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We consider the nonlinear dynamic system xΔ(t) = a(t)g(y(t)), yΔ(t) = −f(t, xσ(t)). We establish
some necessary and sufficient conditions for the existence of oscillatory and nonoscillatory
solutions with special asymptotic properties for the system. We generalize the known results in
the literature. Some examples are included to illustrate the results.

1. Introduction

In this paper we investigate the nonlinear two-dimensional dynamic system:

xΔ(t) = a(t)g
(
y(t)
)
, yΔ(t) = −f(t, xσ(t)), t ∈ [t0,∞)

T
, (1.1)

where a(t) is a nonnegative, rd-continuous function which is defined for t ∈ [t0,∞)
T

=
[t0,∞) ∩ T. Here, T is a time scale unbounded from above. We assume throughout that
g : R → R is a continuous function with ug(u) > 0 for u/= 0, and f(t, u) : [t0,∞)

T
× R → R is

continuous as a function of u ∈ R with sign property uf(t, u) > 0 for u/= 0 and t ∈ [t0,∞)
T
.

By the solution of system (1.1), we mean a pair of nontrivial real-valued functions
(x(t), y(t)) which has property x, y ∈ C1

rd([t0,∞)
T
,R) and satisfies system (1.1) for t ∈

[t0,∞)
T
. Our attention is restricted to those solutions (x(t), y(t)) of system (1.1) which exist

on some half-line [tx,∞)
T
and satisfy sup{|x(t)|+ |y(t)| : t ≥ tx} > 0 for any tx ≥ t0. As usual, a

continuous real-valued function defined on [T0,∞) is said to be oscillatory if it has arbitrarily
large zeros, otherwise it is said to be nonoscillatory. A solution (x(t), y(t)) of system (1.1) is
called oscillatory if both x(t) and y(t) are oscillatory functions, and otherwise it will be called
nonoscillatory. System (1.1) is called oscillatory if its solutions are oscillatory.
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The theory of time scales, which has recently received a lot of attention, was introduced
by Hilger in his Ph.D. thesis in 1990 in order to unify continuous and discrete analysis (see
[1]). Not only can this theory of the so-called “dynamic equations” unify the theories of
differential equations and difference equations, but also extend these classical cases to cases
“in between”, for example, to the so-called q-difference equations and can be applied on other
different types of time scales. Since Hilger formed the definition of derivatives and integral
on time scales, several authors have expounded on various aspects of this new theory; see the
survey paper by Agarwal et al. [2] and references cited therein. A book on the subject of time
scales (see [3]) summarizes and organizes much of time scale calculus. The reader is referred
to Chapter 1 in [3] for the necessary time scale definitions and notations used throughout this
paper.

The system (1.1) includes two-dimensional linear/nonlinear differential and differ-
ence systems, which were investigated in the literature, see for example [4–9] and the
references therein.

On the other hand, the system (1.1) reduces to some important second-order dynamic
equations in the particular case, for example

[
xΔ(t)
a(t)

]Δ
+ b(t)f(xσ(t)) = 0,

xΔΔ(t) + b(t)|xσ(t)|λ−1xσ(t) = 0, λ > 0,

(1.2)

where b(t) is rd-continuous on [t0,∞)
T
. In recent years there has been much research activity

concerning the oscillation and nonoscillation of solutions of dynamic equation (1.2) on time
scales. We refer the reader to the recent papers [10–13] and the references therein. However,
most of previous studies for the system (1.1) have been restricted to the case where f(t, u) =
b(t)f(u), for example [4–8, 14–18] and the references therein. Erbe andMert [14, 17] obtained
some oscillation results for the system (1.1). Fu and Lin [15] obtained some oscillation and
nonoscillation criteria for the linear dynamic system (1.1).

Since there are few works about oscillation and nonoscillation of dynamic systems on
time scales (see [15]), motivated by [9, 14, 15], in this paper we investigate oscillatory and
nonoscillatory properties for the system (1.1) in the case of general f(t, u) in which t and u are
not necessarily separable. In the next section, by means of appropriate hypotheses on f(t, u)
and fixed point theorem, we establish some new sufficient and necessary conditions for the
existence of nonoscillatory solutions with special asymptotic properties for the system (1.1).
In Section 3, we obtain sufficient and necessary conditions for all solutions of the system
(1.1) to be oscillatory via the results in Section 2 and some inequality techniques without
using Riccati transformation. Our results not only unify the known results of differential and
difference systems but also extend and improve the existing results of dynamic systems on
time scales in the literature.

2. Nonoscillation Results

In this section, we generalize and improve some results of [7–9, 15, 18]. Some necessary and
sufficient conditions are given for the system (1.1) to admit the existence of nonoscillatory
solutions with special asymptotic properties. These results will be used for the next section.
Additional hypotheses on g(u) and f(t, u) are needed for this purpose.
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(H1) For any positive constant l and Lwith l < L, there exist positive constants h andH,
depending possibly on l and L, such that l ≤ |u| ≤ L implies

hf(t, l) ≤ ∣∣f(t, u)∣∣ ≤ Hf(t, L), t ∈ [t0,∞)
T
. (2.1)

(H2) There exists a positive constant k such that g(uv) ≥ kg(u)g(v) for uv > 0.

(H3) For any positive constant l and Lwith l < L, there exist positive constants h andH,
depending possibly on l and L, such that l ≤ |u| ≤ L implies

hf(t, lθ(t)) ≤ ∣∣f(t, uθ(t))∣∣ ≤ Hf(t, Lθ(t)), t ∈ [t0,∞)
T
, (2.2)

where θ(t) is a positive nondecreasing function.

For convenience, we will employ the following notation:

A(s, t) =
∫ t

s

a(τ)Δτ, s, t ∈ [t0,∞)
T
. (2.3)

Theorem 2.1. Assume that g is nondecreasing and that (H1) holds. Then system (1.1) has a
nonoscillatory solution (x(t), y(t)) such that limt→∞x(t) = α/= 0 and limt→∞y(t) = 0 if and only if
for any positive constant d

∫∞

t0

a(t)g
(
d

∫∞

t

∣∣f(s, c)
∣∣Δs

)
Δt < ∞ for some c /= 0. (2.4)

Proof. Suppose that (x(t), y(t)) is a nonoscillatory solution of (1.1) such that limt→∞x(t) =
α/= 0 and limt→∞y(t) = 0. Without loss of generality, we assume that α > 0. Then there exist
t1 ∈ [t0,∞)

T
and positive constants l and L such that l ≤ x(t) ≤ L for t ∈ [t1,∞)

T
. Condition

(H1) implies that

f(t, xσ(t)) ≥ hf(t, l) (2.5)

for t ∈ [t1,∞)
T
and some constant h > 0. It follows from the second equation in (1.1) that

y(s) − y(t) = −
∫s

t

f(τ, xσ(τ))Δτ. (2.6)

Let s → ∞ and noting that lims→∞y(s) = 0, we have

y(t) =
∫∞

t

f(τ, xσ(τ))Δτ, t ∈ [t1,∞)
T
. (2.7)



4 Discrete Dynamics in Nature and Society

Thus, from (2.5), (2.7) and the first equation in (1.1), we obtain that

∞ > lim
t→∞

x(t) − x(t1) =
∫∞

t1

a(s)g
(
y(s)

)
Δs

=
∫∞

t1

a(s)g
(∫∞

s

f(τ, xσ(τ))Δτ

)
Δs

≥
∫∞

t1

a(s)g
(
h

∫∞

s

f(τ, l)Δτ

)
Δs,

(2.8)

which implies that (2.4) holds.
Conversely, suppose that (2.4) holds, we may assume that c > 0. In view of (H1), there

is a constant H > 0 such that c/2 ≤ x(t) ≤ c implies

f(t, xσ(t)) ≤ Hf(t, c), t ∈ [t0,∞)
T
. (2.9)

Since (2.4) holds, we can choose t1 ∈ [t0,∞)
T
large enough such that

∫∞

t1

a(s)g
(
H

∫∞

s

f(τ, c)Δτ

)
Δs ≤ c

2
. (2.10)

Let BC[t0,∞)
T
be the Banach space of all real-valued rd-continuous functions on [t0,∞)

T

endowed with the norm ‖x‖ = supt∈[t0,∞)
T

|x(t)| < ∞. We defined a bounded, convex, and
closed subset Ω of BC[t0,∞)

T
as

Ω =
{
x ∈ BC[t0,∞)

T
:
c

2
≤ x(t) ≤ c

}
. (2.11)

Define an operator Γ : Ω → BC[t0,∞)
T
as follows:

(Γx)(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c −
∫∞

t

a(s)g
(∫∞

s

f(τ, xσ(τ))Δτ

)
Δs, t ∈ [t1,∞)

T
,

c −
∫∞

t1

a(s)g
(∫∞

s

f(τ, xσ(τ))Δτ

)
Δs, t ∈ [t0, t1]T

.

(2.12)

Now we show that Γ satisfies the assumptions of Schauder’s fixed-point theorem (see [19,
Corollary 6]).
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(i) We will show that Γx ∈ Ω for any x ∈ Ω. In fact, for any x ∈ Ω and t ∈ [t1,∞)
T
, in

view of (2.10), we get

c ≥ (Γx)(t) = c −
∫∞

t

a(s)g
(∫∞

s

f(τ, xσ(τ))Δτ

)
Δs

≥ c −
∫∞

t1

a(s)g
(
H

∫∞

s

f(τ, c)Δτ

)
Δs

≥ c − c

2
=

c

2
.

(2.13)

Similarly, we can prove that c/2 ≤ (Γx)(t) ≤ c for any x ∈ Ω and t ∈ [t0, t1)T
. Hence,

Γx ∈ Ω for any x ∈ Ω.

(ii) We prove that Γ is a completely continuous mapping. First, we consider the conti-
nuity of Γ. Let xn ∈ Ω and ‖xn−x‖ → 0 as n → ∞, then x ∈ Ω and |xn(t)−x(t)| → 0
as n → ∞ for any t ∈ [t0,∞)

T
. Consequently, by the continuity of g and f , for any

t ∈ [t1,∞)
T
, we have

lim
n→∞

∣∣∣∣a(t)
[
g

(∫∞

t

f(τ, xσ
n(τ))Δτ

)
− g

(∫∞

t

f(τ, xσ(τ))Δτ

)]∣∣∣∣ = 0. (2.14)

From (2.9), we obtain that

a(t)
∣∣∣∣g
(∫∞

t

f(τ, xσ
n(τ))Δτ

)
− g

(∫∞

t

f(τ, xσ(τ))Δτ

)∣∣∣∣ ≤ 2a(t)g
(
H

∫∞

t

f(τ, c)Δτ

)
.

(2.15)

On the other hand, from (2.12)we have

|(Γxn)(t) − (Γx)(t)| ≤
∫∞

t1

a(s)
∣∣∣∣g
(∫∞

s

f(τ, xσ
n(τ))Δτ

)
− g

(∫∞

s

f(τ, xσ(τ))Δτ

)∣∣∣∣Δs (2.16)

for t ∈ [t0, t1]T
and

|(Γxn)(t) − (Γx)(t)| ≤
∫∞

t

a(s)
∣∣∣∣g
(∫∞

s

f(τ, xσ
n(τ))Δτ

)
− g

(∫∞

s

f(τ, xσ(τ))Δτ

)∣∣∣∣Δs (2.17)

for t ∈ [t1,∞]
T
. Therefore, from (2.16) and (2.17), we have

‖Γxn − Γx‖ ≤
∫∞

t1

a(s)
∣∣∣∣g
(∫∞

s

f(τ, xσ
n(τ))Δτ

)
− g

(∫∞

s

f(τ, xσ(τ))Δτ

)∣∣∣∣Δs. (2.18)

Referring to Chapter 5 in [20], we see that the Lebesgue dominated convergence theorem
holds for the integral on time scales. Then, from (2.14) and (2.15), (2.18) yields limn→∞‖Γxn −
Γx‖ = 0, which implies that Γ is continuous on Ω.
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Next, we show that ΓΩ is uniformly cauchy. In fact, for any ε > 0, take t2 ∈ [t1,∞)
T

and t2 > t1 such that

∫∞

t2

a(s)g
(
H

∫∞

s

f(τ, c)Δτ

)
Δs ≤ ε. (2.19)

Then for any x ∈ Ω and t, r ∈ [t2,∞)
T
, we have

|(Γx)(t) − (Γx)(r)| ≤
∣
∣
∣
∣

∫∞

t

a(s)g
(
H

∫∞

s

f(τ, c)Δτ

)
Δs

∣
∣
∣
∣

+
∣
∣∣
∣

∫∞

r

a(s)g
(
H

∫∞

s

f(τ, c)Δτ

)
Δs

∣
∣∣
∣

≤ 2
∫∞

t2

a(s)g
(
H

∫∞

s

f(τ, c)Δτ

)
Δs ≤ 2ε.

(2.20)

This means that ΓΩ is uniformly cauchy.
Finally, we prove that ΓΩ is equicontinuous on [t0, t2]T

for any t2 ∈ [t0,∞)
T
. Without

loss of generality, we set t2 > t1. For any x ∈ Ω, we have |(Γx)(t)−(Γx)(r)| ≡ 0 for t, r ∈ [t0, t1]T

and

|(Γx)(t) − (Γx)(r)| =
∣∣∣∣

∫∞

t

a(s)g
(∫∞

s

f(τ, xσ(τ))Δτ

)
Δs −

∫∞

r

a(s)g
(∫∞

s

f(τ, xσ(τ))Δτ

)
Δs

∣∣∣∣

≤
∣∣∣∣

∫ r

t

a(s)g
(
H

∫∞

s

f(τ, c)Δτ

)
Δs

∣∣∣∣

(2.21)

for t, r ∈ [t1, t2]T
.

Now, we see that for any ε > 0, there exists δ > 0 such that when t, r ∈ [t0, t2]T
with

|t − r| < δ, |(Γx)(t) − (Γx)(r)| < ε for any x ∈ Ω. This means that ΓΩ is equicontinuous on
[t0, t2]T

for any t2 ∈ [t0,∞)
T
. By Arzela-Ascoli theorem (see [19, Lemma 4]), ΓΩ is relatively

compact. From the above, we have proved that Γ is a completely continuous mapping.
By Schauder’s fixed point theorem, there exists x ∈ Ω such that Γx = x. Therefore, we

have

x(t) = c −
∫∞

t

a(s)g
(∫∞

s

f(τ, xσ(τ))Δτ

)
Δs, t ∈ [t1,∞)

T
. (2.22)

Set

y(t) =
∫∞

t

f(τ, xσ(τ))Δτ, t ∈ [t1,∞)
T
. (2.23)
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Then limt→∞y(t) = 0 and yΔ(t) = −f(t, xσ(t)). On the other hand,

x(t) = c −
∫∞

t

a(s)g
(
y(s)

)
Δs, (2.24)

which implies that limt→∞x(t) = c and xΔ(t) = a(t)g(y(t)). The proof is complete.

Corollary 2.2. Suppose that g is nondecreasing and that (H1) and (H2) hold. Then system (1.1) has
a nonoscillatory solution (x(t), y(t)) such that limt→∞x(t) = α/= 0 and limt→∞y(t) = 0 if and only
if for some c /= 0

∫∞

t0

a(t)g
(∫∞

t

∣
∣f(s, c)

∣
∣Δs

)
Δt < ∞. (2.25)

Theorem 2.3. Suppose that limt→∞A(t0, t) = ∞ and g is nondecreasing. Suppose further that (H3)
holds. Then system (1.1) has a nonoscillatory solution (x(t), y(t)) such that limt→∞(x(t)/A(t0, t)) =
α/= 0 and limt→∞y(t) = β /= 0 if and only if for some c /= 0

∫∞

t0

∣∣f(t, cA(t0, σ(t)))
∣∣Δt < ∞. (2.26)

Proof. Suppose that (x(t), y(t)) is a nonoscillatory solution of (1.1) such that limt→∞(x(t)/
A(t0, t)) = α/= 0 and limt→∞y(t) = β /= 0. We may assume that α > 0. Hence, there exist
t1 ∈ [t0,∞)

T
and positive constant l, L such that lA(t0, t) ≤ x(t) ≤ LA(t0, t) and yΔ(t) <

0, y(t) > β for t ∈ [t1,∞)
T
. By condition (H3), there exists a constant h > 0 such that

f(t, xσ(t)) ≥ hf(t, lA(t0, σ(t))) for t ∈ [t1,∞)
T
. According to the second equation in (1.1),

we have

∞ > y(t1) − β =
∫∞

t1

f(t, xσ(t))Δt ≥ h

∫∞

t1

f(t, lA(t0, σ(t)))Δt, (2.27)

which implies that (2.26) holds with c = l.
Conversely, Let (2.26) holds for some c = 2p, where p > 0. By (H3), there exists a

constant H > 0 such that p ≤ u ≤ 2p implies f(t, uA(t0, σ(t))) ≤ Hf(t, 2pA(t0, σ(t))) for
t ∈ [t0,∞)

T
. Take t1 ∈ [t0,∞)

T
so large that

H

∫∞

t1

f(t, cA(t0, σ(t)))Δt ≤ d, (2.28)

where d = g−1(c)/2. We introduce BC[t1,∞)
T
be the partially ordered Banach space of all

real-valued and rd-continuous functions x(t)with the norm ‖x‖ = supt∈[t1,∞)
T

(|x(t)|/A(t1, t)),
and the usual pointwise ordering ≤.

Define

Ω =
{
x ∈ BC[t1,∞)

T
: g(d)A(t1, t) ≤ x(t) ≤ g(2d)A(t1, t)

}
. (2.29)
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It is easy to see that Ω is a bounded, convex, and closed subset of BC[t1,∞)
T
. Let us further

define an operator Γ : Ω → BC[t1,∞)
T
as follows:

(Γx)(t) =
∫ t

t1

a(s)g
(
d +
∫∞

s

f(τ, xσ(τ))Δτ

)
Δs, t ∈ [t1,∞)

T
. (2.30)

Since it can be shown that Γ is continuous and sendsΩ into a relatively compact subset
of Ω, the Schauder’s fixed point theorem ensures that the existence of an x ∈ Ω such that x =
Γx, this is

x(t) =
∫ t

t1

a(s)g
(
d +
∫∞

s

f(τ, xσ(τ))Δτ

)
Δs, t ∈ [t1,∞)

T
. (2.31)

Set

y(t) = d +
∫∞

t

f(τ, xσ(τ))Δτ, t ∈ [t1,∞)
T
. (2.32)

Then limt→∞y(t) = d and yΔ(t) = −f(t, xσ(t)). On the other hand, by L’Hôpital’s Rule (see
[15, Lemma 2.11]), we have

lim
t→∞

x(t)
A(t0, t)

= lim
t→∞

a(t)g
(
d +
∫∞
t f(τ, xσ(τ))Δτ

)

a(t)

= lim
t→∞

g

(
d +
∫∞

t

f(τ, xσ(τ))Δτ

)
= g(d)/= 0,

(2.33)

and xΔ(t) = a(t)g(y(t)). The proof is complete.

Remark 2.4. Theorems 2.1 and 2.3 extend and improve essentially the known results of [7–
9, 15, 18].

3. Oscillation Results

In this section, we need some additional conditions to guarantee that the system (1.1) has
oscillatory solutions.

(H4) There exists a continuous nondecreasing function ϕ : R → R such that

sgnϕ(u) = sgnu,
∫±∞ du

g
(
ϕ(u)

) < ∞, (3.1)

and |f(t, u)| ≥ |f(t, l)| |ϕ(u)|, t ∈ [t0,∞)
T
, |u| ≥ u0 for some constants u0 > 0 and l /= 0

with sgn l = sgnu.
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(H5) There exists a continuous nondecreasing function ϕ : [−M,M] → R, M > 0 being
a constant, such that

sgnϕ(v) = sgnv,
∫±M

0

dv

ϕ
(
g(v)

) < ∞, (3.2)

and |f(t, uv)| ≥ k|f(t, u)| |ϕ(v)|, t ∈ [t0,∞)
T
, u /= 0, 0 < |v| < v0 for some positive

constant k > 0 and v0 > 0.

Theorem 3.1. Suppose that limt→∞A(t0, t) = ∞ and g is nondecreasing. Suppose further that (H1),
(H2) and (H4) hold. Then system (1.1) is oscillatory if and only if for all c /= 0

∫∞

t0

a(t)g
(∫∞

t

∣
∣f(s, c)

∣
∣Δs

)
Δt = ∞. (3.3)

Proof. If (3.3) does not hold, by Theorem 2.1, system (1.1) has a nonoscillatory solution
(x(t), y(t)) such that limt→∞x(t) = α/= 0 and limt→∞y(t) = 0.

Conversely, suppose that (3.3) holds and that (1.1) has a nonoscillatory solution
(x(t), y(t)) for t ∈ [t0,∞)

T
. We may assume that x(t) > 0 for t ∈ [t1,∞)

T
, where t1 ∈ [t0,∞)

T
.

Since limt→∞A(t0, t) = ∞, it is easy to show that y(t) > 0, t ∈ [t1,∞)
T
. From the second

equation in (1.1), we have yΔ(t) < 0, t ∈ [t1,∞)
T
. Hence, limt→∞y(t) ≥ 0. It follows from

the first equation in (1.1) that xΔ(t) > 0, t ∈ [t1,∞)
T
, and limt→∞x(t) = ∞ by Theorem 2.1.

Integrating the second equation in (1.1) from t to ∞ yields that

y(t) ≥
∫∞

t

f(s, xσ(s))Δs, t ∈ [t1,∞)
T
. (3.4)

By (3.4), (H2) and in view of nondecreasing ϕ, it follows that

xΔ(t)
g
(
ϕ(xσ(t))

) =
a(t)g

(
y(t)
)

g
(
ϕ(xσ(t))

) ≥ a(t)g
(∫∞

t f(s, xσ(s))Δs
)

g
(
ϕ(xσ(t))

) ≥ ka(t)g
(∫∞

t

f(s, xσ(s))
ϕ(xσ(s))

Δs

)

(3.5)

for t ∈ [t1,∞)
T
.

Since (H4) holds and limt→∞x(t) = ∞, there is t2 ∈ [t1,∞)
T
and l > 0 such that

f(t, xσ(t))
ϕ(xσ(t))

≥ f(t, l) (3.6)

for t ∈ [t2,∞)
T
. From (3.5) and (3.6), we get

xΔ(t)
g
(
ϕ(xσ(t))

) ≥ ka(t)g
(∫∞

t

f(s, l)Δs

)
. (3.7)
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Integrating (3.7) from t2 to t, we have

∫ t

t2

xΔ(s)
g
(
ϕ(xσ(s))

)Δs ≥ k

∫ t

t2

a(s)g
(∫∞

s

f(τ, l)Δτ

)
Δs. (3.8)

Since g, ϕ, and x are nondecreasing, we obtain

∫ t

t2

xΔ(s)
g
(
ϕ(xσ(s))

)Δs ≤
∫ t

t2

xΔ(s)
g
(
ϕ(x(s))

)Δs. (3.9)

By (H4), (3.8) and (3.9), we get

k

∫ t

t2

a(s)g
(∫∞

s

f(τ, l)Δτ

)
Δs ≤

∫x(t)

x(t2)

du

g
(
ϕ(u)

) < ∞, (3.10)

which contradicts (3.3)when t → ∞. The proof is complete.

Theorem 3.2. Suppose that limt→∞A(t0, t) = ∞ and (H5) holds. Suppose further that f(t, u) is
nondecreasing in u for each fixed t ∈ [t0,∞)

T
and g is nondecreasing. Then system (1.1) is oscillatory

if and only if for all c /= 0

∫∞

t0

∣∣f(t, cA(t0, σ(t)))
∣∣Δt = ∞. (3.11)

Proof. If (3.11) does not hold, by Theorem 2.3, system (1.1) has a nonoscillatory solution
(x(t), y(t)) such that limt→∞(x(t)/A(t0, t)) = α/= 0 and limt→∞y(t) = β /= 0.

Conversely, suppose that (3.11) holds and that system (1.1) has a nonoscillatory
solution (x(t), y(t)) for t ∈ [t0,∞)

T
. We assume that x(t) > 0 for t ∈ [t1,∞)

T
, where

t1 ∈ [t0,∞)
T
. Then by same argument in the proof of Theorem 3.1, we have xΔ(t) > 0, yΔ(t) <

0, y(t) > 0 eventually. We claim that (3.11) implies limt→∞y(t) = 0. In fact, if limt→∞y(t) =
β > 0, then y(t) ≥ β for t ∈ [t1,∞)

T
. According to the first equation in (1.1), we get

xσ(t) = x(t1) +
∫σ(t)

t1

a(s)g
(
y(s)

)
Δs

≥
∫ t

t1

a(s)g
(
y(s)

)
Δs +

∫σ(t)

t

a(s)g
(
y(s)

)
Δs

≥ g
(
y(t)
)[
A(t1, t) + μ(t)a(t)

]
= g
(
y(t)
)
A(t1, σ(t)) ≥ g

(
β
)
A(t1, σ(t)).

(3.12)

Integrating the second equation in (1.1) from t1 to∞, we have

β − y(t1) = −
∫∞

t1

f(s, xσ(s))Δs ≤ −
∫∞

t1

f
(
s, g
(
β
)
A(t1, σ(s))

)
Δs = −∞, (3.13)

which is a contradiction. Hence, limt→∞y(t) = 0.
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By (H5), we have

kf(t, A(t1, σ(t))) ≤ kf

(

t,
xσ(t)

g
(
y(t)
)

)

≤ f(t, xσ(t))
ϕ
(
g
(
y(t)
)) =

−yΔ(t)
ϕ
(
g
(
y(t)
)) . (3.14)

From (3.14), it follows

∫ t

t1

kf(s,A(t1, σ(s)))Δs ≤ −
∫ t

t1

yΔ(s)
ϕ
(
g
(
y(s)

))Δs. (3.15)

Hence,

k

∫ t

t1

f(s,A(t1, σ(s)))Δs ≤ −
∫y(t)

y(t1)

du

ϕ
(
g(u)

) . (3.16)

In view of (H5) and (3.11), this is a contradiction. The proof is complete.

Remark 3.3. Theorems 3.1 and 3.2 improve the existing results of [15, 18].

Example 3.4. Consider the system:

xΔ(t) =
∣∣y(t)

∣∣1/α−1y(t), yΔ(t) = − t
v|xσ(t)|γ−1xσ(t)
1 + tu|xσ(t)|m , (3.17)

where T = aN = {an | n ∈ N}, a, m, γ, u, α > 0 and v are constants as well as γ > m.
Let

a(t) = 1, g
(
y
)
=
∣∣y
∣∣(1/α)−1y, f(t, x) =

tv|x|γ−1x
1 + tu|x|m . (3.18)

It is easy to see that g(y) is increasing and for 0 < l ≤ x ≤ L, γ ≥ m,

f(t, l) ≤ f(t, x) ≤ f(t, L),

f(t, lt) ≤ f(t, xt) ≤ f(t, Lt).
(3.19)
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For u > v + 2α, we have

∫∞

t0

a(t)g
(∫∞

t

∣
∣f(s, c)

∣
∣Δs

)
Δt =

∫∞

t0

(∫∞

t

sv|c|γ
1 + su|c|mΔs

)1/α

Δt

≤ |c|(γ−m)/α
∫∞

t0

(∫∞

t

sv−uΔs

)1/α

Δt

≤ |c|(γ−m)/αa(v−u+α+1)/α
∞∑

n=n0

∞∑

r=n
r(v−u)/α

= |c|(γ−m)/αa(v−u+α+1)/α
∞∑

n=n0

n(v−u+α)/α < ∞,

(3.20)

that is, (2.25) holds. By Corollary 2.2, system (3.17) has a nonoscillatory solution (x(t), y(t))
such that limt→∞x(t)/= 0 and limt→∞y(t) = 0.

On the other hand, For u +m > v + γ + 1, we obtain

∫∞

a

∣∣f(t, cA(a, σ(t)))
∣∣Δt =

∫∞

a

tv+γ |c|γ
1 + tu+m|c|mΔt

≤ |c|γ−m
∫∞

a

tv+γ−u−mΔt

= |c|γ−mav+γ−u−m+1
∞∑

n=1

nv+γ−u−m < ∞.

(3.21)

Hence, (2.26) holds. By Theorem 2.3, system (3.17) has a nonoscillatory solution (x(t), y(t))
such that limt→∞(x(t)/t)/= 0 and limt→∞y(t)/= 0.

Example 3.5. Consider the system:

xΔ(t) =
1
t
y5(t), yΔ(t) = − t

3|xσ(t)|4/3xσ(t)

1 + t3(xσ(t))2
, (3.22)

where T = aN0 , N0 = {0} ∪ N and a > 1.
Let

a(t) =
1
t
, g

(
y
)
= y5, f(t, x) =

t3|x|4/3x
1 + t3x2

. (3.23)

Obviously, f(t, x) is increasing in x for fixed t, and taking ϕ(u) = |u|−2/3u, we have

∣∣f(t, x)
∣∣ ≥ ∣∣f(t, sgnx)∣∣|x|1/3, |x| ≥ 1,

∫±∞ du

g
(
ϕ(u)

) =
∫±∞ du

u5/3
< ∞.

(3.24)
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On the other hand, we obtain

∫∞

1
a(t)g

(∫∞

t

∣
∣f(s, c)

∣
∣Δs

)
Δt =

∫∞

1

1
t

(∫∞

t

s3|c|7/3
1 + s3|c|2

Δs

)5

Δt

≤ (a − 1)6|c|35/3
∞∑

n=0

( ∞∑

r=n

a4r

1 + a3r |c|2
)5

= ∞,

(3.25)

that is, (3.3) holds. Hence, system (3.22) is oscillatory by Theorem 3.1.

Example 3.6. Consider the system:

xΔ(t) = y(t), yΔ(t) = −b(t)|xσ(t)|λ sgnxσ(t) (3.26)

on a time scale T which contains only isolated points and is unbounded above. Here, a(t) =
1, g(y) = y, 0 < λ < 1, f(t, x) = b(t)|x|λ sgnx, b(t) is a nonnegative rd-continuous function
on [t0,∞)

T
.

We take ϕ(x) = |x|λ−1x, 0 < |x| ≤ 1, then all conditions of Theorem 3.2 are satisfied.
Hence, system (3.26) is oscillatory if and only if

∫∞

t0

σλ(t)b(t)Δt = ∞. (3.27)

On the other hand, system (3.26) can be written in the Emden-Fowler equation:

xΔΔ(t) + b(t)|xσ(t)|λ sgnxσ(t) = 0. (3.28)

Since we do not assume that λ is a quotient of odd positive integers, (3.28) includes the
equation studied in [21]. Theorem 3.2 generalizes and improves Theorem 7 of [21].
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