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Copyright q 2012 M. Karta and E. Çelik. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Numerical solution of differential-algebraic equations with Hessenberg index-3 is considered by
variational iteration method. We applied this method to two examples, and solutions have been
compared with those obtained by exact solutions.

1. Introduction

Many important mathematical models can be expressed in terms of differential-algebraic
equations (DAEs). Many physical problems are most easily initially modeled as a
system of differential-algebraic equations (DAEs) [1]. Some numerical methods have been
developed, using both BDF [1–3] and implicit Runge-Kutta methods [1], Padé and Chebysev
approximations method [4–6]. These methods are only directly suitable for low-index
problems and often require that the problem, have special structure. Although many
important applications can be solved by these methods, there is a need for more general
approaches. There are many new publication in the field of analytical sueveys such as [7–10].
The variational iteration method (VIM) was developed by He in [11]. The method is used
by many researchers in a variety of scientific fields. The method has been proved by many
authors [12–16] to be reliable and efficient for a variety of scientific applications, linear and
nonlinear as well.

The most general form of a DAE is given by

F
(
t, x, x′) = 0, (1.1)
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where ∂F/∂x′ may be singular. The rank and structure of this Jacobian matrix may depend, in
general, on the solution x(t), and for simplicity we will always assume that it is independent
of t. The important special case is of a semiexplicit DAE or an ODE with constraints:

x′ = f(t, x, z), (1.2a)

0 = g(t, x, z). (1.2b)

This is a special case of (1.1). The index is 1 if ∂g/∂z is nonsingular, because then one
differentiation of (1.2b) yields z′ in principle. For the semi-explicit index-1 DAE we can
distinguish between differential variables x(t) and algebraic variables z(t) [1]. The algebraic
variables may be less smooth than the differential variables by one derivative. In the general
case, each component of xmay contain a mix of differential and algebraic components, which
makes the numerical solution of such high-index problems much harder and riskier.

2. Special Differential-Algebraic Equations (DAEs) Forms

Most of the higher-index problems encountered in practice can be expressed as a combination
of more restrictive structures of ODEs coupled with constraints. In such systems the algebraic
and differential variables are explicitly identified for higher-index DAEs as well, and
the algebraic variables may all be eliminated using the same number of differentiations.
These are called Hessenberg forms of the DAE and are given below. In this paper, the
variational iteration method has been proposed for solving differential-algebraic equations
with Hessenberg index-3.

2.1. Hessenberg Index-1

One has

x′ = f(t, x, z),

0 = g(t, x, z).
(2.1)

Here the Jacobian matrix function gz is assumed to be nonsingular for all t. This is also often
referred to as a semi-explicit index-1 system. Semi-explicit index-1 DAEs are very closely
related to implicit ODEs.

2.2. Hessenberg Index-2

One has

x′ = f(t, x, z), (2.2a)

0 = g(t, x). (2.2b)

Here the product of Jacobians gxfz is nonsingular for all t. Note the absence of the algebraic
variables z from the constraints (2.2b). This is a pure index-2 DAE, and all algebraic variables
play the role of index-2 variables.
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2.3. Hessenberg Index-3

One has

x′ = f
(
t, x, y, z

)
,

y′ = g
(
t, x, y

)
,

0 = h
(
t, y

)
.

(2.3)

Here the product of three matrix functions hygxfz is nonsingular.
The index of a Hessenberg DAE is found, as in the general case, by differentiation.

However, here only algebraic constraints must be differentiated.

3. He’s Variational Iteration Method (VIM)

Consider the differential equation

Lu +Nu = g(x), (3.1)

where L and N are linear and nonlinear operators, respectively, and g(x) is the source
inhomogeneous term. In [11], He proposed the variational iteration method where a cor-
rection functional for (3.1) can be written as

un+1(x) = un(x) +
∫x

0
λ(t)

(
Lun(t) +Nũn(t) − g(t)

)
dt, (3.2)

where λ is a general Lagrange’s multiplier, which can be identified optimally via the
variational theory and ũn as a restricted variation which means δũn = 0. It is to be noted
that the Lagrange multiplier λ can be a constant or a function.

The variational iterationmethod should be employed by following two essential steps.
It is required first to determine the Lagrange multiplier λ that can be identified optimally via
integration by parts and by using a restricted variation. Having λ determined, an iteration
formula, without restricted variation, should be used for the determination of the successive
approximations un+1(x), n ≥ 0, of the solution u(x). The zeroth approximation u0 can be any
selective function. However, using the initial values u(0), u′(0), and u′′(0) are preferably used
for the selective zeroth approximation u0 as will be seen later. Consequently, the solution is
given by

un(x) = lim
n→∞

un(x). (3.3)

3.1. First-Order ODEs

We first start our analysis by studying the first-order linear ODE of a standard form

u′ + p(x)u = q(x), u(0) = α. (3.4)
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The VIM admits the use of the correction functional for this equation by

un+1(x) = un(x) +
∫x

0
λ(t)

(
u′
n(t) + p(t)ũn(t) − g(t)

)
dt, (3.5)

where λ is the lagrange multiplier, that in this method may be a constant or a function, and
ũn is a restricted value where δũn = 0.

Taking the variation of both sides of (3.5) with respect to the independent variable un

we have

δun+1(x) = δun(x) + δ

(∫x

0
λ(t)

(
u′
n(t) + p(t)ũn(t) − q(t)dt

)
)

(3.6)

that gives

δun+1(x) = δun(t) + δ

(∫x

0
λ(t)u′

n(t)dt
)

(3.7)

obtained upon using δũn = 0 and δq(t) = 0. Integrating the integral of (3.6) by parts we obtain

δun+1 = δun + δλun(x) − δ

∫x

0
λ′undt (3.8)

or equivalently

δun+1 = δ(1 + λ|t=x)un − δ

∫x

0
λ′undt. (3.9)

The extremum condition of un+1 requires that un+1 = 0. This means that the left hand side of
(3.9) is 0, and as a result the right hand side should be 0 as well. This yields the stationary
conditions

1 + λt=x = 0,

λ′
∣∣
t=x = 0.

(3.10)

This in turn gives

λ = −1. (3.11)

Substituting this value of the lagrange multiplier into the functional (3.5) gives the iteration
formula

un+1(x) = un(x) −
∫x

0

(
u′
n(t) + p(t)un(t) − q(t)

)
dt, (3.12)
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obtained upon deleting the restriction on un that was used for the determination of λ.
Considering the given condition u(0) = α, we can select the zeroth approximation uo = α.
Using the selection into (3.12) we obtain the following successive approximations:

u0(t) = α,

u1(x) = α −
∫x

0

(
u′
0(t) + p(t)u0(t) − q(t)

)
dt,

u2(x) = u1(x) −
∫x

0

(
u′
1(t) + p(t)u1(t) − q(t)

)
dt,

u3(x) = u2(x) −
∫x

0

(
u′
2(t) + p(t)u2(t) − q(t)

)
dt,

...

un+1 = un(x) −
∫x

0

(
u′
n(t) + p(t)un(t) − q(t)

)
dt.

(3.13)

Recall that

u(x) = lim
n→∞

un+1(x), (3.14)

that may give the exact solution if a closed form solution exists, or we can use the (n + 1)th
approximation for numerical purposes.

4. Applications

Example 4.1. We first considered the following differential-algebraic equations with Hessen-
berg index-3 form:

x′
2 + x1 − 1 = 0,

xx′
2 + x′

3 + 2x2 − 2x = 0,

xx2 + x3 − ex = 0

(4.1)

with initial conditions

⎛

⎜⎜
⎝

x1(0)

x2(0)

x3(0)

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

0

−1
1

⎞

⎟⎟
⎠. (4.2)
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The exact solutions are

x1(x) = ex − 1, x2(x) = 2x − ex, x3(x) = (1 + x)ex − 2x2, (4.3)

where x2, x3 represent the differential variables and x1 represents the algebraic variables.
After three times of differentiation of (4.1)we have the following ODE system:

x′
1 = ex,

x′
2 = 2 − ex,

x′
3 = xx1 − 2x2 + x.

(4.4)

Differential-algebraic equation (DAE) is a Hessenberg index-3 form.
To solve system (4.4), we can construct following correction functionals:

x
(n+1)
1 (x) = x

(n)
1 (x) +

∫x

0
λ1(t)

(
x

′(n)
1 (t) − et

)
dt,

x
(n+1)
2 (x) = x

(n)
2 (x) +

∫x

0
λ2(t)

(
x

′(n)
2 (t) − 2 + et

)
dt,

x
(n+1)
3 (x) = x

(n)
3 (x) +

∫x

0
λ3(t)

(
x

′(n)
3 (t) − tx̃

(n)
1 + 2x̃(n)

2 − t
)
dt,

(4.5)

where λ1(t), λ2(t), and, λ3(t) are general Lagrange multipliers and x̃
(n)
1 , x̃(n)

2 denote restricted
variations, that is, δx̃(n)

1 = δx̃
(n)
2 = 0.

Making the above correct functional stationary,

δx
(n+1)
1 (x) = δx

(n)
1 (x) + δ

∫x

0
λ1(t)

(
x

′(n)
1 (t) − et

)
dt,

δx
(n+1)
2 (x) = δx

(n)
2 (x) + δ

∫x

0
λ2(t)

(
x

′(n)
2 (t) − 2 + et

)
dt,

δx
(n+1)
3 (x) = δx

(n)
3 (x) + δ

∫x

0
λ3(t)

(
x

′(n)
3 (t) − tx̃

(n)
1 (t) + 2x̃(n)

2 (t) − t
)
dt,

δx
(n+1)
1 (x) = δx

(n)
1 (x) + δλ1(t)x

(n)
1 (t)

∣∣∣
x

0
−
∫x

0
λ′1(t)δx

(n)
1 (t)dt = 0,

δx
(n+1)
2 (x) = δx

(n)
2 (x) + δλ2(t)x

(n)
2 (t)

∣∣∣
x

0
−
∫x

0
λ′2(t)δx

(n)
2 (t)dt = 0,

δx
(n+1)
3 (x) = δx

(n)
3 (x) + δλ3(t)x

(n)
3 (t)

∣∣∣
x

0
−
∫x

0
λ′3(t)δx

(n)
3 (t)dt = 0.

(4.6)
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Its stationary conditions can be obtained as follows:

λ′1(t) = λ′2(t) = λ′3(t) = 0,

1 + λ1(t)|t=x = 1 + λ2(t)|t=x = 1 + λ3(t)|t=x = 0.
(4.7)

The Lagrange multipliers can be identified as follows:

λ1(t) = λ2(t) = λ3(t) = −1, (4.8)

and the following multipliers can be obtained as

x
(n+1)
1 (x) = x

(n)
1 (x) −

∫x

0

(
x

′(n)
1 (t) − et

)
dt,

x
(n+1)
2 (x) = x

(n)
2 (x) −

∫x

0

(
x

′(n)
2 (t) − 2 + et

)
dt,

x
(n+1)
3 (x) = x

(n)
3 (x) −

∫x

0

(
x

′(n)
3 (t) − tx̃

(n)
1 + 2x̃(n)

2 − t
)
dt.

(4.9)

Beginning with x
(0)
1 (x) = 0, x(0)

2 (x) = −1, x(0)
3 (x) = 1 by the iteration formula (4.9), we have

x∗
1(x) = x +

1
2
x2 +

1
6
x3 +

1
24

x4 +
1

120
x5 +

1
720

x6 +
1

5040
x7 +

1
40320

x8 − 1
362880

x9 + · · · ,

x∗
2(x) = −1 + x − 1

2
x2 − 1

6
x3 − 1

24
x4 − 1

120
x5 − 1

720
x6 − 1

5040
x7 − 1

40320
x8 − 1

362880
x9 − · · · ,

x∗
3(x) = 1 + 2x − 1

2
x2 +

2
3
x3 +

5
24

x4 +
1
20

x5 +
7

720
x6 +

1
630

x7 +
1

4480
x8 +

1
36288

x9 + · · · .
(4.10)

Example 4.2. One has

⎛

⎜⎜
⎝

1 0 0

0 1 0

0 0 0

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

v′
1

v′
2

v′
3

⎞

⎟⎟
⎠ +

⎛

⎜⎜
⎝

1 1 x

ex x + 1 0

0 x2 0

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

v1

v2

v3

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

2x

x2 + x + 2

x3

⎞

⎟⎟
⎠ (4.11)

with initial conditions

x(0) =

⎛

⎜⎜
⎝

1

0

1

⎞

⎟⎟
⎠. (4.12)
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Table 1: Numerical solution of x1(x).

x x1(x) x∗
1(x) |x1(x) − x∗

1(x)|
0.0 0 0 0
0.1 0.105170918 0.1051709181 0.1 × 10−9

0.2 0.221402758 0.2214027582 0.2 × 10−9

0.3 0.349858808 0.3498588076 0.4 × 10−9

0.4 0.491824698 0.4918246977 0.3 × 10−9

0.5 0.648721271 0.6487212705 0.5 × 10−9

0.6 0.822118800 0.8221187987 0.13 × 10−8

0.7 1.013752707 1.013752699 0.8 × 10−8

0.8 1.225540928 1.225540897 0.31 × 10−7

0.9 1.459603111 1.459603006 0.105 × 10−6

1.0 1.718281828 1.718281527 0.301 × 10−6

+ + + ++ +++ ++ ++ + + ++ +++ +++ ++++ + + +
+
+
+
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+++ + + ++ ++

+++ ++

x

x1(x)
x∗
1(x)

0

100

200

300

400

−6 −4 −2 0 2 4 6

Figure 1: Values of x1(x) and its x∗
1(x) variational iteration.

The exact solutions are v1(x) = e−x, v2(x) = x, v3(x) = 1:

v′
1 + v1 + v2 + xv3 − 2x = 0,

v′
2 + exv1 + (x + 1)v2 − x2 − x − 2 = 0,

x2v2 − x3 = 0,

(4.13)
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Table 2: Numerical solution of x2(x).

x x2(x) x∗
2(x) |x2(x) − x∗

2(x)|
0.0 −1 −1 0
0.1 −0.905170918 −0.9051709181 0.1 × 10−9

0.2 −0.821402758 −0.8214027582 0.2 × 10−9

0.3 −0.749858808 −0.7498588076 0.4 × 10−9

0.4 −0.691824698 −0.6918246977 0.3 × 10−9

0.5 −0.648721271 −0.6487212705 0.5 × 10−9

0.6 −0.622118800 −0.6221187987 0.13 × 10−8

0.7 −0.613752707 −0.6137526992 0.78 × 10−8

0.8 −0.625540928 −0.6255408967 0.313 × 10−7

0.9 −0.659603111 −0.6596030066 0.1044 × 10−6

1.0 −0.718281828 −0.7182815256 0.3024 × 10−6

x

0−6 −4 −2 2 4 6

0

+++ ++ x2(x)
x∗
2(x)

−100

−200

−300

−400

−500

−600

Figure 2: Values of x2(x) and its x∗
2(x) variational iteration.

where v1, v2 represent the differential variables and v3 represents the algebraic variables.
After three times of differentiation of (4.11) we have the following ODE system:

v′
1 = −v1 − v2 − xv3 + 2x,

v′
2 = −exv1 − (x + 1)v2 + x2 + x + 2,

v′
3 = 0.

(4.14)

Differential-algebraic equation (DAE) is a Hessenberg index-3 form.
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Table 3: Numerical solution of x3(x).

x x3(x) x∗
3(x) |x3(x) − x∗

3(x)|
0.0 1 1 0
0.1 1.195688010 1.195688010 0
0.2 1.385683310 1.385683309 0.1 × 10−8

0.3 1.574816450 1.574816451 0.1 × 10−8

0.4 1.768554577 1.768554576 0.1 × 10−8

0.5 1.97381906 1.973081903 0.3 × 10−8

0.6 2.195390080 2.195390061 0.19 × 10−7

0.7 2.443379602 2.443379511 0.91 × 10−7

0.8 2.725973670 2.725973317 0.353 × 10−6

0.9 3.053245911 3.053244751 0.1160 × 10−5

1.0 3.436563656 3.436560295 0.3361 × 10−5

−6 −4 −2 0 2 4 6

10000

8000

6000

4000

2000

0

x

+++ ++ x3(x)
x∗
3(x)

Figure 3: Values of x3(x) and its x∗
3(x) variational iteration.

To solve system (4.14), we can construct the following correction functionals:

v
(n+1)
1 (x) = v

(n)
1 (x) +

∫x

0
λ1(t)

(
v

′(n)
1 (t) + ṽ

(n)
1 (t) + ṽ

(n)
2 (t) + tṽ

()
3 (t) − 2t

)
dt,

v
(n+1)
2 (x) = v

(n)
2 (x) +

∫x

0
λ2(t)

(
v

′(n)
2 (t) + etv

(n)
1 (t) + (t + 1)ṽ(n)

2 (t) − t2 − t − 2
)
dt,

v
(n+1)
3 (x) = v

(n)
3 (x) +

∫x

0
λ3(t)v

(n)
2 (t)dt.

(4.15)
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Table 4: Numerical solution of v1(x).

x v1(x) v∗
1(x) |v1 − v∗

1(x)|
0.0 1 1 0
0.1 0.9048374180 0.9048374181 0.1 × 10−9

0.2 0.8187307531 0.8187307532 0.1 × 10−9

0.3 0.7408182207 0.7408182206 0.1 × 10−9

0.4 0.6703200460 0.6703200461 0.1 × 10−9

0.5 0.6065306597 0.6065306595 0.2 × 10−9

0.6 0.5488116361 0.5488116345 0.16 × 10−8

0.7 0.4965853038 0.4965852966 0.72 × 10−8

0.8 0.4993289641 0.4993289365 0.276 × 10−7

0.9 0.4065696597 0.4065695710 0.887 × 10−7

1.0 0.3678794412 0.3678791888 0.2524 × 10−6

x

0−6 −4 −2 2 4 6

0

200

400

600

800

1000

+++ ++ v1(x)
v∗
1(x)

Figure 4: Values of v1(x) and its v∗
1(x) variational iteration.

By using the basic definition of the variational iteration method can obtain that

v∗
1 = 1 − x +

1
2
x2 − 1

6
x3 +

1
24

x4 − 1
120

x5 +
1
720

x6 − 1
5040

x7 +
1

40320
x8 − 1

362880
x9 + · · · ,

v∗
2 = x,

v∗
3 = 1.

(4.16)
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5. Conclusion

The method has been proposed for solving differential-algebraic equations with Hessenberg
index-3. Results show the advantages of themethod. Tables 1–4 and Figures 1–4 show that the
numerical solution approximates the exact solution very well in accordance with the above
method.
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[5] E. Çelik and M. Bayram, “On the numerical solution of differential-algebraic equations by Padé
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