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Fuzzy set theory of fated filters in R0-algebras is considered. A characterization of a fuzzy-fated
filter is established, and conditions for a fuzzy filter to be a fuzzy-fated filter are provided. The
notion of an (∈,∈ ∨q)-fuzzy-fated filter is introduced. Characterizations of an (∈,∈ ∨q)-fuzzy-fated
filter are provided. Implication-based fuzzy-fated filters are discussed.

1. Introduction

One important task of artificial intelligence is to make the computers simulate beings in
dealing with certainty and uncertainty in information. Logic appears in a “sacred” (resp.,
a “profane”) form which is dominant in proof theory (resp., model theory). The role of
logic in mathematics and computer science is twofold—as a tool for applications in both
areas—and a technique for laying the foundations. Nonclassical logic including many-valued
logic and fuzzy logic, takes the advantage of classical logic to handle information with
various facets of uncertainty (see [1] for generalized theory of uncertainty), such as fuzziness
randomness and Nonclassical logic has become a formal and useful tool for computer science
to deal with fuzzy information and uncertain information. Among all kinds of uncertainties,
incomparability is an important one which can be encountered in our life. The concept of
R0-algebras was first introduced by Wang in [2] by providing an algebraic proof of the
completeness theorem of a formal deductive system [3]. Obviously, R0 -algebras are different
from the BL-algebras. Jun and Lianzhen [4] studied (fated) filters of R0-algebras. Lianzhen
and Kaitai [5] discussed the fuzzy set theory of filters in R0-algebras. The algebraic structure
of set theories dealing with uncertainties has been studied by some authors. The most
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appropriate theory for dealing with uncertainties is the theory of fuzzy sets developed by
Zadeh [6]. Murali [7] proposed a definition of a fuzzy point belonging to fuzzy subset under
a natural equivalence on fuzzy subset. The idea of quasicoincidence of a fuzzy point with
a fuzzy set, which is mentioned in [8], played a vital role to generate some different types
of fuzzy subsets. It is worth pointing out that Bhakat and Das [9, 10] initiated the concepts
of (α, β)-fuzzy subgroups by using the “belongs to” relation (∈) and “quasicoincident with”
relation (q) between a fuzzy point and a fuzzy subgroup and introduced the concept of an
(∈,∈ ∨q)-fuzzy subgroup. In particular, an (∈,∈ ∨q)-fuzzy subgroup is an important and
useful generalization of Rosenfeld’s fuzzy subgroup. As a generalization of the notion of
fuzzy filters in R0-algebras, Ma et al. [11] dealt with the notion of (∈,∈ ∨q)-fuzzy filters in
R0-algebras.

In this paper, we deal with the fuzzy set theory of fated filters in R0-algebras. We
provide conditions for a fuzzy filter to be a fuzzy-fated filter. We also introduce the notion
of (∈,∈ ∨q)-fuzzy-fated filters and investigate related properties. We establish a relation
between an (∈,∈ ∨q)-fuzzy filter and an (∈,∈ ∨q)-fuzzy-fated filter and provide conditions
for an (∈,∈ ∨q)-fuzzy filter to be an (∈,∈ ∨q)-fuzzy-fated filter. We deal with characterizations
of an (∈,∈ ∨q)-fuzzy-fated filter. Finally, we discuss the implication-based fuzzy-fated filters
of an R0-algebra.

2. Preliminaries

Let L be a bounded distributive lattice with order-reversing involution ¬ and a binary
operation → , then (L,∧,∨,¬, → ) is called an R0-algebra (see [2]) if it satisfies the following
axioms:

(R1) x → y = ¬y → ¬x,
(R2) 1 → x = x,

(R3) (y → z) ∧ ((x → y) → (x → z)) = y → z,

(R4) x → (y → z) = y → (x → z),

(R5) x → (y ∨ z) = (x → y) ∨ (x → z),

(R6) (x → y) ∨ ((x → y) → (¬x ∨ y)) = 1.

Let L be an R0-algebra. For any x, y ∈ L, we define x � y = ¬(x → ¬y) and x ⊕ y =
¬x → y. It is proved that � and ⊕ are commutative, associative, and x ⊕ y = ¬(¬x � ¬y), and
(L,∧,∨,�, → , 0, 1) is a residuated lattice.

For any elements x, y, and z of an R0-algebra L, we have the following properties (see
[12]):

(a1) x ≤ y if and only if x → y = 1,

(a2) x ≤ y → x,

(a3) ¬x = x → 0,

(a4) (x → y) ∨ (y → x) = 1,

(a5) x ≤ y implies y → z ≤ x → z,

(a6) x ≤ y implies z → x ≤ z → y,

(a7) ((x → y) → y) → y = x → y,
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(a8) x ∨ y = ((x → y) → y) ∧ ((y → x) → x),

(a9) x � ¬x = 0 and x ⊕ ¬x = 1,

(a10) x � y ≤ x ∧ y and x � (x → y) ≤ x ∧ y,

(a11) (x � y) → z = x → (y → z),

(a12) x ≤ y → (x � y),

(a13) x � y ≤ z if and only if x ≤ y → z,

(a14) x ≤ y implies x � z ≤ y � z,

(a15) x → y ≤ (y → z) → (x → z),

(a16) (x → y) � (y → z) ≤ x → z.

A nonempty subset A of an R0-algebra L is called a filter of L if it satisfies the following two
conditions:

(b1) 1 ∈ A,

(b2) (∀x ∈ A)(∀y ∈ L)(x → y ∈ A =⇒ y ∈ A).

It can be easily verified that a nonempty subsetA of an R0-algebra L is a filter of L if and only
if it satisfies the following conditions:

(b3) (∀x, y ∈ A) (x � y ∈ A),

(b4) (∀y ∈ L) (∀x ∈ A) (x ≤ y ⇒ y ∈ A).

Definition 2.1. A fuzzy subset μ of an R0-algebra L is called a fuzzy filter of L if it satisfies:

(c1) (∀x, y ∈ L)(μ(x � y) ≥ min{μ(x), μ(y)}),
(c2) μ is order preserving, that is, (∀x, y ∈ L)(x ≤ y ⇒ μ(x) ≤ μ(y)).

Denote by F(L) the set of all filters of L, and by FF(L) the set of all fuzzy filters of L.

Theorem 2.2. A fuzzy subset μ of an R0-algebra L is a fuzzy filter of L if and only if it satisfies the
following:

(c3) (∀x ∈ L) (μ(1) ≥ μ(x)),

(c4) (∀x, y ∈ L) (μ(y) ≥ min{μ(x → y), μ(x)}).

For any fuzzy subset μ of L and t ∈ (0, 1], the set
U(μ; t) = {x ∈ L | μ(x) ≥ t} is called a level subset of L. It is well known that a fuzzy

subset μ of L is a fuzzy filter of L if and only if the nonempty level subset U(μ; t), t ∈ (0, 1],
of μ is a filter of L.

A fuzzy subset μ of a set L of the form

μ
(
y
)
:=

⎧
⎨

⎩

t ∈ (0, 1] if y = x,

0 if y /=x,
(2.1)

is said to be a fuzzy point with support x and value t and is denoted by (x, t).
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3. Fuzzy-Fated Filters

In what follows, L is an R0-algebra unless otherwise specified. In [4], the notion of a fated
filter of L is introduced as follows.

A nonempty subset A of L is called a fated filter of L (see [4]) if it satisfies (b1) and

(∀x, y ∈ L
)
(∀a ∈ A)

(
a −→ ((x −→ y

) −→ x
) ∈ A =⇒ x ∈ A

)
. (3.1)

Denote by FF(L) the set of all fated filters of L. Note that FF(L) is a complete lattice
under the set inclusionwith the largest element L and the least element {1}. Now, we consider
the fuzzy form of a fated filter of L.

Lemma 3.1 (see [4]). A filter F of L is fated if and only if the following assertion is valid:

(∀x, y, z ∈ L
) (

x −→ (y −→ z
) ∈ F, x −→ y ∈ F =⇒ x −→ z ∈ F

)
. (3.2)

Lemma 3.2 (see [4]). A filter F of L is fated if and only if the following assertion is valid:

(∀x, y ∈ L
) ((

x −→ y
) −→ x ∈ F =⇒ x ∈ F

)
. (3.3)

Definition 3.3. A fuzzy subset μ of L is called a fuzzy-fated filter of L if it satisfies the following
assertion:

(∀t ∈ [0, 1])
(
U
(
μ; t
) ∈ FF(L) ∪ {∅}). (3.4)

Denote by FFF(L) the set of all fuzzy-fated filters of L.

Example 3.4. Let L = {0, a, b, c, d, 1} be a set with Hasse diagram and Cayley tables which are
given in Table 1, then (L,∧,∨,¬, → , 0, 1) is an R0-algebra (see [5]), where x ∧ y = min{x, y}
and x ∨ y = max{x, y}. Define a fuzzy subset μ of L by

μ : L −→ [0, 1], x �−→
⎧
⎨

⎩

0.7 if x ∈ {c, d, 1},
0.2 otherwise.

(3.5)

Then

U
(
μ; t
)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∅ if 0.7 < t ≤ 1,

{c, d, 1} if 0.2 < t ≤ 0.7,

L if 0 ≤ t ≤ 0.2,

(3.6)

which is a fated filter of L. Therefore, μ is a fuzzy-fated filter of L.

We provide a characterization of a fuzzy-fated filter.
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Table 1: Hasse diagram and Cayley tables.

0

a

b

c

d

1 x

0 1
a d

b c
c b

d a
1 0

0 a b c d 1

0 1 1 1 1 1 1
a d 1 1 1 1 1

b c c 1 1 1 1
c b b b 1 1 1
d a a b c 1 1
1 0 a b c d 1

¬x →

Theorem 3.5. For a fuzzy subset μ of L, μ ∈ FFF(L) if and only if it satisfies the following
conditions:

(1) (∀x ∈ L) (μ(1) ≥ μ(x)),

(2) (∀x, a, y ∈ L) (μ(x) ≥ min{μ(a → ((x → y) → x)), μ(a)}).

Proof. Suppose that μ is a fuzzy-fated filter of L. For any x ∈ L, let μ(x) = t, then x ∈ U(μ; t),
that is, U(μ; t)/= ∅, and so U(μ; t) is a fated filter of L. Thus, 1 ∈ U(μ; t), and hence μ(1) ≥ t =
μ(x) for all x ∈ L. For any x, a, y ∈ L, let

ta := min
{
μ
(
a −→ ((x −→ y

) −→ x
))
, μ(a)

}
. (3.7)

Then a ∈ U(μ; ta) and a → ((x → y) → x) ∈ U(μ; ta). Since U(μ; ta) is a fated filter of L, it
follows from (3.1) that x ∈ U(μ; ta), so that

μ(x) ≥ ta = min
{
μ
(
a −→ ((x −→ y

) −→ x
))
, μ(a)

}, (3.8)

for all x, a, y ∈ L.
Conversely, let μ satisfy two conditions (1) and (2), and let t ∈ [0, 1] be such that

U(μ; t)/= ∅, then there exists x0 ∈ U(μ; t) such that μ(x0) ≥ t. Using (1), we have μ(1) ≥
μ(x0) ≥ t, and so 1 ∈ U(μ; t). Let x, a, y ∈ L be such that a ∈ U(μ; t) and a → ((x → y) →
x) ∈ U(μ; t), then μ(a) ≥ t and μ(a → ((x → y) → x)) ≥ t. It follows from (2) that

μ(x) ≥ min
{
μ
(
a −→ ((x −→ y

) −→ x
))
, μ(a)

} ≥ t, (3.9)

so that x ∈ U(μ; t). Hence, U(μ; t) is a fated filter of L, and therefore μ is a fuzzy-fated filter
of L.

Theorem 3.6. For any fuzzy subset μ of L, one has FFF(L) ⊆ FF(L).

Proof. Let μ be a fuzzy-fated filter of L. Replacing a and x by x and y, respectively, in
Theorem 3.5(2) and using (R2), we have

μ
(
y
) ≥ min

{
μ
(
x −→ ((y −→ y

) −→ y
))
, μ(x)

}

= min
{
μ
(
x −→ (1 −→ y

))
, μ(x)

}

= min
{
μ
(
x −→ y

)
, μ(x)

}
,

(3.10)

for all x, y ∈ L. Using Theorem 2.2, μ is a fuzzy filter of L.
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Table 2: Hasse diagram and Cayley tables.

0

a

b

c

1 x

0 1

a c

b b

c a

1 0

0 a b c 1

0 1 1 1 1 1

a c 1 1 1 1

b b b 1 1 1

c a a b 1 1

1 0 a b c 1

¬x →

The following example shows that the converse of Theorem 3.6 may not be true.

Example 3.7. Let L = {0, a, b, c, 1} be a set with Hasse diagram and Cayley tables which are
given in Table 2, then (L,∧,∨,¬, → , 0, 1) is an R0-algebra (see [5]), where x ∧ y = min{x, y}
and x ∨ y = max{x, y}. Define a fuzzy subset μ of L by

μ : L −→ [0, 1], x �−→
⎧
⎨

⎩

0.6 if x ∈ {c, 1},
0.2 otherwise.

(3.11)

Then μ is a fuzzy filter of L, but it is not a fuzzy-fated filter of L since

μ(b) = 0.2 /≥ 0.6 = min
{
μ(c −→ ((b −→ a) −→ b)), μ(c)

}
. (3.12)

Theorem 3.8. For any fuzzy filter μ of L, the following assertions are equivalent:

(1) μ is a fuzzy-fated filter of L,

(2) μ satisfies the following inequality:

(∀x, y ∈ L
) (

μ(x) ≥ μ
((
x −→ y

) −→ x
))
. (3.13)

Proof. Assume that μ is a fuzzy- fated filter of L. Putting a = 1 in Theorem 3.5(2) and using
(R2) and Theorem 3.5(1), we have

μ(x) ≥ min
{
μ
(
1 −→ ((x −→ y

) −→ x
))
, μ(1)

}

= min
{
μ
((
x −→ y

) −→ x
)
, μ(1)

}

= μ
((
x −→ y

) −→ x
)
,

(3.14)

for all x, y ∈ L.
Conversely, suppose that μ satisfies (3.13), it follows from (c4) that

μ(x) ≥ μ
((
x −→ y

) −→ x
) ≥ min

{
μ
(
a −→ ((x −→ y

) −→ x
))
, μ(a)

}
, (3.15)

for all x, a, y ∈ L, so from Theorem 3.5 that μ is a fuzzy-fated filter of L.
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Theorem 3.9. Let μ be a fuzzy filter of L, then μ ∈ FFF(L) if and only if it satisfies

μ(x −→ z) ≥ min
{
μ
(
x −→ (y −→ z

))
, μ
(
x −→ y

)}
, (3.16)

for all x, y, z ∈ L.

Proof. Assume that μ ∈ FFF(L). If U(μ; t)/= ∅ for all t ∈ [0, 1], then U(μ; t) ∈ FF(L). Suppose
that

μ(x −→ z) < min
{
μ
(
x −→ (y −→ z

))
, μ
(
x −→ y

)}
, (3.17)

for some x, y, z ∈ L, then there exists t ∈ (0, 1] such that

μ(x −→ z) < t ≤ min
{
μ
(
x −→ (y −→ z

))
, μ
(
x −→ y

)}
. (3.18)

It follows that x → (y → z) ∈ U(μ; t) and x → y ∈ U(μ; t), so from Lemma 3.1 that
x → z ∈ U(μ; t), that is, μ(x → z) ≥ t. This is a contradiction, and so μ(x → z) ≥ min{μ(x →
(y → z)), μ(x → y)} for all x, y, z ∈ L.

Conversely, let μ be a fuzzy filter of L that satisfies (3.16). Let t ∈ [0, 1] be such that
U(μ; t)/= ∅, then U(μ; t) ∈ F(L) by Theorem 3.5 in [5]. Assume that x → (y → z) ∈ U(μ; t)
and x → y ∈ U(μ; t) for all x, y, z ∈ L, then μ(x → (y → z)) ≥ t and μ(x → y) ≥ t. Using
(3.16), we have

μ(x −→ z) ≥ min
{
μ
(
x −→ (y −→ z

))
, μ
(
x −→ y

)} ≥ t, (3.19)

and so x → z ∈ U(μ; t). Therefore,U(μ; t) ∈ FF(L), and thus μ is a fuzzy-fated filter of L.

Remark 3.10. Based on Theorem 3.9 and [5, Definition 4.1], we know that the notion of a
fuzzy-fated filter is equivalent to the notion of a fuzzy implicative filter.

4. Fuzzy-Fated Filters Based on Fuzzy Points

For a fuzzy point (x, t) and a fuzzy subset μ of L, Pu and Liu [8] introduced the symbol
(x, t)αμ, where α ∈ {∈, q,∈ ∨q}. We say that

(i) (x, t) belong to μ, denoted by (x, t) ∈ μ if μ(x) ≥ t,

(ii) (x, t) is quasicoincident with μ, denoted by (x, t)qμ, if μ(x) + t > 1,

(iii) (x, t) ∈ ∨qμ if (x, t) ∈ μ or (x, t)qμ,

(iv) (x, t)αμ if (x, t)αμ does not hold for α ∈ {∈, q,∈ ∨q}.

Definition 4.1 (see [11]). A fuzzy subset μ of L is said to be an (∈,∈ ∨q)-fuzzy filter of L if it
satisfies

(1) (x, t) ∈ μ and (y, r) ∈ μ ⇒ (x � y,min{t, r}) ∈ ∨qμ,
(2) (x, t) ∈ μ and x ≤ y ⇒ (y, t) ∈ ∨qμ,

for all x, y ∈ L and t, r ∈ (0, 1].
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Theorem 4.2 (see [11]). A fuzzy subset μ of L is an (∈,∈ ∨q)-fuzzy filter of L if and only if the
following conditions are valid:

(1) (∀x ∈ L) (μ(1) ≥ min{μ(x), 0.5}),
(2) (∀x, y ∈ L) (μ(y) ≥ min{μ(x), μ(x → y), 0.5}).

Definition 4.3. A fuzzy subset μ of L is said to be an (∈,∈ ∨q)-fuzzy-fated filter of L if it satisfies

(1) (x, t) ∈ μ ⇒ (1, t) ∈ ∨ q μ,

(2) (a → ((x → y) → x), t) ∈ μ and (a, r) ∈ μ ⇒ (x,min{t, r}) ∈ ∨qμ,
for all x, a, y ∈ L and t, r ∈ (0, 1].

If a fuzzy subset μ of L satisfies (c3) and Definition 4.3(2), then we say that μ is a strong
(∈,∈ ∨q)-fuzzy-fated filter of L.

Example 4.4. Consider an R0-algebra L = {0, a, b, c, d, 1} which appeared in Example 3.4.
Define a fuzzy subset μ of L by

μ =

(
0 a b c d 1

0.3 0.3 0.3 0.7 0.6 0.8

)

. (4.1)

It is routine to verify that μ is a strong (∈,∈ ∨q)-fuzzy-fated filter of L. A fuzzy subset ν of L
defined by

ν =

(
0 a b c d 1

0.4 0.4 0.4 0.8 0.8 0.7

)

(4.2)

is an (∈,∈ ∨q)-fuzzy-fated filter of L, but it is not a strong (∈,∈ ∨q)-fuzzy-fated filter of L.

Obviously, every strong (∈,∈ ∨q)-fuzzy-fated filter is an (∈,∈ ∨q)-fuzzy-fated filter,
but not converse as seen in Example 4.4.

We provided characterizations of an (∈,∈ ∨q)-fuzzy-fated filter.

Theorem 4.5. A fuzzy subset μ of L is an (∈,∈ ∨q)-fuzzy-fated filter of L if and only if it satisfies the
following inequalities:

(1) (∀x ∈ L) (μ(1) ≥ min{μ(x), 0.5}),
(2) (∀x, a, y ∈ L) (μ(x) ≥ min{μ(a → ((x → y) → x)), μ(a), 0.5}).

Proof. Let μ be an (∈,∈ ∨q)-fuzzy-fated filter of L. Assume that there exists a ∈ L such that
μ(1) < min{μ(a), 0.5}, then μ(1) < t ≤ min{μ(a), 0.5} for some t ∈ (0, 0.5], and so (a, t) ∈ μ. It
follows from Definition 4.3(1) that (1, t) ∈ ∨qμ, that is, (1, t) ∈ μ or (1, t)qμ, so that μ(1) ≥ t or
μ(1) + t > 1. This is a contradiction. Hence, μ(1) ≥ min{μ(x), 0.5} for all x ∈ L. Suppose that
there exist a, b, c ∈ L such that

μ(b) < min
{
μ(a −→ ((b −→ c) −→ b)), μ(a), 0.5

}
, (4.3)
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then μ(b) < tb ≤ min{μ(a → ((b → c) → b)), μ(a), 0.5} for some tb ∈ (0, 0.5]. Thus
(a → ((b → c) → b), tb) ∈ μ and (a, tb) ∈ μ. Using Definition 4.3(2), we have (b, tb) =
(b,min{tb, tb}) ∈ ∨qμ, which implies that μ(b) ≥ tb or μ(b) + tb > 1. This is a contradiction,
and therefore

μ(x) ≥ min
{
μ
(
a −→ ((x −→ y

) −→ x
))
, μ(a), 0.5

}
, (4.4)

for all x, a, y ∈ L. Conversely, let μ be a fuzzy subset of L that satisfies two conditions (1)
and (2). Let x ∈ L and t ∈ (0, 1] be such that (x, t) ∈ μ, then μ(x) ≥ t, which implies from
(1) that μ(1) ≥ min{μ(x), 0.5} ≥ min{t, 0.5}. If t ≤ 0.5, then μ(1) ≥ t, that is, (1, t) ∈ μ. If
t > 0.5, then μ(1) ≥ 0.5 and so μ(1) + t > 0.5 + 0.5 = 1, that is, (1, t)qμ. Hence, (1, t) ∈ ∨qμ. Let
x, a, y ∈ L and t, r ∈ (0, 1] be such that (a → ((x → y) → x), t) ∈ μ and (a, r) ∈ μ, then
μ(a → ((x → y) → x)) ≥ t and μ(a) ≥ r. It follows from (2) that

μ(x) ≥ min
{
μ
(
a −→ ((x −→ y

) −→ x
))
, μ(a), 0.5

}

≥ min{t, r, 0.5}.
(4.5)

If min{t, r} ≤ 0.5, then μ(x) ≥ min{t, r}, which shows that (x,min{t, r}) ∈ μ. If min{t, r} > 0.5,
then μ(x) ≥ 0.5, and thus μ(x) + min{t, r} > 1, that is, (x,min{t, r})qμ. Hence, (x,min{t, r}) ∈
∨qμ. Consequently, μ is an (∈,∈ ∨q)-fuzzy-fated filter of L.

Corollary 4.6. Every strong (∈,∈ ∨q)-fuzzy-fated filter μ of L satisfies the following inequalities:

(1) (∀x ∈ L) (μ(1) ≥ min{μ(x), 0.5}),
(2) (∀x, a, y ∈ L) (μ(x) ≥ min{μ(a → ((x → y) → x)), μ(a), 0.5}).

Theorem 4.7. A fuzzy subset μ of L is an (∈,∈ ∨ q )-fuzzy-fated filter of L if and only if it satisfies
the following assertion:

(∀t ∈ (0, 0.5])
(
U
(
μ; t
) ∈ FF(L) ∪ {∅}). (4.6)

Proof. Assume that μ is an (∈,∈ ∨q)-fuzzy-fated filter of L. Let t ∈ (0, 0.5] be such that
U(μ; t)/= ∅, then there exists x ∈ U(μ; t), and so μ(x) ≥ t. Using Theorem 4.5(1), we get

μ(1) ≥ min
{
μ(x), 0.5

} ≥ min{t, 0.5} = t, (4.7)

that is, 1 ∈ U(μ; t). Assume that a → ((x → y) → x) ∈ U(μ; t) for all x, y ∈ L and
a ∈ U(μ; t), then μ(a → ((x → y) → x)) ≥ t and μ(a) ≥ t. It follows from Theorem 4.5 (2)
that

μ(x) ≥ min
{
μ
(
a −→ ((x −→ y

) −→ x
))
, μ(a), 0.5

}

≥ min{t, 0.5} = t,
(4.8)

so that x ∈ U(μ; t). Therefore, U(μ; t) is a fated filter of L.
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Conversely, let μ be a fuzzy subset of L satisfying the assertion (4.6). Assume that
μ(1) < min{μ(a), 0.5} for some a ∈ L. Putting ta := min{μ(a), 0.5}, we have a ∈ U(μ; ta) and
so U(μ; ta)/= ∅. Hence, U(μ; ta) is a fated filter of L by (4.6), which implies that 1 ∈ U(μ; ta).
Thus, μ(1) ≥ ta, which is a contradiction. Therefore, μ(1) ≥ min{μ(x), 0.5} for all x ∈ L.
Suppose that

μ(x) < min
{
μ
(
a −→ ((x −→ y

) −→ x
))
, μ(a), 0.5

}
, (4.9)

for some x, a, y ∈ L. Taking tx := min{μ(a → ((x → y) → x)), μ(a), 0.5}, we get a → ((x →
y) → x) ∈ U(μ; tx) and a ∈ U(μ; tx). It follows from (3.1) that x ∈ U(μ; tx), that is, μ(x) ≥ tx.
This is a contradiction. Hence,

μ(x) ≥ min
{
μ
(
a −→ ((x −→ y

) −→ x
))
, μ(a), 0.5

}
, (4.10)

for all x, a, y ∈ L. Using Theorem 4.5, we conclude that μ is an (∈,∈ ∨q)-fuzzy-fated filter of
L.

Proposition 4.8. Every (∈,∈ ∨q)-fuzzy-fated filter μ of L satisfies the following inequalities:

(1) μ(x → z) ≥ min{μ(x → (y → z)), μ(x → y), 0.5},
(2) μ(x) ≥ min{μ((x → y) → x), 0.5},

for all x, y, z ∈ L.

Proof. (1) Suppose that there exist a, b, c ∈ L such that

μ(a −→ c) < min
{
μ(a −→ (b −→ c)), μ(a −→ b), 0.5

}
. (4.11)

Taking t := min{μ(a → (b → c)), μ(a → b), 0.5} implies that t ∈ (0, 0.5],a → (b → c) ∈
U(μ; t) and a → b ∈ U(μ; t). SinceU(μ; t) ∈ FF(L) by Theorem 4.7, it follows from Lemma 3.1
that a → c ∈ U(μ; t), that is, μ(a → c) ≥ t. This is a contradiction, and therefore μ satisfies
(1).

(2) If μ is an (∈,∈ ∨q)-fuzzy-fated filter of L, thenU(μ; t) ∈ FF(L)∪{∅} for all t ∈ (0, 0.5]
by Theorem 4.7. Hence, U(μ; t) ∈ F(L) ∪ {∅} for all t ∈ (0, 0.5]. Suppose that

μ(x) < t ≤ min
{
μ
((
x −→ y

) −→ x
)
, 0.5
}
, (4.12)

for some x, y ∈ L and t ∈ (0, 0.5] then (x → y) → x ∈ U(μ; t), which implies from Lemma 3.2
that x ∈ U(μ; t), that is, μ(x) ≥ t. This is a contradiction. Hence, μ(x) ≥ min{μ((x → y) →
x), 0.5} for all x, y ∈ L.

Theorem 4.9. If F is a fated filter of L, then a fuzzy subset μ of L defined by

μ : L −→ [0, 1], x �−→
⎧
⎨

⎩

t1 if x ∈ F,

t2 otherwise,
(4.13)

where t1 ∈ [0.5, 1] and t2 ∈ (0, 0.5) is an (∈,∈ ∨q)-fuzzy-fated filter of L.
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Proof. Note that

U
(
μ; r
)
=

⎧
⎨

⎩

F if r ∈ (t2, 0.5],

L if r ∈ (0, t2],
(4.14)

which is a fated filter of L. It follows from Theorem 4.7 that μ is an (∈,∈ ∨q)-fuzzy-fated filter
of L.

Theorem 4.10. Let μ be an (∈,∈ ∨q)-fuzzy-fated filter of L. If μ(1) < 0.5, then μ is a fuzzy-fated
filter of L.

Proof. It is straightforward.
For any fuzzy subset μ of L and any t ∈ (0, 1], we consider two subsets:

Q
(
μ; t
)
:=
{
x ∈ L | (x, t)qμ} , [

μ
]
t :=
{
x ∈ L | (x, t) ∈ ∨qμ}. (4.15)

It is clear that [μ]t = U(μ; t) ∪Q(μ; t).

Theorem 4.11. If μ is an (∈,∈ ∨q)-fuzzy-fated filter of L, then

(∀t ∈ (0.5, 1])
(
Q
(
μ; t
) ∈ FF(L) ∪ {∅}). (4.16)

Proof. Assume thatQ(μ; t)/= ∅ for all t ∈ (0.5, 1], then there exists x ∈ Q(μ; t), and so μ(x) + t >
1. Using Theorem 4.5(1), we have

μ(1) ≥ min
{
μ(x), 0.5

}

=

⎧
⎨

⎩

0.5 if μ(x) ≥ 0.5,

μ(x) if μ(x) < 0.5

> 1 − t,

(4.17)

which implies that 1 ∈ Q(μ; t). Assume that a → ((x → y) → x) ∈ Q(μ; t) and a ∈ Q(μ; t)
for all x, a, y ∈ L, then (a → ((x → y) → x), t)qμ and (a, t)qμ, that is, μ(a → ((x → y) →
x)) > 1 − t and μ(a) > 1 − t. Using Theorem 4.5(2), we get

μ(x) ≥ min
{
μ
(
a −→ ((x −→ y

) −→ x
))
, μ(a), 0.5

}
. (4.18)

Thus, if min{μ(a → ((x → y) → x)), μ(a)} < 0.5, then

μ(x) ≥ min
{
μ
(
a −→ ((x −→ y

) −→ x
))
, μ(a)

}
> 1 − t. (4.19)

If min{μ(a → ((x → y) → x)), μ(a)} ≥ 0.5, then μ(x) ≥ 0.5 > 1 − t. It follows that (x, t)qμ so
that x ∈ Q(μ; t). Therefore, Q(μ; t) is a fated filter of L.
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Corollary 4.12. If μ is a strong (∈,∈ ∨q)-fuzzy-fated filter of L, then

(∀t ∈ (0.5, 1])
(
Q
(
μ; t
) ∈ FF(L) ∪ {∅}). (4.20)

The converse of Corollary 4.12 is not true as shown by the following example.

Example 4.13. Consider the (∈,∈ ∨q)-fuzzy-fated filter ν of L which is given in Example 4.4,
then

Q(ν; t) =

⎧
⎨

⎩

{c, d, 1} if t ∈ (0.5, 0.6],

L if t ∈ (0.6, 1]
(4.21)

is a fated filter of L. But ν is not a strong (∈,∈ ∨q)-fuzzy-fated filter of L.

Theorem 4.14. For a fuzzy subset μ of L, the following assertions are equivalent:

(1) μ is an (∈,∈ ∨q)-fuzzy-fated filter of L,
(2) (∀t ∈ (0, 1]) ([μ]t ∈ FF(L) ∪ {∅}).

Proof. Assume that μ is an (∈,∈ ∨q)-fuzzy-fated filter of L, and let t ∈ (0, 1] be such that
[μ]t /= ∅, then there exists x ∈ [μ]t = U(μ; t) ∪ Q(μ; t), and so x ∈ U(μ; t) or x ∈ Q(μ; t). If
x ∈ U(μ; t), then μ(x) ≥ t. It follows from Theorem 4.5(1) that

μ(1) ≥ min
{
μ(x), 0.5

} ≥ min{t, 0.5}

=

⎧
⎨

⎩

t if t ≤ 0.5,

0.5 > 1 − t if t > 0.5,

(4.22)

so that 1 ∈ U(μ; t) ∪Q(μ; t) = [μ]t. If x ∈ Q(μ; t), then (x, t)qμ, that is, μ(x) + t > 1. Thus,

μ(1) ≥ min
{
μ(x), 0.5

} ≥ min{1 − t, 0.5}

=

⎧
⎨

⎩

1 − t if t > 0.5,

0.5 ≥ t if t ≤ 0.5,

(4.23)

and so 1 ∈ Q(μ; t) ∪ U(μ; t) = [μ]t. Let x, a, y ∈ L be such that a ∈ [μ]t and a → ((x →
y) → x) ∈ [μ]t, then μ(a) ≥ t or μ(a) + t > 1, and μ(a → ((x → y) → x)) ≥ t or
μ(a → ((x → y) → x)) + t > 1. We can consider four cases:

μ(a) ≥ t μ
(
a −→ ((x −→ y

) −→ x
)) ≥ t, (4.24)

μ(a) ≥ t μ
(
a −→ ((x −→ y

) −→ x
))

+ t > 1, (4.25)

μ(a) + t > 1 μ
(
a −→ ((x −→ y

) −→ x
)) ≥ t, (4.26)

μ(a) + t > 1 μ
(
a −→ ((x −→ y

) −→ x
))

+ t > 1. (4.27)
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For the first case, Theorem 4.5(2) implies that

μ(x) ≥ min
{
μ
(
a −→ ((x −→ y

) −→ x
))
, μ(a), 0.5

}

≥ min{t, 0.5} =

⎧
⎨

⎩

0.5 if t > 0.5,

t if t ≤ 0.5,

(4.28)

so that x ∈ U(μ; t) or μ(x) + t > 0.5 + 0.5 = 1, that is, x ∈ Q(μ; t). Hence, x ∈ [μ]t. Case (4.25)
implies that

μ(x) ≥ min
{
μ
(
a −→ ((x −→ y

) −→ x
))
, μ(a), 0.5

}

≥ min{1 − t, t, 0.5} =

⎧
⎨

⎩

1 − t if t > 0.5,

t if t ≤ 0.5.

(4.29)

Thus, x ∈ Q(μ; t) ∪U(μ; t) = [μ]t. Similarly, x ∈ [μ]t for the case (4.26). The final case implies
that

μ(x) ≥ min
{
μ
(
a −→ ((x −→ y

) −→ x
))
, μ(a), 0.5

}

≥ min{1 − t, 0.5} =

⎧
⎨

⎩

1 − t if t > 0.5,

0.5 if t ≤ 0.5,

(4.30)

so that x ∈ Q(μ; t) ∪U(μ; t) = [μ]t. Consequently, [μ]t is a fuzzy-fated filter of L.
Conversely, let μ be a fuzzy subset of L such that [μ]t is a fated filter of L whenever

it is nonempty for all t ∈ (0, 1]. If there exists a ∈ L such that μ(1) < min{μ(a), 0.5}, then
μ(1) < ta ≤ min{μ(a), 0.5} for some ta ∈ (0, 0.5]. It follows that a ∈ U(μ; ta) but 1 /∈ U(μ; ta).
Also, μ(1) + ta < 2ta ≤ 1 and so 1 /∈ Q(μ; ta). Hence, 1 /∈ U(μ; ta) ∪Q(μ; ta) = [μ]ta , which is a
contradiction. Therefore, μ(1) ≥ min{μ(x), 0.5} for all x ∈ L. Suppose that

μ(x) < min
{
μ
(
a −→ ((x −→ y

) −→ x
))
, μ(a), 0.5

}
, (4.31)

for some x, a, y ∈ L. Taking t := min{μ(a → ((x → y) → x)), μ(a), 0.5} implies that
t ∈ (0, 0.5], a ∈ U(μ; t) ⊆ [μ]t, and a → ((x → y) → x) ∈ U(μ; t) ⊆ [μ]t. Since [μ]t ∈ FF(L),
it follows that x ∈ [μ]t = U(μ; t)∪Q(μ; t). But (4.31) induces x /∈ U(μ; t) and μ(x) + t < 2t ≤ 1,
that is, x /∈ Q(μ; t). This is a contradiction, and thus μ(x) ≥ min{μ(a → ((x → y) →
x)), μ(a), 0.5} for all x, a, y ∈ L. Using Theorem 4.5, we conclude that μ is an (∈,∈ ∨q)-fuzzy-
fated filter of L.

5. Implication-Based Fuzzy-Fated Filters

Fuzzy logic is an extension of set theoretic multivalued logic in which the truth values are
linguistic variables or terms of the linguistic variable truth. Some operators, for example
∧, ∨, ¬, → in fuzzy logic, are also defined by using truth tables, and the extension principle
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can be applied to derive definitions of the operators. In fuzzy logic, the truth value of fuzzy
proposition Φ is denoted by [Φ]. For a universe U of discourse, we display the fuzzy logical
and corresponding set-theoretical notations used in this paper

[
x ∈ μ

]
= μ(x), (5.1)

[Φ ∧Ψ] = min{[Φ], [Ψ]}, (5.2)

[Φ −→ Ψ] = min{1, 1 − [Φ] + [Ψ]}, (5.3)

[∀xΦ(x)] = inf
x∈U

[Φ(x)], (5.4)

� Φ if and only if [Φ] = 1 for all valuations. (5.5)

The truth valuation rules given in (5.3) are those in the Łukasiewicz system of continuous-
valued logic. Of course, various implication operators have been defined. We show only a
selection of them in the following.

(a) Gaines-Rescher implication operator (IGR):

IGR(a, b) =

⎧
⎨

⎩

1 if a ≤ b,

0 otherwise.
(5.6)

(b) Gödel implication operator (IG):

IG(a, b) =

⎧
⎨

⎩

1 if a ≤ b,

b otherwise.
(5.7)

(c) The contraposition of Gödel implication operator (IcG):

IcG(a, b) =

⎧
⎨

⎩

1 if a ≤ b,

1 − a otherwise.
(5.8)

Ying [13] introduced the concept of fuzzifying topology. We can expand his/her idea
to R0-algebras, and we define a fuzzifying fated filter as follows.

Definition 5.1. A fuzzy subset μ of L is called a fuzzifying fated filter of L if it satisfies the
following conditions:

(1) for all x ∈ L, we have

�
[
x ∈ μ

] −→ [1 ∈ μ
]
, (5.9)
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(2) for all x, a, y ∈ L, we get

�
[
a ∈ μ

] ∧ [a −→ ((x → y
) −→ x

) ∈ μ
] −→ [x ∈ μ

]
. (5.10)

Obviously, conditions (5.9) and (5.10) are equivalent to Theorem 3.5(1) and
Theorem 3.5(2), respectively. Therefore, a fuzzifying fated filter is an ordinary fuzzy-fated
filter.

In [14], the concept of t-tautology is introduced, that is,

�t Φ if and only if [Φ] ≥ t for all valuations. (5.11)

Definition 5.2. Let μ be a fuzzy subset of L and t ∈ (0, 1], then μ is called a t-implication-based
fuzzy-fated filter of L if it satisfies the following conditions:

(1) for all x ∈ L, we have

�t

[
x ∈ μ

] −→ [1 ∈ μ
]
, (5.12)

(2) for all x, a, y ∈ L, we get

�t

[
a ∈ μ

] ∧ [a → ((
x −→ y

) −→ x
) ∈ μ

] −→ [x ∈ μ
]
. (5.13)

Let I be an implication operator. Clearly, μ is a t-implication-based fuzzy-fated filter of
L if and only if it satisfies

(1) (∀x ∈ L) (I(μ(x), μ(1)) ≥ t),

(2) (∀x, y ∈ L) (I(min{μ(a), μ(a → ((x → y) → x))}, μ(x)) ≥ t).

Theorem 5.3. For any fuzzy subset μ of L, one has the following:

(1) if I = IGR, then μ is a 0.5-implication-based fuzzy-fated filter of L if and only if μ is a
fuzzy-fated filter of L,

(2) if I = IG, then μ is a 0.5-implication-based fuzzy-fated filter of L if and only if μ is an
(∈,∈ ∨q)-fuzzy-fated filter of L,

(3) if I = IcG, then μ is a 0.5-implication-based fuzzy-fated filter of L if and only if μ satisfies
the following conditions:

(3.1) max{μ(1), 0.5} ≥ min{μ(x), 1},
(3.2) max{μ(x), 0.5} ≥ min{μ(a), μ(a → ((x → y) → x)), 1}

for all x, a, y ∈ L.

Proof. (1) It is Straightforward.
(2) Assume that μ is a 0.5-implication-based fuzzy-fated filter of L, then

(i) (∀x ∈ L) (IG(μ(x), μ(1)) ≥ 0.5),

(ii) (∀x, y ∈ L) (IG(min{μ(a), μ(a −→ ((x −→ y) −→ x))}, μ(x)) ≥ 0.5).
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From (i), we have μ(1) ≥ μ(x) or μ(x) ≥ μ(1) ≥ 0.5, and so μ(1) ≥ min{μ(x), 0.5} for all x ∈ L.
The second case implies that

μ(x) ≥ min
{
μ(a), μ

(
a −→ ((x −→ y

) −→ x
))}

(5.14)

or min{μ(a), μ(a → ((x → y) → x))} > μ(x) ≥ 0.5. It follows that

μ(x) ≥ min
{
μ(a), μ

(
a −→ ((x −→ y

) −→ x
))
, 0.5
}
, (5.15)

for all x, a, y ∈ L. Using Theorem 4.5, we know that μ is an (∈,∈ ∨q)-fuzzy-fated filter of L.
Conversely, suppose that μ is an (∈,∈ ∨q)-fuzzy-fated filter of L. From Theorem 4.5(1),

if min{μ(x), 0.5} = μ(x), then IG(μ(x), μ(1)) = 1 ≥ 0.5. Otherwise, IG(μ(x), μ(1)) ≥ 0.5. From
Theorem 4.5(2), if

min
{
μ(a), μ

(
a −→ ((x −→ y

) −→ x
))
, 0.5
}
= min

{
μ(a), μ

(
a −→ ((x −→ y

) −→ x
))}

,
(5.16)

then μ(x) ≥ min{μ(a), μ(a → ((x → y) → x))}, and so

IG
(
min
{
μ(a), μ

(
a −→ ((x −→ y

) −→ x
))}

, μ(x)
)
= 1 ≥ 0.5. (5.17)

If min{μ(a), μ(a → ((x → y) → x)), 0.5} = 0.5, then μ(x) ≥ 0.5, and thus

IG
(
min
{
μ(a), μ

(
a −→ ((x −→ y

) −→ x
))}

, μ(x)
) ≥ 0.5. (5.18)

Consequently, μ is a 0.5-implication-based fuzzy-fated filter of L.
(3) Suppose that μ satisfies (3.1) and (3.2). In (3.1), if μ(x) = 1, then max{μ(1), 0.5} = 1,

and hence IcG(μ(x), μ(1)) = 1 ≥ 0.5. If μ(x) < 1, then

max
{
μ(1), 0.5

} ≥ μ(x). (5.19)

If max{μ(1), 0.5} = μ(1) in (5.19), then μ(1) ≥ μ(x). Hence,

IcG
(
μ(x), μ(1)

)
= 1 ≥ 0.5. (5.20)

If max{μ(1), 0.5} = 0.5 in (5.19), then μ(x) ≤ 0.5 which implies that

IcG
(
μ(x), μ(1)

)
=

⎧
⎨

⎩

1 ≥ 0.5 if μ(1) ≥ μ(x),

1 − μ(x) ≥ 0.5 otherwise.
(5.21)

In (3.2), if min{μ(a), μ(a → ((x → y) → x)), 1} = 1, then

max
{
μ(x), 0.5

}
= 1, (5.22)
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and so μ(x) = 1 ≥ min{μ(a), μ(a → ((x → y) → x))}. Therefore,

IcG
(
min
{
μ(a), μ

(
a −→ ((x −→ y

) −→ x
))}

, μ(x)
)
= 1 ≥ 0.5. (5.23)

If

min
{
μ(a), μ

(
a −→ ((x −→ y

) −→ x
))
, 1
}
= min

{
μ(a), μ

(
a −→ ((x −→ y

) −→ x
))}

, (5.24)

then

max
{
μ(x), 0.5

} ≥ min
{
μ(a), μ

(
a −→ ((x → y

) −→ x
))}

. (5.25)

Thus, if max{μ(x), 0.5} = 0.5 in (5.25), then μ(x) ≤ 0.5 and

min
{
μ(a), μ

(
a −→ ((x −→ y

) −→ x
))} ≤ 0.5. (5.26)

Therefore,

IcG
(
min
{
μ(a), μ

(
a −→ ((x −→ y

) −→ x
))}

, μ(x)
)
= 1 ≥ 0.5, (5.27)

whenever μ(x) ≥ min{μ(a), μ(a → ((x → y) → x))},

IcG
(
min
{
μ(a), μ

(
a −→ ((x −→ y

) −→ x
))}

, μ(x)
)

= 1 −min
{
μ(a), μ

(
a −→ ((x −→ y

) −→ x
))} ≥ 0.5,

(5.28)

whenever μ(x) < min{μ(a), μ(a → ((x → y) → x))}. Now, if

max
{
μ(x), 0.5

}
= μ(x) (5.29)

in (5.25), then μ(x) ≥ min{μ(a), μ(a → ((x → y) → x))}, and so

IcG
(
min
{
μ(a), μ

(
a −→ ((x −→ y

) −→ x
))}

, μ(x)
)
= 1 ≥ 0.5. (5.30)

Consequently, μ is a 0.5-implication-based fuzzy-fated filter of L.
Conversely, assume that μ is a 0.5-implication-based fuzzy-fated filter of L, then

(iii) IcG(μ(x), μ(1)) ≥ 0.5,

(iv) IcG(min{μ(a), μ(a → ((x → y) → x))}, μ(x)) ≥ 0.5,

for all x, a, y ∈ L. The case (iii) implies that IcG(μ(x), μ(1)) = 1, that is, μ(x) ≤ μ(1), or
1 − μ(x) ≥ 0.5 and so μ(x) ≤ 0.5. It follows that

max
{
μ(1), 0.5

} ≥ μ(x) = min
{
μ(x), 1

}
. (5.31)
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From (iv), we have

IcG
(
min
{
μ(a), μ

(
a −→ ((x −→ y

) −→ x
))}

, μ(x)
)
= 1, (5.32)

that is, min{μ(a), μ(a → ((x → y) → x))} ≤ μ(x), or

1 −min
{
μ(a), μ

(
a −→ ((x −→ y

) −→ x
))} ≥ 0.5. (5.33)

Hence,

max
{
μ(x), 0.5

} ≥ min
{
μ(a), μ

(
a −→ ((x −→ y

) −→ x
))}

= min
{
μ(a), μ

(
a −→ ((x −→ y

) −→ x
))
, 1
}
,

(5.34)

for all x, y, z ∈ L. This completes the proof.

6. Conclusion

Using the “belongs to” relation (∈) and quasicoincidence with relation (q) between fuzzy
points and fuzzy sets, we introduced the notion of an (∈,∈ ∨ q)-fuzzy-fated filter, this is a
generalization of a fuzzy implicative filter. In fuzzy logic, one can see that various implication
operators have been defined. We used Gaines-Rescher implication operator (IGR), Gödel
implication operator (IG), and the contraposition of Gödel implication operator (IcG) to study
t-implication-based fuzzy-fated filters.

There are also other situations concerning the relations between this kind of results,
another type of structures (e.g., (∈,∈ ∨ q)-fuzzy-fated filter), and (fuzzy) soft and rough set
theory. How to deal with these situations will be one of our future topics. We will also try
to study the intuitionistic fuzzy version of several type of filters in R0-algebras related to the
intuitionistic “belongs to” relation (∈) and intuitionistic quasicoincidence with relation (q)
between intuitionistic fuzzy points and intuitionistic fuzzy sets.
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