes
S(t) and T(t) for V (t, x) andW(t, x), respectively, satisfy supt∈T

‖S(t)‖ < ∞ and supt∈T
‖T(t)‖ < ∞,

then (3.1) has an exponential trichotomy.

In order to prove Theorem 3.1, we need some lemmas.

Lemma 3.2. The subspaces Ds
τ(V ), Du

τ (V ), Ds
τ(W), and Du

τ (W) according to Lyapunov functions
V and W have the following relations

Ds
τ(V ) ⊂ Ds

τ(W), Du
τ (W) ⊂ Du

τ (V ). (3.8)

Proof. By the knowledge of mathematical analysis, we can easily get that ln(1 + lx)/x is a
decreasing function for any l ∈ R. Thus, when 0 ≤ x ≤ M, we have ln(1 + lM)/M ≤ ln(1 +
lx)/x ≤ l. Now, we prove this lemma by contradiction. Suppose that there is x ∈ Ds

τ(V ) \
Ds

τ(W). Then there are y ∈ Ds
τ(W) and z ∈ Du

τ (W) \ {0} such that x = y + z. Since r1 < l1 < l2,
then by Lemma 2.6 we get

lim
t→+∞

1
t
ln|V (t, T(t, τ)x)| ≥ lim

t→+∞
1
t
ln

‖T(t, τ)x‖
N

≥ lim
t→+∞

1
t
ln
(‖T(t, τ)z‖ − ∥

∥T(t, τ)y
∥
∥
)

≥ lim
t→+∞

1
t
ln
(
V (t, T(t, τ)z)

N
−N

∣
∣V

(

t, T(t, τ)y
)∣
∣

)

≥ lim
t→+∞

1
t
ln

(√

el2(t, τ)V (τ, z)
N

−N
√

el1(t, τ)
∣
∣V

(

τ, y
)∣
∣

)

≥ lim
t→+∞

1
t
ln

√

el1(t, τ)

= lim
t→+∞

1
2t

∫ t

τ

1
μ(s)

ln
(

1 + μ(s)l1
)

Δs

≥ lim
t→+∞

t − τ

2t
ln(1 + l1M)

M
=

ln(1 + l1M)
2M

> 0.

(3.9)

But for x ∈ Ds
τ(V ), one has

lim
t→+∞

1
t
ln|V (t, T(t, τ)x)| ≤ lim

t→+∞
1
t
ln
(√

er1(t, τ)|V (τ, x)|
)

≤ r1
2

< 0. (3.10)

It is a contradiction. So we have Ds
τ(V ) ⊂ Ds

τ(W).
By the concept of Lyapunov function, we get that for t ≤ τ ,

∣
∣V ′(τ, x)

∣
∣ ≤ eλ(τ, t)

∣
∣V ′(t, T(t, τ)x)

∣
∣, x ∈ Ds

τ ,

V ′(τ, x) ≥ eμ(τ, t)V ′(t, T(t, τ)x), x ∈ Du
τ ,

(3.11)
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where V ′ = V orW , λ = r1 or l1 and μ = r2 or l2. Using above inequalities and the similar way
by which we getDs

τ(V ) ⊂ Ds
τ(W), we can directly obtain thatDu

τ (W) ⊂ Du
τ (V ). Here we omit

the detailed proofing. Thus, the proof is completed.

Obviously, from Lemma 3.2 we have (Du
τ (V )

⋂
Ds

τ(W))
⋂
Du

τ (W) = {0}, (Du
τ (V ) ∩

Ds
τ(W))

⋂
Ds

τ(V ) = {0} and Du
τ (W)

⋂
Ds

τ(V ) = {0}. Furthermore,

dim
(

Du
τ (V )

⋂

Ds
τ(W)

)

= dimDu
τ (V ) + dimDs

τ(W) − dim(Du
τ (V ) +Ds

τ(W))

= n − dimDs
τ(V ) + n − dimDu

τ (W) − dim(Du
τ (V ) +Ds

τ(W)).
(3.12)

Thus,

dim
(

Du
τ (V )

⋂

Ds
τ(W)

)

+ dimDs
τ(V ) + dimDu

τ (W) ≥ 2n − dim(Du
τ (V ) +Ds

τ(W)) ≥ n.

(3.13)

So we obtain

Du
τ (V )

⋂

Ds
τ(W) ⊕Ds

τ(V ) ⊕Du
τ (W) = R

n. (3.14)

Then from the conditions in Theorem 3.1 we have the following results.
When t ≥ τ , for x ∈ Ds

τ(V ), we get

‖T(t, τ)x‖ ≤ N|V (t, T(t, τ)x)| ≤ N
√

er1(t, τ)|V (τ, x)| ≤ N2
√

er1(t, τ)‖x‖, (3.15)

and for x ∈ Du
τ (V )

⋂
Ds

τ(W), we get

‖T(t, τ)x‖ ≤ N|V (t, T(t, τ)x)| ≤ N
√

el1(t, τ)|V (τ, x)| ≤ N2
√

el1(t, τ)‖x‖. (3.16)

When t ≤ τ , for x ∈ Du
τ (W), we get

‖T(t, τ)x‖ ≤ N|V (t, T(t, τ)x)| ≤ N
√

el2(t, τ)|V (τ, x)| ≤ N2
√

el2(t, τ)‖x‖, (3.17)

and for x ∈ Du
τ (V )

⋂
Ds

τ(W), we get

‖T(t, τ)x‖ ≤ N|V (t, T(t, τ)x)| ≤ N
√

er2(t, τ)|V (τ, x)| ≤ N2
√

er2(t, τ)‖x‖. (3.18)

Let

PV (τ) : R
n −→ Ds

τ(V ), QV (τ) : R
n −→ Du

τ (V ),

PW(τ) : R
n −→ Ds

τ(W), QW(τ) : R
n −→ Du

τ (W)
(3.19)
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be projections. Set P(τ) := PV (τ), Q(τ) := QW(τ) and R(τ) := PW(τ) + QV (τ). From
Lemma 3.2, we have QV (τ)PW(τ) = PW(τ)QV (τ) = 0. Thus, by simply deducing, we get
that R(τ) is also a projection. Set L1(τ) = Id − P(τ). Next, we will give the boundedness of
P(τ), Q(τ), and R(τ). By the conditions of Theorem 3.1, we suppose that there is a constant
L > 0 such that supt∈T

‖S(t)‖ ≤ L and supt∈T
‖T(t)‖ ≤ L. We have the following lemma.

Lemma 3.3.

‖P(t)x‖ ≤
√
2N2‖x‖, ‖Q(t)x‖ ≤

√
2N2‖x‖, ‖R(t)x‖ ≤ 2

√
2N2‖x‖. (3.20)

Proof. Firstly, one has

V (t, P(t)x) = 〈S(t)P(t)x, P(t)x〉 ≥ ‖P(t)x‖2
N2

,

V (t, L1(t)x) = −〈S(t)L1(t)x, L1(t)x〉 ≥ ‖Q(t)x‖2
N2

.

(3.21)

Since

1
N2

∥
∥
∥
∥
∥
P(t)x − N2

2
S(t)x

∥
∥
∥
∥
∥

2

+
1
N2

∥
∥
∥
∥
∥
L1(t)x − N2

2
S(t)x

∥
∥
∥
∥
∥

2

=
1
N2 ‖P(t)x‖

2 +
1
N2 ‖L1(t)x‖2 + N2

2
‖S(t)x‖2

− 〈P(t)x, S(t)x〉 + 〈L1(t)x, S(t)x〉
≤ 〈S(t)P(t)x, P(t)x〉 − 〈S(t)L1(t)x, L1(t)x〉

+
N2

2
‖S(t)x‖2 − 〈P(t)x, S(t)x〉 + 〈L1(t)x, S(t)x〉

=
N2

2
‖S(t)x‖2,

(3.22)

then we obtain

‖P(t)x‖ ≤
∥
∥
∥
∥
∥
P(t)x − N2

2
S(t)x

∥
∥
∥
∥
∥
+
N2

2
‖S(t)x‖

≤ N2

√
2
‖S(t)x‖ + N2

2
‖S(t)x‖

≤
√
2N2‖S(t)x‖ ≤

√
2N2L‖x‖.

(3.23)
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Similarly, we get

‖Q(t)x‖ ≤
√
2N2L‖x‖,

‖R(t)x‖ ≤ 2
√
2N2L‖x‖.

(3.24)

Proof of Theorem 3.1. Firstly, we need to show that there are constants r ′1, r
′
2 < 0 and l′1, l

′
2 > 0

such that when t ≥ τ , one has

√

er1(t, τ) ≤ er ′1(t, τ), (3.25)

√

el1(t, τ) ≤ el′1(t, τ), (3.26)

and when t ≤ τ , one has

√

el2(t, τ) ≤ el′2(t, τ),
√

er2(t, τ) ≤ er ′2(t, τ).
(3.27)

For inequality (3.25), by the definition of exponential function, we only need to find a
constant r ′1 < 0 such that

1 + μ(t)r1 ≤
(

1 + μ(t)r ′1
)2
. (3.28)

That means

r1 ≤ 2r ′1 + μ(t)r
′2
1 . (3.29)

Thus, if r1/2 ≤ r ′1 < 0, (3.25) always holds. Similarly, we get that if l′1 ≥ l1/2, 0 < l′2 <

(
√

1 +Ml2 − 1)/M and (−
√

1 +Mr2 − 1)/M < r ′2 < 0, then (3.26), (3.27) always hold,
respectively. Here, we notice that since r2 is positive regressive, then

√

1 +Mr2 is significative.
By (3.15)–(3.18) and Lemma 3.3, we get that when t ≥ τ ,

‖T(t, τ)P(τ)x‖ ≤
∥
∥
∥T (t, τ)|Ds

τ (V )

∥
∥
∥‖P(τ)x‖

≤
√
2N2L

√

er1(t, τ)‖x‖ ≤
√
2N2Ler ′1(t, τ)‖x‖,

‖T(t, τ)R(τ)x‖ ≤
∥
∥
∥T (t, τ)|Ds

τ (W)
⋂
Du

τ (V )

∥
∥
∥‖R(τ)x‖

≤ 2
√
2N2L

√

el1(t, τ)‖x‖ ≤ 2
√
2N2Lel′1(t, τ)‖x‖,

(3.30)
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and when t ≤ τ ,

‖T(t, τ)Q(τ)x‖ ≤
∥
∥
∥T (t, τ)|Du

τ (W)

∥
∥
∥‖Q(τ)x‖

≤
√
2N2L

√

el2(t, τ)‖x‖ ≤
√
2N2Lel′2(t, τ)‖x‖,

‖T(t, τ)R(τ)x‖ ≤
∥
∥
∥T (t, τ)|Ds

τ (W)
⋂
Du

τ (V )

∥
∥
∥‖R(τ)x‖

≤ 2
√
2N2L

√

er2(t, τ)‖x‖ ≤ 2
√
2N2Ler ′2(t, τ)‖x‖.

(3.31)

Set D := 2
√
2N2L, a := min{|r ′1|, l′2}, and b := max{|r ′2|, l′1}. Obviously, we have a > b and the

above inequalities imply that for t ≥ τ, t, τ ∈ T one has

‖T(t, τ)P(τ)‖ ≤ Dea(τ, t), ‖T(t, τ)R(τ)‖ ≤ Deb(t, τ), (3.32)

and for t ≤ τ, t, τ ∈ T one has

‖T(t, τ)Q(τ)‖ ≤ Dea(t, τ), ‖T(t, τ)R(τ)‖ ≤ Deb(τ, t). (3.33)

Thus, from the definition of exponential trichotomy on time scales, we get that (3.1) has an
exponential trichotomy on time scale T. This completes the proof of Theorem 3.1.

Next, we give an approximately converse result of Theorem 3.1.

Theorem 3.4. If (3.1) admits a strict exponential trichotomy, then for (3.1) there exist two (λ, μ)-
Lyapunov functions, V ′(t, x) with (�r ′1,�r ′2) and W ′(t, x) with (l′1, l

′
2) satisfying �r ′1 < �r ′2 < 0 <

l′1 < l′2.

Proof. Suppose that (3.1) admits a strict exponential trichotomy with projections P(t), Q(t),
R(t), and constants c ≥ a > b ≥ 0 satisfying (3.2)–(3.5). Set

S(t) :=
∫+∞

t

(T(σ(v), t)P(t))∗T(σ(v), t)P(t)ec1⊕b(σ(v), t)Δv

−
∫ t

−∞
(T(σ(v), t)L1(t))∗T(σ(v), t)L1(t)ec2⊕b(σ(v), t)Δv,

(3.34)

where L1(t) = Q(t) + R(t) and b < c2 < c1 < a. Let H(t, x) := 〈S(t)x, x〉.
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When t ≥ τ, t, τ ∈ T, we get

H(t, T(t, τ)x) =
∫+∞

t

‖T(σ(v), τ)P(τ)x‖2ec1⊕b(σ(v), t)Δv

−
∫ t

−∞
‖T(σ(v), τ)L1(τ)x‖2ec2⊕b(σ(v), t)Δv

≤
∫+∞

τ

‖T(σ(v), τ)P(τ)x‖2ec1⊕b(σ(v), τ)Δvec1⊕b(τ, t)

−
∫ τ

−∞
‖T(σ(v), τ)L1(τ)x‖2ec2⊕b(σ(v), τ)Δvec2⊕b(τ, t)

≤ ec2⊕b(τ, t)H(τ, x).

(3.35)

Set V (t, x) := −signH(t, x)
√

|H(t, x)|. Then if V (τ, x) > 0, that is, x ∈ Cu(Vτ), we have
H(τ, x) < 0. By (3.35) we obtain that H(t, T(t, τ)) < 0. Then we get V (t, T(t, τ)x) > 0, that
is, T(t, τ)x ∈ Cu(Vt). That means T(t, τ)Cu(Vτ) ⊂ Cu(Vt). Similarly, we have T(τ, t)Cs(Vt) ⊂
Cs(Vτ). Thus, V (t, x) is a Lyapunov function. By (3.3), (3.4) and the characters of exponential
function on time scales, one has

|H(t, x)| ≤
∫+∞

t

‖T(σ(v), t)P(t)x‖2ec1⊕b(σ(v), t)Δv

+
∫ t

−∞
‖T(σ(v), t)L1(t)x‖2ec2⊕b(σ(v), t)Δv

≤
∫+∞

t

D2ea(t, σ(v))ea(t, σ(v))ec1⊕b(σ(v), t)Δv‖x‖2

+
∫ t

−∞
D2ea(σ(v), t)ea(σ(v), t)ec2⊕b(σ(v), t)Δv‖x‖2

+
∫ t

−∞
D2eb(t, σ(v))eb(t, σ(v))ec2⊕b(σ(v), t)Δv‖x‖2

≤
∫+∞

t

D2ea�b(t, σ(v))Δv‖x‖2 +
∫ t

−∞
D2ea⊕a⊕c2⊕b(σ(v), t)Δv‖x‖2

+
∫ t

−∞
D2ec2�b(σ(v), t)Δv‖x‖2

=
∫+∞

t

D2−[ea�b(t, v)]Δv
a � b

Δv‖x‖2 +
∫ t

−∞
D2−

[

e�(a⊕a⊕c2⊕b)(t, v)
]Δ
v

�(a ⊕ a ⊕ c2 ⊕ b)
Δv‖x‖2

+
∫ t

−∞
D2−[eb�c2(t, v)]Δv

b � c2
Δv‖x‖2.

(3.36)
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Since μ(t) ≤ M, then

1
a � b

=
1 + μ(t)b
a − b

≤ 1 +Mb

a − b
,

−1
�(a ⊕ a ⊕ c2 ⊕ b)

=
1 + μ(t)(a ⊕ a ⊕ c2 ⊕ b)

a ⊕ a ⊕ c2 ⊕ b
≤ 1

a ⊕ a ⊕ c2 ⊕ b
+M ≤ 1

2a + c2 + b
+M,

−1
b � c2

=
1 + μ(t)c2
c2 − b

≤ 1 +Mc2
c2 − b

.

(3.37)

Thus,

|H(t, x)| ≤
[

D2(1 +Mb)
a − b

+D2
(

1
2a + c2 + b

+M

)

+D2
(
1 +Mc2
c2 − b

)]

‖x‖2. (3.38)

Set K := D2(1 +Mb)/(a − b) +D2(1/(2a + c2 + b) +M) +D2((1 +Mc2)/(c2 − b)).
Let Hs

τ (V ) := P(τ)Rn and Hu
τ (V ) := L1(τ)Rn = R(τ)Rn ⊕Q(τ)Rn. For x ∈ Hs

τ (V ), one
has

H(t, x) =
∫+∞

t

‖T(σ(v), t)P(t)x‖2ec1⊕b(σ(v), t)Δv

=
∫+∞

t

‖T(σ(v), t)x‖2ec1⊕b(σ(v), t)Δv.

(3.39)

Obviously, one has

‖T(t, τ)‖ ≤ ‖T(t, τ)P(τ)‖ + ‖T(t, τ)Q(τ)‖ + ‖T(t, τ)R(τ)‖. (3.40)

Then by (3.3)–(3.5), we obtain that

‖T(t, τ)‖ ≤ Dea(τ, t) +Deb(t, τ) +Dec(t, τ) for t ≥ τ, (3.41)

‖T(t, τ)‖ ≤ Dea(t, τ) +Deb(τ, t) +Dec(τ, t) for t ≤ τ. (3.42)
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Thus,

|H(t, x)| ≥
∫+∞

t

‖x‖2
‖T(t, σ(v))‖2

ec1⊕b(σ(v), t)Δv

≥
∫+∞

t

‖x‖2
‖Dea(t, σ(v)) +Deb(σ(v), t) +Dec(σ(v), t)‖2

ec1⊕b(σ(v), t)Δv

≥ ‖x‖2
9D2

∫+∞

t

ec1⊕b(σ(v), t)ec⊕c(t, σ(v))Δv

=
‖x‖2
9D2

∫+∞

t

−(ec⊕c�(c1⊕b)(t, v)
)Δ
v

c ⊕ c � (c1 ⊕ b)
Δv.

(3.43)

Since c ⊕ c � (c1 ⊕ b) = (2c + μ(s)c2 − (c1 + b + μ(s)c1b))/(1 + μ(s)(c1 + b + μ(s)b)) ≤ 2c − c1 −
b +Mc2 −Mc1b, then we get

|H(t, x)| ≥ ‖x‖2
9D2(2c − c1 − b +Mc2 −Mc1b)

. (3.44)

Similarly, for x ∈ Hu
τ (V ), we get

H(t, x) = −
∫ t

−∞
‖T(σ(v), t)x‖2ec2⊕b(σ(v), t)Δv,

|H(t, x)| ≥ ‖x‖2
9D2(c2 + b + 2c +M(2c2c + 2bc + c2) +M2(bc + c2c2 + bc2) +M3bc2)

.

(3.45)

Let L′ := max{c2 + b + 2c + M(2c2c + 2bc + c2) + M2(bc + c2c
2 + bc2) + M3bc2, 2c −

c1 − b + Mc2 − Mc1b}. Then when x ∈ Hs
τ (V )

⋃
Hu

τ (V ), we get |H(t, x)| ≥ ‖x‖2/9D2L′. Let
N2 := max{9D2L′, K}. We get |H(t, x)| ≤ K ≤ N2‖x‖2 for any t ∈ T, x ∈ R

n, and when
x ∈ Hs

τ (V )
⋃
Hu

τ (V ), we get |H(t, x)| ≥ ‖x‖2/N2.
Since c2 < c1, then we have c2 ⊕ b < c1 ⊕ b and there are constants r ′1 and r ′2 with

c2 ⊕ b ≤ r ′2 < r ′1 ≤ c1 ⊕ b. Thus, when x ∈ Hs
τ (V ), for any t ≥ τ we get

H(t, T(t, τ)x) =
∫+∞

t

‖T(σ(v), τ)P(τ)x‖2ec1⊕b(σ(v), t)Δv ≤ ec1⊕b(τ, t)H(τ, x), (3.46)

that is,

V 2(t, T(t, τ)x) ≤ ec1⊕b(τ, t)V
2(τ, x) ≤ er ′1(τ, t)V

2(τ, x), (3.47)

and when x ∈ Hu
τ (V ), for any t ≥ τ we get

H(t, T(t, τ)x) = −
∫ t

−∞
‖T(σ(v), τ)L1(τ)x‖2ec2⊕b(σ(v), t)Δv ≤ ec2⊕b(τ, t)H(τ, x), (3.48)
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that is,

V 2(t, T(t, τ)x) ≥ ec2⊕b(τ, t)V
2(τ, x) ≥ er ′2(τ, t)V

2(τ, x). (3.49)

Therefore, V (t, x) is a (�r ′1,�r ′2)-Lyapunov function.
Set

T(t) :=
∫+∞

t

(T(σ(v), t)L2(t))∗T(σ(v), t)L2(t)ed1⊕b(t, σ(v))Δv

−
∫ t

−∞
(T(σ(v), t)Q(t))∗T(σ(v), t)Q(t)ed2⊕b(t, σ(v))Δv,

(3.50)

where L2(t) = P(t) + R(t) and b < d1 < d2 < a. Let G(t, x) := 〈T(t)x, x〉 and W(t, x) :=
− signG(t, x)

√

|G(t, x)|. Then

G(t, x) =
∫+∞

t

‖(T(σ(v), t)L2(t))x‖2ed1⊕b(t, σ(v))Δv

−
∫ t

−∞
‖(T(σ(v), t)Q(t))x‖2ed2⊕b(t, σ(v))Δv.

(3.51)

Let Hs
τ (W) := L2(τ)Rn and Hu

τ (W) := Q(τ)Rn. Similar to the consideration for V (t, x), we
can see that G(t, x) is also a Lyapunov function satisfying

G(t, T(t, τ)x) ≤ ed2⊕b(t, τ)G(τ, x),

|G(t, x)| ≤ D2
(
1 +Ma

a − b
+

1
2a + d1 + b

+M +
1 +Mb

d1 − b

)

‖x‖2,

|G(t, x)| ≥ ‖x‖2
9D2L′′ , for x ∈ Hs

τ (W)
⋃

Hu
τ (W),

(3.52)

where L′′ = max{d1 + b + 2c +M(2d1c + 2bc + c2) +M2(bc + d1c
2 + bc2) +M3bc2, 2c − d2 − b +

Mc2 −Md2b}.
Since d1 < d2, then we have d1 ⊕ b < d2 ⊕ b and there are constants l′1 and l′2 with

d1 ⊕ b ≤ l′1 < l′2 ≤ d2 ⊕ b. Thus, for any t ≥ τ , we obtain that when x ∈ Hs
τ (W),

G(t, T(t, τ)x) =
∫+∞

t

‖T(σ(v), τ)L2(τ)x‖2ed1⊕b(t, σ(v))Δv ≤ ed1⊕b(t, τ)G(τ, x), (3.53)

that is,

W2(t, T(t, τ)x) ≤ ed1⊕b(t, τ)W
2(τ, x) ≤ el′1(t, τ)W

2(τ, x), (3.54)

and when x ∈ Hu
τ (W),
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G(t, T(t, τ)x) = −
∫ t

−∞
‖T(σ(v), τ)L1(τ)x‖2ed2⊕b(t, σ(v))Δv ≤ ed2⊕b(t, τ)G(τ, x), (3.55)

that is,

W2(t, T(t, τ)x) ≥ ed2⊕b(t, τ)W
2(τ, x) ≥ el′2(t, τ)V

2(τ, x). (3.56)

Thus, W(t, x) is a (l′1, l
′
2)-Lyapunov function.

According to all the discussions above we get that when (3.1) has a strict exponential
trichotomy, there exists two (λ, μ)-Lyapunov functions, V (t, x) with (�r ′1,�r ′2) and W(t, x)
with (l′1, l

′
2) satisfying �r ′1 < �r ′2 < 0 < l′1 < l′2. This completes the proof.

4. Roughness of Exponential Trichotomy on Time Scales

The roughness of exponential dichotomy on time scales had been studied by Zhang and his
cooperators in their paper [24] in 2010. In this section, we go further to study the roughness
of exponential trichotomy on time scales, using the results which we get from Section 3. We
have known that the notion of exponential trichotomy plays a central role when we study
center manifolds, so it is important to understand how exponential trichotomy vary under
perturbations. Here, we discuss the following linear perturbed equation

xΔ = A(t)x + B(t)x, (4.1)

where B(t) is an n × n matrix valued function on time scale T with ‖B(t)‖ ≤ δ. For this linear
perturbed (4.1) we get the following theorem.

Theorem 4.1. Suppose that (3.1) has a strict exponential trichotomy. If δ > 0 is sufficiently small,
then the linear perturbed (4.1) also has an exponential trichotomy.

Proof. Since (3.1) has a strict exponential trichotomy, then by Theorem 3.4 there are two (λ, μ)-
Lyapunov functions, V (t, x) with (r1, r2) and W(t, x) with (l1, l2) satisfying r1 < r2 < 0 <
l1 < l2. Here, V (t, x) and W(t, x) are defined in Theorem 3.4. Let x(t) be a solution of (3.1)
satisfying x(τ) = x. Differentiating on both sides of H(t, x(t)) = 〈S(t)x(t), x(t)〉, one has

HΔ(t, x(t)) = 〈S(t)x(t), x(t)〉Δ

=
〈

SΔ(t)x(t), x(t)
〉

+
〈

S(σ(t)) xΔ(t), x(t)
〉

+
〈

S(σ(t))x(σ(t)), xΔ(t)
〉

=
〈[

SΔ(t) + S(σ(t))A(t) +A∗(t)S(σ(t))

+μ(t)A∗(t)S(σ(t))A(t)
]

x(t), x(t)
〉

.

(4.2)
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Let T(t, τ) be the linear evolution operator related to (3.1). Then we get x(t) = T(t, τ)x. And
we can see that P(t)x(t) = P(t)T(t, τ)x = T(t, τ)P(τ)x is also a solution of (3.1). By (4.2) we
get

HΔ(t, P(t)x(t)) =
〈[

SΔ(t) + S(σ(t))A(t) +A∗(t)S(σ(t))

+μ(t)A∗(t)S(σ(t))A(t)
]

P(t)x(t), P(t)x(t)
〉

.

(4.3)

At the same time, by (2.4), (2.7), and (3.46) one has

μ(t)HΔ(t, P(t)x(t)) = H(σ(t), P(σ(t))x(σ(t))) −H(t, P(t)x(t))

≤ H(t, P(t)x(t))ec1⊕b(t, σ(t)) −H(t, P(t)x(t))

= H(t, P(t)x(t))

(

exp

{∫σ(t)

t

1
μ(s)

ln
(

1 + �(c1 ⊕ b)μ(s)
)

Δs

}

− 1

)

= �(c1 ⊕ b)μ(t)H(t, P(t)x(t)).

(4.4)

Thus, we obtain that

HΔ(t, P(t)x(t)) ≤ �(c1 ⊕ b)H(t, P(t)x(t)). (4.5)

Then by (4.3) and (4.5) we can see

SΔ(t) + S(σ(t))A(t) +A∗(t)S(σ(t)) + μ(t)A∗(t)S(σ(t))A(t) ≤ �(c1 ⊕ b)S(t). (4.6)

Now, Let y(t) be a solution of equation xΔ = A(t)x+B(t)x satisfying y(τ) = y. Since y(σ(t)) =
y(t) + μ(t)yΔ(t) = y(t) + μ(t)(A(t) + B(t))y(t), one has

HΔ(t, y(t)
)

=
〈

S(t)y(t), y(t)
〉Δ

=
〈

SΔ(t)y(t), y(t)
〉

+
〈

S(σ(t))yΔ(t), y(t)
〉

+
〈

S(σ(t))y(σ(t)), yΔ(t)
〉

=
〈

SΔ(t)y(t), y(t)
〉

+
〈

S(σ(t))A(t)y(t), y(t)
〉

+
〈

A∗(t)S(σ(t))y(t), y(t)
〉

+
〈

μ(t)A∗(t)S(σ(t))A(t)y(t), y(t)
〉

+
〈

S(σ(t))B(t)y(t), y(t)
〉

+
〈

μ(t)S(σ(t))B(t)y(t), A(t)y(t)
〉

+
〈

S(σ(t))y(t), B(t)y(t)
〉

+
〈

μ(t)S(σ(t))A(t)y(t), B(t)y(t)
〉

+
〈

μ(t)S(σ(t))B(t)y(t), B(t)y(t)
〉

≤ �(c1 ⊕ b)H
(

t, y(t)
)

+ ‖S(σ(t))‖‖B(t)‖∥∥y(t)∥∥2

+ 2
∥
∥μ(t)A(t)

∥
∥‖S(σ(t))‖‖B(t)‖∥∥y(t)∥∥2 + ‖S(σ(t))‖‖B(t)‖∥∥y(t)∥∥2

+ μ(t)‖S(σ(t))‖‖B(t)‖2∥∥y(t)∥∥2
.

(4.7)
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By the variation of constants formula, we have T(t, s) = Id +
∫ t

s A(v)T(v, s)Δv. Thus,
by (2.7)we obtain

T(σ(t), t) = I +
∫σ(t)

t

A(v)T(v, t)Δv

= Id + μ(t)A(t)T(t, t) = Id + μ(t)A(t).

(4.8)

Therefore, by Definition 2.5 and (2.7), (3.41), we obtain

∥
∥Id + μ(t)A(t)

∥
∥ ≤ Dea(t, σ(t)) +Deb(σ(t), t) +Dec(σ(t), t)

= D
[

1 + μ(t)(�a)] +D
(

1 + μ(t)b
)

+D
(

1 + μ(t)c
)

≤ 3D +DM(b + c).

(4.9)

Thus, one has

∥
∥μ(t)A(t)

∥
∥ ≤ ∥

∥Id + μ(t)A(t)
∥
∥ + ‖Id‖ ≤ 3D +DM(b + c) + 1. (4.10)

From Theorem 3.4, we know

‖S(t)‖ = sup
x∈Rn

H(t, x)

‖x(t)‖2
≤ N2,

∥
∥y(t)

∥
∥ ≤ N

∣
∣V

(

t, y(t)
)∣
∣.

(4.11)

Thus,

HΔ(t, y(t)
) ≤ �(c1 ⊕ b)H

(

t, y(t)
)

+
[

2N2δ + 2(3D + 1 +DMb +DMc)N2δ

+MN2δ2
]

N2∣∣H
(

t, y(t)
)∣
∣.

(4.12)

Let M(δ) := [2N2δ + 2(3D + 1 +DMb +DMc)N2δ +MN2δ2] N2. It is not hard to see that
M(δ) → 0 when δ → 0. Set E(δ) := �(c1 ⊕ b) +M(δ). Then when δ is sufficiently small, we
have E(δ) < 0 and

1 + μ(t)E(δ) = 1 + μ(t)
[

− (c1 ⊕ b)
1 + μ(t)(c1 ⊕ b)

+M(δ)
]

=
1

1 + μ(t)(c1 ⊕ b)
+ μ(t)M(δ) > 0.

(4.13)

So E(δ) is positive regressive. Then forH(t, y(t)) > 0, (4.12) can be written as

HΔ(t, y
) ≤ E(δ)H

(

t, y(t)
)

. (4.14)
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Notice that

(

H
(

t, y(t)
)

e�E(δ)(t, τ)
)Δ = HΔ(t, y(t)

)

e�E(δ)(σ(t), τ) + �E(δ)e�E(δ)(t, τ)H
(

t, y(t)
)

= HΔ(t, y(t)
)

e�E(δ)(σ(t), τ)

+ �E(δ)e�E(δ)(t, σ(t))e�E(δ)(σ(t), τ)H
(

t, y(t)
)

= HΔ(t, y(t)
)

e�E(δ)(σ(t), τ)

+ �E(δ) 1
1 + �E(δ)μ(t)e�E(δ)(σ(t), τ)H

(

t, y(t)
)

=
(

HΔ(t, y
) − E(δ)H

(

t, y(t)
))

e�E(δ)(σ(t), τ) ≤ 0.

(4.15)

Thus, we get

H
(

t, y(t)
) ≤ eE(δ)(t, τ)H

(

τ, y(τ)
)

. (4.16)

Then we can see that if y(t) ∈ Cs(Vt), we have V (t, y(t)) < 0 and thusH(t, y(t)) > 0. By (4.16)
we have H(τ, y(τ)) > 0 and thus V (τ, y(τ)) < 0, that is, y(τ) ∈ Cs(Vτ). Let U(t, τ) be the
linear evolution operator associated to (4.1). Then y(t) = U(t, τ)y(τ). Thus, we get

U(τ, t)Cs(Vt) ⊂ Cs(Vτ). (4.17)

Let L1(t) = Q(t) + R(t). We can see that L1(t)x(t) is also a solution of (3.1). By (4.2) one has

HΔ(t, L1(t)x(t)) =
〈[

SΔ(t) + S(σ(t))A(t) +A∗(t)S(σ(t))

+μ(t)A∗(t)S(σ(t))A(t)
]

L1(t)x(t), L1(t)x(t)
〉

.

(4.18)

Similar to the proof of (4.5), we haveHΔ(t, L1(t)x(t)) ≤ �(c2 ⊕ b)H(t, L1(t)x(t)). Then we get

SΔ(t) + S(σ(t))A(t) +A∗(t)S(σ(t)) + μ(t)A∗(t)S(σ(t))A(t) ≤ �(c2 ⊕ b)S(t). (4.19)

Following the process for getting (4.12), one has

HΔ(t, y(t)
) ≤ �(c2 ⊕ b)H

(

t, y(t)
)

+M(δ)
∣
∣H

(

t, y(t)
)∣
∣. (4.20)

Let F(δ) := �(c2 ⊕ b) −M(δ). When δ is sufficiently small, we obtain F(δ) < 0 and

1 + μ(t)F(δ) = 1 + μ(t)
[

− (c2 ⊕ b)
1 + μ(t)(c2 ⊕ b)

−M(δ)
]

=
1

1 + μ(t)(a ⊕ b)
−M(δ).

(4.21)
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So F(δ) is positive regressive. Then forH(t, y(t)) < 0, (4.20) can be written as

HΔ(t, y
) ≤ F(δ)H

(

t, y(t)
)

. (4.22)

Following the similar process as (4.15), we get

H
(

t, y(t)
) ≤ eF(δ)(t, τ)H

(

τ,y(τ)
)

. (4.23)

Then if y(τ) ∈ Cu(Vτ), we have V (τ, y(τ)) > 0 and thus H(τ, y(τ)) < 0. By (4.23) we have
H(t, y(t)) < 0 and thus V (t, y(t)) > 0, that is, y(t) ∈ Cu(Vt). So we get

U(t, τ)Cu(Vτ) ⊂ Cu(Vt). (4.24)

By the notion of Lyapunov function and (4.17), (4.24) we can see that V (t, x) is a Lyapunov
function of (4.1).

Let

H
′u
τ (V ) :=

⋂

r∈T

U(τ, r)Cu(Vr) ⊂ Cu(Vτ),

H
′s
τ (V ) :=

⋂

r∈T

U(τ, r)Cs(Vr) ⊂ Cs(Vτ).
(4.25)

By the notion of Lyapunov function, we know that there exist two subspaces D
′u
τ (V ) and

D
′s
τ (V ) such that D

′u
τ (V ) ⊂ H

′u
τ (V ), D

′s
τ (V ) ⊂ H

′s
τ (V ), and D

′u
τ (V ) ⊕D

′s
τ (V ) = R

n.
Now, we prove that V (t, x) is a (λ, μ)-Lyapunov function. Since c1 > c2, we have c1⊕b >

c2⊕b. By simple computation, we obtain �(c1⊕b) < �(c2⊕b). Therefore, when δ is sufficiently
small, we get E(δ) < F(δ). Then there are constants r1, r2 such that E(δ) ≤ r1 < r2 ≤ F(δ).
Thus, by inequality (4.16), for y(τ) ∈ D

′s
τ one has

V 2(t, y(t)
) ≤ eE(δ)(t, τ)V 2(τ, y(τ)

)

≤ er1(t, τ)V
2(τ, y(τ)

)

.
(4.26)

By inequality (4.23), for y(τ) ∈ D
′u
τ , we obtain

V 2(t, y(t)
) ≥ eF(δ)(t, τ)V 2(τ, y(τ)

)

≥ er2(t, τ)V
2(τ, y(τ)

)

.
(4.27)

Then by (4.26) and (4.27) we can see that V (t, y) is a (r1, r2)-Lyapunov function of (4.1).
Next, we will prove that W(t, y) is also a (λ, μ)-Lyapunov function of (4.1). Similar to

the consideration of H(t, y), for G(t, y) we have that if y ∈ Cs(Wt), then W(t, y(t)) < 0, that
is, G(t, y(t)) > 0. Thus, we get

GΔ(t, y(t)
) ≤ (d1 ⊕ b +M(δ))G

(

t, y(t)
)

. (4.28)
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Let E′(δ) := d1 ⊕ b +M(δ). By the similar deducing as (4.16), one has

G
(

t, y(t)
) ≤ eE′(δ)(t, τ)G

(

τ, y(τ)
)

. (4.29)

Thus, when G(t, y(t)) > 0, that is,W(t, y(t)) < 0, we have G(τ, y(τ)) > 0, that is,W(τ, y(τ)) <
0. That means

U(τ, t)Cs(Wt) ⊂ Cs(Wτ). (4.30)

When y ∈ Cu(Wt), we have W(t, y(t)) > 0, that is, G(t, y(t)) < 0. Then

GΔ(t, y(t)
) ≤ (d2 ⊕ b −M(δ))G

(

t, y(t)
)

. (4.31)

Let F ′(δ) = d2 ⊕ b −M(δ). By the similar deducing as (4.15), one has

G
(

t, y(t)
) ≤ eF ′(δ)(t, τ)G

(

τ, y(τ)
)

. (4.32)

Then whenG(τ, y(τ)) < 0, that is,W(τ, y(τ)) > 0, we haveG(t, y(t)) < 0, that is,W(τ, y(τ)) >
0. That means

U(t, τ)Cu(Wτ) ⊂ Cu(Wt). (4.33)

By (4.30) and (4.33), we know that W(t, y) is a Lyapunov function of (4.1).
Since d1 < d2, we have d1 ⊕ b < d2 ⊕ b. Then when δ is sufficiently small, we get

E′(δ) < F ′(δ). Therefore, there are constants l1, l2 such that E′(δ) ≤ l1 < l2 ≤ F ′(δ).
Let

H
′u
τ (W) :=

⋂

r∈T

U(τ, r)Cu(Wr) ⊂ Cu(Wτ),

H
′s
τ (W) :=

⋂

r∈T

U(τ, r)Cs(Wr) ⊂ Cs(Wτ).
(4.34)

By the notion of Lyapunov function, we can know that there exist D
′u
τ (W) and D

′s
τ (W) such

that D
′u
τ (W) ⊂ H

′u
τ (W), D

′s
τ (W) ⊂ H

′s
τ (W), and D

′u
τ (W) ⊕D

′s
τ (W) = R

n.
Furthermore, by (4.29) and (4.32), for any t ≥ τ , when y(τ) ∈ D

′s
τ (W), one has

W2(t, y(t)
) ≤ eE′(δ)(t, τ)W2(τ, y(τ)

) ≤ el1(t, τ)W
2(τ, y(τ)

)

, (4.35)

and when y(τ) ∈ D
′u
τ (W), one has

W2(t, y(t)
) ≥ eF ′(δ)(t, τ)W2(τ, y(τ)

) ≥ el2(t, τ)W
(

τ, y(τ)
)

. (4.36)

Thus, we can see that W(t, y) is a (l1, l2)-Lyapunov function of (4.1). Therefore, we know
that (4.1) has two (λ, μ)-quadratic Lyapunov functions, V (t, x) with (r1, r2) and W(t, x) with
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(l1, l2) satisfying r1 < r2 < 0 < l1 < l2. Then by Theorem 3.1 we get that (4.1) has an exponential
trichotomy. The proof is completed.
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