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We introduce an iterative sequence for finding a common element of the set of fixed points of a
nonexpansive mapping and the solutions of the variational inequality problem for three inverse-
strongly monotone mappings. Under suitable conditions, some strong convergence theorems for
approximating a common element of the above two sets are obtained. Moreover, using the above
theorem, we also apply to find solutions of a general system of variational inequality and a zero of
a maximal monotone operator in a real Hilbert space. As applications, at the end of the paper we
utilize our results to study some convergence problem for strictly pseudocontractive mappings.
Our results include the previous results as special cases extend and improve the results of Ceng et
al., (2008) and many others.

1. Introduction

Variational inequalities are known to play a crucial role in mathematics as a unified
framework for studying a large variety of problems arising, for instance, in structural
analysis, engineering sciences and others.Roughly speaking, they can be recast as fixed-point
problems, and most of the numerical methods related to this topic are based on projection
methods. Let H be a real Hilbert space with inner product (:,-) and || - ||, and let E be a
nonempty, closed, convex subset of H. A mapping A : E — H is called a-inverse-strongly
monotone if there exists a positive real number a > 0 such that

(Ax - Ay, x-y) > a||Ax - Ay 2

Vx,y € E (1.1)
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(see [1, 2]). It is obvious that every a-inverse-strongly monotone mapping A is monotone
and Lipschitz continuous. A mapping S : E — E is called nonexpansive if

||Sx - Sy| < |[x-v|, Vx,yeE. (1.2)

We denote by F(S) the set of fixed points of S and by Pr the metric projection of H onto E.
Recall that the classical variational inequality, denoted by VI(A, E), is to find an x* € E such
that

(Ax*,x—x"y >0, Vx€E. (1.3)

The set of solutions of VI(A, E) is denoted by I'. The variational inequality has been widely
studied in the literature; see, for example, [3—6] and the references therein.

For finding an element of F(S) NI, Takahashi and Toyoda [7] introduced the following
iterative scheme:

Xp1 = XXy + (1 — ) SPe(x,, — Ay Axy), (1.4)

foreveryn =0,1,2,..., where xo = x € E, {a,}isasequencein (0,1), and {\,} is a sequence
in (0,2a). On the other hand, for solving the variational inequality problem in the finite-
dimensional Euclidean space R", Korpelevich (1976) [8] introduced the following so-called
extragradient method:

xo=x€E,
Yn = Pe(xy — MyAxy), (1.5)

Xni1 = Pe (xn - )LnAyn)/

for every n = 0,1,2,..., where A, € (0,1/k). Many authors using extragradient method for
approximating common fixed points and variational inequality problems (see also [9, 10]).
Recently, Nadezhkina and Takahashi [11] and Zeng et al. [12] proposed some iterative
schemes for finding elements in F(S) NI by combining (1.4) and (1.5). Further, these iterative
schemes are extended in Y. Yao and J. C. Yao [13] to develop a new iterative scheme for
finding elements in F(S)NT.

Consider the following problem of finding (x*, y*) € E x E such that (see cf. Ceng et al.

[14]):

(MY +x*—y*,x-x*) >0, Vx€E,
(1.6)
(UBx* +y* —x*,x-y*) >0, Vx€E,
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which is called general system of variational inequalities (GSVI), where A > 0 and p > 0 are two
constants. In particular, if A = B, then problem (1.6) reduces to finding (x*, y*) € E x E such
that

>0, Vxe€E,
(1.7)
>0, Vxe€E,

(MY +x* -y, x — x*)

(HAX" +y" = X", x - y")

which is defined by [15, 16], and is called the new system of variational inequalities. Further,
if x* = y*, then problem (1.7) reduces to the classical variational inequality VI(A, E), that is, find
x* € E such that (Ax*,x —x*) >0, forall x € E.

We can characteristic problem, if x* € F(S) N VI(A, E), then it follows that x* = Sx* =
Pg[x* — pAx*], where p > 0 is a constant.

In 2008, Ceng et al. [14] introduced a relaxed extragradient method for finding
solutions of problem (1.6). Let the mappings A, B : E — H be a-inverse-strongly monotone
and p-inverse-strongly monotone, respectively. Let S : E — E be a nonexpansive mapping.
Suppose x1 = u € E and {x,} is generated by

Yn = Pe(xn — uBxy),
(1.8)
Xn+1l = ApU + ,ann + YnSPE (]/n - )lnA]/n)/

where A € (0,2a), p € (0,2p), and {an}, {Pn}, {yn} are three sequences in [0,1] such that
&y + Py + 7y, =1, forall n > 1. First, problem (1.6) is proven to be equivalent to a fixed point
problem of a nonexpansive mapping.

In this paper, motivated by what is mentioned above, we consider generalized system
of variational inequalities as follows.

Let E be a nonempty, closed, convex subset of a real Hilbert space H. Let A,B,C : E —
H be three mappings. We consider the following problem of finding (x*,y*,z*) € ExE x E
such that

(My*+x* -y, x-x*) >0, Vxe€E,

(uBz"* +y* - z",x-y*) 20, Vx€E, (1.9)

(TCx* +z" —x*,x—-2") >0, Vx€E,

which is called a general system of variational inequalities where A > 0, y > 0 and 7 > 0 are three
constants.
In particular, if A = B = C, then problem (1.9) reduces to finding (x*, y*,z*) € ExExE
such that
(MAy* +x* —y*,x—x") >0, VxE€E,
(WAZ" +y* -z, x-y*) >0, Vx€E, (1.10)

(TAx*+z"—x",x-2z")>0, Vx€E.
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Next, we consider some special classes of the GSVI problem (1.9) reduce to the following
GSVL.

(i) If T = 0, then the GSVI problems (1.9) reduce to GSVI problem (1.6).

(ii) If 7 = p = 0, then the GSVI problems (1.9) reduce to classical variational inequality
VI(AE) problem.

The above system enters a class of more general problems which originated mainly from the
Nash equilibrium points and was treated from a theoretical viewpoint in [17, 18]. Observe at
the same time that, to construct a mathematical model which is as close as possible to a real
complex problem, we often have to use constraints which can be expressed as one several
subproblems of a general problem. These constrains can be given, for instance, by variational
inequalities, by fixed point problems, or by problems of different types.

This paper deals with a relaxed extragradient approximation method for solving a
system of variational inequalities over the fixed-point sets of nonexpansive mapping. Under
classical conditions, we prove a strong convergence theorem for this method. Moreover, the
proposed algorithm can be applied for instance to solving the classical variational inequality
problems.

2. Preliminaries

Let E be a nonempty, closed, convex subset of a real Hilbert space H. For every point x € H,
there exists a unique nearest point in E, denoted by Pgx, such that

lx - Pex|| < ||x-vy|, YyeE. (2.1)

Pk is call the metric projection of H onto E.
Recall that, Pgx is characterized by following properties: Pex € E and

(x = Pgx,y — Pgx) <0,

5 , 5 (2.2)
122 = yI” 2 llae = Pex]” + || Pex — w[| ",
forallx e Hand y € E.
Lemma 2.1 (see cf. Zhang et al. [19]). The metric projection Pg has the following properties:
(i) Pg: H — E is nonexpansive;
(ii) Pr : H — E is firmly nonexpansive, that is,
| Pex - Pey||® < (Pex - Pey, x - y), Vx,y € H; (2.3)

(iii) for each x € H,

z=Pg(x) = (x-2z,z-y)>0, VyeE. (2.4)
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Lemma 2.2 (see Osilike and Igbokwe [20]). Let (E, (-, -)) be an inner product space. Then for all
x,y,z€Eand a,p,y € [0,1] witha + f+y =1, one has

llax + By +yz||* = allxl® + Blly || + yllzI® - apl|x - y||* - ayllx - zI* - By|ly - =|>.  (25)

Lemma 2.3 (see Suzuki [21]). Let {x,} and {y,} be bounded sequences in a Banach space X and
let {p,} be a sequence in [0,1] with 0 < liminf, B, < limsup,_, p. < 1. Suppose x,.1 =

(1 = Bn)Yn + Puxy for all integers n > 0 and limsup, _ _ ([[Yns1 = Y,ll = [|Xne1 — x4ll) < 0. Then,
limy, - o5 [y — x|l = 0.

Lemma 2.4 (see Xu [22]). Assume {ay,} is a sequence of nonnegative real numbers such that

ap1 <(1-ay)a,+6, n>0, (2.6)

where {a,} is a sequence in (0,1) and {6,} is a sequence in R such that
(i) 251 an = oo,
(i) limsup, ,  (6n/ay) <0o0r 372 |64 < c0.

Then, lim,, _. a, = 0.

Lemma 2.5 (Goebel and Kirk [23]). Demiclosedness Principle. Assume that T is a nonexpansive
self-mapping of a nonempty, closed, convex subset E of a real Hilbert space H. If T has a fixed point,
then I — T is demiclosed, that is, whenever {x,} is a sequence in E converging weakly to some x € E
(for short, x, — x € E), and the sequence {(I — T)x,} converges strongly to some y (for short,
(I-T)x, — y), it follows that (I - T)x = y. Here, I is the identity operator of H.

The following lemma is an immediate consequence of an inner product.

Lemma 2.6. In a real Hilbert space H, there holds the inequality
lx+y|> < lxIP+2(y, x +y), Va,yeH. 2.7)

Remark 2.7. We also have that, forall u,v € Eand A >0,

1T = LAYu = (I = LA)o|* = ||(u - v) - A(Au - Ao)|]>
= ||lu - v|]* - 2Mu - v, Au — Av)
(2.8)
+ 12| Au - Av|)?

< lu=o)* + A(A = 2a) || Au — Ao

So, if A < 2a, then I — 1A is a nonexpansive mapping from E to H.



6 Discrete Dynamics in Nature and Society

3. Main Results

In this section, we introduce an iterative precess by the relaxed extragradient approximation
method for finding a common element of the set of fixed points of a nonexpansive mapping
and the solution set of the variational inequality problem for three inverse-strongly monotone
mappings in a real Hilbert space. We prove that the iterative sequence converges strongly to
a common element of the above two sets.

In order to prove our main result, the following lemmas are needed.

Lemma 3.1. For given x*,y*,z* € E x E x E, (x*,y*, 2*) is a solution of problem (1.9) if and only if
x* is a fixed point of the mapping G : E — E defined by

G(x) = Pe{Pg[Pg(x — TCx) — uBPg(x — TCx)]

3.1)
—MAPg[Pg(x — 7Cx) — uBPg(x - 7Cx)]}, Vx€E,
where y* = Pp(z* — uBz*) and z* = Pg(x* — 7Cx™).
Proof.
(My* +x* —y*,x-x*)>0, Vx€E,
(uBz* +y* - z",x-y*) >0, Vx€E, (3.2)
(TCx* +z" —x",x-2")>0, Vx€E,
=4
((~y*+1Ay*) +x", x —x*) >0, Vx€E,
((-z*+uBz") +y",x-y*) >0, Vx€E, (3.3)
((=x*+71Cx*) +z",x-z*) >0, Vx€E,
=
((y* - AAy*) —x*,x*—x) >0, Vx€E,
((zf —uBz*) —y*,y*—x) >0, Vxe€kE, (3.4)
((x*=1Cx*)—z%,z"-x) >0, VxE€E,
=4

= Pey - 1Ay),
y* = Pg(z* — uBz"), (3.5)

z" = Pp(x* - 7Cx"),

& x* = Pp[Pep(z* — uBz*) — MAPg(z* — uBz")].
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Thus,

x* = Pe{Pe[Pe(x* — 7Cx*) — uBPg(x* = TCx*)]| =AAPg [Pe(x* =7Cx*) — uBPg(x* — 7Cx*)] }.
(3.6)
]

Lemma 3.2. The mapping G defined by Lemma 3.1 is nonexpansive mappings.
Proof. Forall x,y € E,
IGx) = G(W) || = | Pe{Pe [P (x = 7Cx) — uBPe(x — 7Cx)]
—AAP[Pg(x - 7Cx) — puBPg(x — 7Cx)] )
— Pe{P:[Pe(y — TCy) - uBPe(y - 7Cy)]
~\APg[Pe(y - 7Cy) - uBPg (y - 7Cy)] )
< || [Pe(x - 7Cx) - uBPe(x - Cx)]
— MAPg [Pg(x — 7Cx) - uBPg(x — 7Cx)]
— [Pe(y - 7Cy) - pBP:(y - 7Cy)]
~AAPg[Pe(y - 7Cy) — uBPe(y - 7Cy)] ||
= ||(I = L) [P (x - TCx) — uBPg(x - 7Cx)]
—(I-AA)[Pe(y - 7Cy) - uBPe(y - Cy)] ||
< || [Pe(x - 7Cx) = uBPe(x - 7Cx)] - [Pe(y - 7Cy) — uBPe(y - TCy)] |
= || (I = uB) [Pe(x - 7Cx)] = (I - uB) [Pe(y - 7Cy)] |
< ||Pe(x = 7Cx) = Pe(y — 7Cy) ||
< |[(x = 7Cx) = (y - 7Cy) |
= |1 =7C)(x) - (I - 7C) (y) |

< flx-yll-
(3.7)
This shows that G : E — E is a nonexpansive mapping. O

Throughout this paper, the set of fixed points of the mapping G is denoted by Y.
Now, we are ready to proof our main results in this paper.
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Theorem 3.3. Let E be a nonempty, closed, convex subset of a real Hilbert space H. Let the mapping
A,B,C : E — H be a-inverse-strongly monotone, p-inverse-strongly monotone, and y-inverse-
strongly monotone, respectively. Let S be a nonexpansive mapping of E into itself such that F(S) N
Y #0. Let f be a contraction of H into itself and given x1 € H arbitrarily and {x,} is generated by

zy = Pp(x, — 7Cxy),
Yn = Pe(z, — uBzy), (3.8)
Xn+l = ‘an(xn) + ﬂnxn + YnSPE (]/n - -)LA]/n)/ n2z 0/

where X € (0,2a), p € (0,2B), T € (0,2y), and {an}, {Pn}, {yn} are three sequences in [0, 1] such
that

(1) an"‘ﬂn"‘}/n = 1/
(ii) im, o, = 0and X774 ay = 00,

(iii) 0 < liminf, , B, < limsup, B, <1.

Then, {x,} converges strongly to x € F(S) NT, where X = Pr(s)rr f (x) and (X,y, z) is a solution of
problem (1.9), where

(3.9)

Proof. Let x* € F(S) NI'. Then, x* = Sx* and x* = Gx*, that is,

x* = Pg{Pg[Pp(x* — 7Cx*) — uBPg(x* — TCx*)] — AAPg [Pe(x* — TCx*) — uBPg(x* — 7Cx")] }.
(3.10)

Putx* = Pe(y*-AAy*) and t, = Pe(y,—AAy,). Then, x* = Pg[P(z*—puBz*)-ANAPg(z*—puBz*)]
implies that y* = Pg(z" — uBz*), where z* = Pg(x* = 7Cx*). Since I =AA, I — uB and I - 7C are
nonexpansive mappings. We obtain that
ltn = x"[| = [| P (yn = AAyn) - x°||

= [1Pe(yn = A Ayn) - Pe(y” - 2Ay") |

< [ (yn = AAyn) - (v* - 24y)| (3.11)

= || (I - XAy — (I - XAy

< Myn -7l

= Iy = Pe(z" =)

— 1Pe (20— pBzy) ~ Pe (=" — uB=")|




Discrete Dynamics in Nature and Society 9

<|[(1 - puB)zu — (I - uB)z"

<llzn =27l
(3.12)
1zn = 2*|| = || Pe(xn = 7Cxn) — Pe(x" — 7Cx")||
< (en = 7Cxn) — (x" = 7CxT) ||
(3.13)
= (I -7C)xp — (I - TC)x"||
< lxn = x|
Substituting (3.13) into (3.12), we have
I = X" < llxn — 7, (3.14)
and by (3.11) we also have
lyn =yl < ll2cw = x| (3.15)

Since Xp+1 = Ay f () + PuXn + YuSt, and by Lemma 2.2, we compute

%01 = x| = ||@nf (Xu) + Buxn + YuStn — x*||
[l (f (xn) = X7) + Bu(n = X*) + ¥ (St — x7) |
0t | f () = x| + Bl = x|+ yull St — 7

IN Il

IN

| £ (en) = x| + Bull2ew = 7|l + Yulltn — x|

IN

| f(xn) = %" || + Bull2tn = x| + Yullxn — 7
| £ (26n) = x* || + (1 = @) [l — x|

| f () = f(x") + f(x") ="
< an|| f(xn) = )| + | f(x7) - x*

< Kl = x|+ [ £ (%) = x| + (1= @)l — x°]

+ (1= ap) |2y — x*|

+ (1= an)||x, — x*|
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= (ctuk + (1 = atn))l|20n = x"|| + etn ]| f (x) = x*

= (1 - an(1 = k))llxn = x| + an[| £ (") = 7|

lre) -l

= (L= (1= k)l = I+ a1 = )T

(3.16)
By induction, we get
net = %' < M, (317)

where M = max{||xo — x*|| + (1/(1 - k))|| f(x*) = x*||}, n > 0. Therefore, {x,} is bounded.
Consequently, by (3.11), (3.12) and (3.13), the sequences {t,}, {St.}, {vn}, {Ayn}, {24}, {Bzn},
{Cx,}, and {f(x,)} are also bounded. Also, we observe that
zne1 = znll = |Pe(xns1 = TCxns1) = Pe(xtn — 7Coxn) ||
< = 7C)xpn = (I = 7C) x| (3.18)
< lxna1 = xall,
ltns1 = tall = || Pe (Yns1 — AAYni1) = Pe(yn — LAya) ||

< | a1 = AAYwi1) = (v = LAn) |

= [|(T = LA) Y1 = (T = LA)ya|

< N1y = vl (319)

= ||Pe(zni1 = uBzns1) = Pe(zn — pBza) ||

< ||Zn+1 - Zn“

< ||xn+1 - xn”-
Let xp1 = (1 = Bun)wy + Puxy. Thus, we get

_ Xn+l — ﬁnxn _ “nf(xn) + YnSPC(yn - -)‘nAyn) _ apu+ YnStn
i 1- B, ~ T 1-B,

(3.20)
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It follows that

“n+1f(xn+1) + Yn+15tn+1 _ anf(xn) + YnStn
1- ﬂn+1 1- ﬁn

_ an+1f(xn+l) + Yn+15tn+1 _ an+1f(xn) " “n+1f(xn) _ “nf(xn) _ YnStn
1- ﬂn+1 1- ﬂn+1 1- ﬁn+1 1- ﬂn+1 1- ﬂn 1- ﬂn

Wns1 — Wy =

Xl Al an Yns1Stue1  YuSta
(P = F0) +( )+ st o

_1 .B+ 1_,ﬁn+1 1_,611
“n+1 Anvl ay
T (F o) = ) + (T2 = 72 ) )

n Yn+lStn+1 _ Yn+lStn " Yn+15tn _ YnStn
1- ﬂn+1 1- ﬂn+1 1- ﬁn+1 1- ﬂn

- T G - F) + (125 - 25 ) o

12511 (St"”_St"H(lfn[Zﬂ ) 1Inﬁn>5t"

an+1 T (o) — £ ) + (1?;;1_1 ﬂn)f( *n)
+<1f"[;;1 - ﬁn)St 1In/;l+1(5t"”_ St,)

a"” = (f Gont) = fGa) + ( "‘TZH lfnﬁn) e+ 510)
+1Y7;l+1 (Stus1 — Stn).

(3.21)

Combining (3.19) and (3.21), we obtain

||wn+1—wn||—||xn+1—xn||—‘ P o) = f ) + | 25 _1f—nﬁn|”f o)+ St
‘1 Yﬁl IStuer = Stall = 2ns1 — X
< ‘lf—ﬁll R e
‘1”;; st = bl = lne1 =
< u—ﬁll Kl 2ns1 = xall + 1?;;1 i




12 Discrete Dynamics in Nature and Society

1
+ ‘ 1 Irzm X1 = Xl = [[Xne1 = Xl
[ ) il Ay
= | ————|k||xpe1 — X0 + - X,) + St
2l =l | 25— ) St
Yn+1 — 1+ ﬁn+1
+ | —————|||xns1 — x
1 _ﬂm—l ” n+1 n”
[ ) L FS| Ay
= | ———|kl||xp1 — x0|| + - x,) + St
; B =+ | - 7o)+t
|22 = .
1- ,ﬁn+1
(3.22)
This together with (i), (ii), and (iii) implies that
lim sup(||ewns1 = wall = [|xn1 = xal) < 0. (3.23)
n— oo
Hence, by Lemma 2.3, we have
lim ||w, — x,|| = 0. (3.24)
n— oo
Consequently,
nlilrc}o“xnﬂ —xn|| = nlgrgo(l - ﬂn)“wn - x| =0. (3.25)

From (3.18) and (3.19), we also have ||z,41 — zZa|| = Olltns1 — ta]l — O and ||yps1 — yul| — O as
n — oo. Since

X1 = Xn = On f (Xn) + PnXn + YnStn = Xn = o (f (Xn) = Xn) + ¥n(Sty — Xn), (3.26)
it follows by (ii) and (3.25) that

lim ||x,, — St,|| = 0. (3.27)
n— oo
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Since x* € F(S) NI, from (3.15) and Lemma 2.2, we get

%1 = X[ = || @nf (n) + Bun + yuSta — x*||°
< @l f(n) = |17 + Bullxn = P + yall St - 211
< a1 £ ) = x|+ Bullx = %72 + Yl — 27|
= || £ (xn) = || + Bullxn = x*|* + yu| PE (yn = VAya) = Pe(y* = AAy") ||
<yl f(en) = 2|17 + Bulln = I + 1l (v = VAwa) = (v = 24y ||°
= | f () = 12 + Bullxa = 1P + Y| (i = ) = XAy - Ay

= || f (xn) = x| + Bullxn — x|

Y[l = v 1P =20 - v, Ay = Ay') + 22| Ay, - Ay
< | f (@) = x| + ullxn - x|

| lyn = v |I” - 20al| Aya - Ay*|I* + 22| Ay, - Ay*|]
= | f Gen) = 2" + Bulln = I + 3l = v [P + 1A - 200 | Ay - Ay* ]
<t £ o) = 2|+ Bl = 1P+ pa 1 = 2712 + XA = 20)[| Ay — Ay* 7]
= || £ Gea) = %P + Ballxtn = X717 + yallxw = 71 + 1A (4 - 20) || Ay — Ay* ||
= dta| f () - "

= || f (xn) = 2|7 + (1= @) %0 — x| + yu (A = 20) || Ay — Ay*|)?

24 (Bu + 1) 1% = [P + yud (L = 20) | Ay — AY* )

< ap||f (xn) - x"‘||2 + |l — x*|* + Yud(A = 2a) || Ay - Ay*||2.
(3.28)

Therefore, we have

k(A= 20)[| Ay = Ay P < @l £ Gen) = 27+ ew = 1P = s = x|

2
= || f(xn) = X*||7 + ([locn = X7 + [0 — X7])
I | ’ (3.29)
x (llocn = x| = [[2cne1 — x|

2
< au || f Cen) = 2|7+ (Ul = x| + [l2cws1 = 7[00 = 2.

From (ii), (iii), and ||xp+1 — X4|| — 0,as n — oo, we get ||Ay, — Ay*|| — Oasn — oo.
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Since x*

2
lln 1 = x|l
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€ F(S)NY, from (3.11) and Lemma 2.2, we get

= [l f (en) + Pun + yuStn - x°|°

< at || £ () = |17+ Bullacn = x| + yalltn — x|

< | f(en) = 2|7+ Bullxn = 1P+ yallyn — 7|

=ty || £ () = X" ||* + Bullxtn = x"|* + ¥ || Pe (20 - pBzn) - Pe(2" - pBz")||?
< a1 f () = %[> + Bullxn = x*I1” + Yul| (20 = pB22) = (2 - uB2)||?

L) = 5| 4 Bl = P4 il (2 - =) = (B2, - wB=")

< | f o) = %1 + Bullcn = 51 + Y[z = 21 + (. ~ 28) | Bzo — BZ"IF|

< || f(n) = x|+ 11200 = ¥ + yupt (1 = 2B) | Bzo — B2*||.
(3.30)

Thus, we also have

~Yutt (4 = 2B)1Bzn = B2 |” < || £ (xn) = || + 120 = "7 = Ifter = 7]

= || £ (o) = || + (e = x| + |21 = x°) (331)

X ([loen = 27 = [l2ens1 = x7])

2
< at | fen) = 7|7+ (e = 7N + N2 = 27 D120 = 2me |-

By again (ii), (iii), and (3.25), we also get ||Bz, — Bz*|| — Oasn — oo.

Letx* €

2
[l = x|

F(S)NY; again from (3.12), (3.13) and Lemma 2.2, we get

= ||t f (xu) + Budn + ¥uSta — x*||*

< || £ (en) = x*||7 + Bullxn — ¥ + Yalltn — ¥

< at | f () = |+ Bl = %7 + yullza = 27

< £ () = |+ Bl = X + yall (e = 7Cx2) = (" = 7

< aty | () = |17 + Bullxn = x" | + [len ~ x|+ (T - 2y)|ICxp - Cx*||2]

< || £ (en) = x*||” + Nloen = x*|* + Y7 (7 = 2) | Cxys = Cx* ||~
(3.32)
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Again, we have
* * 2 * *
~puT (7 = 2911t = Ca™|* < et | £ () = x|+ llatw = 2°11% = [lamer = 27|

2
= || f () = X717+ (120 = 27|+ (1200 = 27])
£ =] . o)

x ([loen = 2" = [12p1 = x7[])
< “n”f(xn) - x)k”2 + (”xn - x*H + ||xn+1 - X*“)”xn - xn+1“‘
Similarly again by (ii), (iii), and ||x, — x441]| — 0asn — oo, and from (3.33), we also that
[[Cx, — Cx*|| — O.

On the other hand, we compute that

|z — 2*|1* = | Pe(x, — TCx,) — Pg(x* — 7Cx*) ||
< (20 = TCxp) = (x* = 7Cx"), Pe(xy — TCxp) — Pe(x™ — 7Cx"))

= {(xp, - TCxy) — (x* = 7Cx™), 2, — 2")
1 * * *
= 5 [ = 7Cxn) = (" = 7Cx) P + 1z - 2
[l = TCx) = (x* = 7Cx") = (2 = 2]

1 * *
= 5 [10 =70z = (L= 7O)x I + |z = 2*IF

(3.34)
Il = 7Cx) = (x* = 7Cx) = (24— )P
1
< 5 [Ilen = 212 + 1120 = 2712 = 11w = 20) = 7(Cxa = Cx) = (2" = 2P
1 * * * * *
= 5 [llen = 1P + 1120 = 2P = 11t = za) = (6" = 2] = 7(Cax = Cx) ]
1 %112 *(12 * *\ (12
= 5 [l = P+ llzn = 21 = 1w = 20) = (¢ = 2]
+27((x, — z) — (x* = 2*),Cx,, — Cx*) — 7%||Cx, — Cx*||2].
So, we obtain
1z = 271 <l = 217 = 11(on = 2a) = (6" = 2
(3.35)

+27((xp — z) — (x* = 2*),Cx, — Cx*) — 7%||Cx,, — Cx*||2.
Hence, by (3.12), it follows that

2e1 = 2|1 = | @t f (Xn) + BuXn + YuStn — x*||°

2
< || f () = X*||° + Bullxn — X717 + ¥l St — x|
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< k * 2 * 2 * 2
< ankllxn = x*||7 + Bullxn — x*|° + yulltn — 7|
< ankl|xn = x* | + Bullxcn — x*I° + yullzn — 2°I
< k *112 %12 * (12 * *\ (|2
< ank||xn = X*||7 + Bullxn — X717 + Yallxn = X¥||° = yull (0cn = 2n) — (x™ = 27) ||
+ 27y ((xp — 24) — (x* = 27),Cx, — Cx™) — szn||an - Cx*||2
_ k *112 * (12 * *\ (12
=ay “xn - X || +(1- ‘xn)”xn - X ” _Yn“(xn - zy) - (x" -2z )”
+ 27y ((xp — 2n) — (x* = 27),Cx, — Cx™) — szn||an - Cx*||2
*112 * (12 * *\ (12
< ank||xn — x*||7 + (|30 = X[ = ¥l (n = 20) = (2" = 27)|
+ 27Y ((xp — 24) — (x* = 2),Cx, — Cx™)
*112 * (12 * *\ (12
< ank“xn - X ” + ”xn - X ” _Yn”(xn —zp) - (X" -z )“
+ 27V | (0 — zn) — (x7 = 2) [[[|Cxp = Cx7|],

(3.36)

which implies that

2 2 2 2
Vall(n = 20) = (&7 = 2)I7 < atnklxn = 27|17 + |30 = X717 = X002 = X7|

+27Yu || (X0 = 20) — (x* = 2°) ||| Cxy, = Cx*||
(3.37)
< aykl|xpe — x*||2 + 27| (06 — 20) — (x* = 2°)||[|Cxpy — Cx*||

110 = Xt | (120 = X[ + (X002 = X7)).-

By (ii), (iii), [|xy — xps1ll — 0, and [|Cx, - Cx*|| — O asn — oo, from (3.37) and we get
[(xp = zu) — (x* = 2*)]| = 0asn — oo. Now, observe that

(20 = ta) + (x* = 217 = || 20 = Pe(yn - AAya) + Pe(y* - 2Ay") - 2|
= ||zn = Pe(yn — LAyn) + Pe(y" - LAy")
~2* + uBz, — uBz, + uBz" — uBz*||’
= |20 — pBzn = (2" - pBz")

~[Pe(yn = \Ayn) = Pe(y* - MAy*)] + p(Bz, - Bz") ||’
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< ||zn - uBzn = (=" = pBz") = [Pe(yn — LAya) - Pe(y" = AAy")] |

+2u(Bz, - Bz*,z, — uBz, — (z* - uBz")
~[Pe(yn = XAyn) - Pe(y” = AAy")] + p(Bz, - Bz"))

= |lzn = Bzn = (=" = pBz") = [Pe(yn = LAya) - Pe(y" = AAy")] |
+2u(Bz, — Bz", (zp — ty) + (x* = 2%))

< 1z - Bz, - (=" - uB=")
= [1Pe (yn = AnAya) = Pe(y" = LuAy) |

+2u||Bz, — Bz"|||[(zn — tn) + (x* = 2")||
< |20 = uBzn = (=" - uB=") |’
* * 2
— ||SPe(yn = AuAyn) = SPe(y* - L Ay") ||
+2u||Bz, — Bz*|||[(zn — tn) + (x* = 2")||

2 |ISt, - Sx*|?

= ||zn - pBzn = (" - pBz")
+2p||Bz, — Bz"|||[(zn = tn) + (x* = 27)||

< ||zn — pBzy — (2* — uBz*) — (St, — x*)||
(2 = B2~ (2 - B2 + 1St~ ')
+24||Bzy, = Bz*||[|(zn — tn) + (x* = 27)]|.

(3.38)

Since ||St, —x,|| — O, ||(x,—z,) — (x*=2z*)|| — 0,and ||Bz,,— Bz*|| — 0,as n — oo, it follows
that

l(zn—tn) +(x*=2")|| = 0, asn — oo. (3.39)
Since
St = tull < 1St = Xnll + | (xn = 2n) = (X" = 2) [ + [[(zn = tn) + (x* = 27) |, (3.40)
we obtain

lim ||ty — ta| = 0. (3.41)
n—oo
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Next, we show that

lim sup(f(X) =X, x, —x) <0, (3.42)

n— oo

where X = Pr(s)ny f (X).
Indeed, since {t,} and {St,} are two bounded sequence in E, we can choose a
subsequence {t,,} of {t,} such that t,, of t, such that t,, — z € E and

limsup(f(x) - X, St, - X) = l_li_)m (f(x) - X, Sty — x). (3.43)

n—oo

Since lim,,_, ,||St, — ta|| = 0, we obtain St,, — zasi — oo. Now, we claim that z € F(S)N'Y.
First by Lemma 2.5, it is easy to see that z € F(S).
Since ||St, — t,]| — O, ||St, — x4]| — 0, and

[tn — xull = ||tn — Stn + Sty — x|
< ”tn - Stn” + ”Stn - xn” (344)

=[Sty = tall + [|Stn — xall,

we conclude that ||t, — x,|| — 0 as n — oo. Furthermore, by Lemma 3.2 that G is
nonexpansive, then

ltn = G(t)|l = IG(xn) — G(ta) |l
(3.45)
< ”xn - tn“'

Thus lim,, ., o ||t, — G(t,)|| = 0. According to Lemma 2.5, we obtain z € Y. Therefore, there
holds z € F(S)NY.
On the other hand, it follows from (2.2) that

limsup(f(X) - X, x, — X) = limsup (f(x) - x, St,, — x)

n— oo n— oo

= lim (f(%) -, Sty, - %) .46)

=(f(®)-%,z-%)
<0.
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Finally, we show that x,, — X, and by (3.14) that

| B _Enz = ”“nf(xn) + ﬂnxn + YnStn _Ellz
< |1Bu(xn = %) + ¥u(Sta = D) || + 2 (f (x0)) = X, X1 — X)
<IBn(otn = X) + Yu(Sta = D) ||” + 20, f () = f(X), Xps1 - X)
+ 20, (f(X) = X, X1 — X)

< |Balla = FIP + yall St = FI] + 2000 £ (60) = £ )|l e1 - X

o (347)
+ 2“n<f(x) — X, Xn+1 — x>
—n2 —2 — —
< [Bulea —F17 + pallts ~ 7] + 20, ~ 101 -
+ 2“n<f(§) - Er Xn+l — E>
< (1= @)l = T + @l ~ TP + e 1)
+ 2“n<f(y) - EI Xn+l — E>
which implies that
_ 21-a)a > _ a? _
2 n 2 n 2
_xP< (1= —x*+ -
a3 < (1= 22205 Y o, P 4 2, - 5]
2y . _ (3.48)
+ T aa, (f(x) =X, xp41 = X)

=1 -0,)|xp-%|*+6,, n>0,

where o, = 2(1-a)a,)/1-aa, and 6, = a?/ (1-aa,)||x,—x|*+2a, / (1-aa,){ f (X) =X, Xps1-X).
Therefore, by (3.46) and Lemma 2.4, we get that {x,} converges to X, where x = Prs)ny f (X).
This completes the proof. O

Setting A = B = C, we obtain the following corollary.

Corollary 3.4. Let E be a nonempty, closed, convex subset of a real Hilbert space H. Let the mapping
A : E — H be a-inverse-strongly monotone. Let S be a nonexpansive mapping of E into itself such
that F(S) N'Y #0. Let f be a contraction of H into itself and given xy € H arbitrarily and {x,} is
generated by

z, = Pp(x, — TAXy),
Yn = Pe(2n — pAz,), (3.49)

Xn+l = “nf(xn) + ﬁnxn + YnSPE (yn - )‘Ayn)/ n>1,

where A, u, T € (0,2a) and {a,}, {Pu}, {yn} are three sequences in [0,1] such that
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(1) an+ﬁn+Yn = 1/

(ii) limy, o ay, =0and X5, ay = oo,
(iii) 0 <liminf, o B, <limsup, ,  fn <1.
Then, {x,} converges strongly to x € F(S) N'Y, where X = Pr(s)ny f (x) and (X,y, z) is a solution of

problem (1.10), where

7 = Pe(Z - pAz),
(3.50)
Z = Pp(x - TAX).

Setting A = B = 0 (the zero operators), we obtain the following corollary for solving
the foxed points problem and the classical variational inequality problems.

Corollary 3.5. Let E be a nonempty, closed, convex subset of a real Hilbert space H. Let the mapping
A : E — H be a-inverse-strongly monotone. Let S be a nonexpansive mapping of E into itself such
that F(S) N VI(A,E)#0. Let f be a contraction of H into itself and given xo € H arbitrarily and
{xn} is generated by

Xn+1 = An f (X3) + PnXn + ¥nSPe(xy — AAX,), n>1, (3.51)

where A € (0,2a) and {an}, {Pn}, {yn} are three sequences in [0, 1] such that

(1) an"‘ﬂn"‘}/n = 1/
(ii) im, o, = 0and X7, ay, = 00,

(iii) 0 < liminf, o B, < limsup, , B, < 1.

Then, {x,} converges strongly to X € F(S) N VI(A, E), where X = Pr(synvi(a,r) f (X).

4. Some Applications

We recall that a mapping T : E — E is called strictly pseudocontractive if there exists some k
with 0 < k < 1 such that

|Tx = Ty|)* < ||x - y||* + k||{ - T)x - (I - T)y|*, Vx,y€E. (4.1)

For recent convergence result for strictly pseudocontractive mappings, put A = I —T. Then,
we have

1= Ay - (1 - Ay < [l - I + Kl Ax - Ay @2)
On the other hand,

1T = A)x = (T = Ay|” < lx -yl + [Ax - Ay|* - 2(x —y, Ax - Ay).  (43)
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Hence, we have
1-k >
(x-y,Ax - Ay) > T”Ax—Ay” : (4.4)

Consequently, if T : E — E is a strictly pseudocontractive mapping with constant k, then the
mapping A = I - T is (1 — k) /2-inverse-strongly monotone.
Setting A=1-T,B=1-V,and C =1 - W, we obtain the following corollary.

Theorem 4.1. Let E be a nonempty, closed, convex subset of a real Hilbert space H. Let T,V,W
be strictly pseudocontractive mappings with constant k of C into itself, and let S be a nonexpansive
mapping of E into itself such that F(S) N'Y #0. Let f be a contraction of H into itself and given
xo € H arbitrarily and {x,} is generated by

zy={U-7T)x, +TWxy,
Yn=(I—p)zZn+uVzn, (4.5)

X1 = O f (Xn) + BuXn + 2 S((1 = Ny + ATy,), n>1,

where A € (0,2a), p € (0,2p), and T € (0,2y) and {a,}, {Pn}, {yn} are three sequences in [0,1]
such that
(1) an"'ﬂn"'Yn = 1/
(ii) imy o @y = 0and 3,77 a, = o,
(iii) 0 < liminf, , o B, <limsup, , B <1

Then {x,} converges strongly to x € F(S) NY, where X = Prsyny f (X) and (X, Y, z) is a solution of
problem (1.9), where

(4.6)
z = Pp(x — 7Cx)
Proof. Since A=1-T,B=1-V,and C =1 - W, we have
Pe(x, —1Cxy,) = (I - T)x, + TWxy,
Pg(yn— AMAyn) = (I = Ny + ATy, 4.7)
Pp(zy — puBzy) = (I — p)zn + uVzy,.
Thus, the conclusion follows immediately from Theorem 3.3. O

If f(x) = xo, forall x € E,and T = V = W in Theorem 4.1, we obtain the following
corollary.
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Corollary 4.2. Let E be a nonempty, closed, convex subset of a real Hilbert space H. Let T be strictly
pseudocontractive mappings with constant k of C into itself, and let S be a nonexpansive mapping of
E into itself such that F(S) N'Y #0. Given xo € H arbitrarily and {x,} is generated by

zy = -7)xy +TTxy,

Yn=(T=p)zn +uTz,, (4.8)
X1 = AnX0 + PnXn + 12S((1 = Vyn + ATy,), n>1,

where A € (0,2a), p € (0,2p), and T € (0,2y) and {a,}, {Bn}, {yn} are three sequences in [0,1]
such that

“n+ﬁn+}"n=1/

o]
lim a,, = 0 and Zan=oo, (4.9)
n—oo n:1 .

0 <liminf g, < limsup f, < 1.

n— oo

Then, {x,} converges strongly to x € F(S) N'Y, where x = Prsynyx and (x,y,z) is a solution of
problem (1.10), where

(4.10)
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