
Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2012, Article ID 153542, 19 pages
doi:10.1155/2012/153542

Research Article
Generalized Projective
Synchronization between Two Different Neural
Networks with Mixed Time Delays

Xuefei Wu,1, 2 Chen Xu,3 Jianwen Feng,3
Yi Zhao,3 and Xuan Zhou4

1 College of Information and Engineering, Shenzhen University, Shenzhen 518060, China
2 School of Computer Engineering, Shenzhen Polytechnic, Shenzhen 518055, China
3 College of Mathematics and Computational Science, Shenzhen University, Shenzhen 518060, China
4 School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

Correspondence should be addressed to Chen Xu, xuchen szu@szu.edu.cn

Received 28 December 2011; Accepted 15 March 2012

Academic Editor: Taher S. Hassan

Copyright q 2012 Xuefei Wu et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

The generalized projective synchronization (GPS) between two different neural networks with
nonlinear coupling and mixed time delays is considered. Several kinds of nonlinear feedback
controllers are designed to achieve GPS between two different such neural networks. Some results
for GPS of these neural networks are proved theoretically by using the Lyapunov stability theory
and the LaSalle invariance principle.Moreover, by comparison, we determine an optimal nonlinear
controller from several ones and provide an adaptive update law for it. Computer simulations are
provided to show the effectiveness and feasibility of the proposed methods.

1. Introduction

Over the past two decades, the investigation on the synchronization of complex networks
has attracted a great deal of attention due to its potential applications in various fields, such
as physics, mathematics, secure communication, engineering, automatic control, biology,
and sociology [1–9]. In the literature, there are many widely studied synchronization
patterns, which define the correlated in-time behaviors among the nodes in a dynamical
network, for example, complete synchronization [10–12], lag synchronization [13–15], anti-
synchronization [16–18], phase synchronization [19–21], projective synchronization [22–
32], and so on. Projective synchronization reflects a kind of proportionality between
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the synchronized states, so it is an interesting research topic and has many applications. For
instance, if this proportional feature is applied to M-nary digital communication, the commu-
nication speed can be accelerated substantially. In view of this merit, many researchers throw
themselves into generalized projective synchronization.

Recent years have witnessed many written achievements on projective synchroniza-
tion between two identical complex dynamical networks [22–30]. We introduce three typical
references here. In [28], Chen et al. studied projective synchronization of time-delayed chaotic
systems in a driven-response complex network, where the nodes are not partially linear and
the scale factors are different from each other. In [29], Feng et al. investigated projective-
anticipating and projective-lag synchronization on complex dynamical networks composed
of a large number of interconnected components, in which the dynamics of the nodes of
the complex networks were time-delayed chaotic systems without the limitation of the
partial linearity. In [30], Wang et al. explored the problem of outer synchronization between
two complex networks with the same topological structure and time-varying coupling
delay with a new mixed outer synchronization behavior. In addition, a novel nonfragile
linear state feedback controller is designed to realize the mixed outer synchronization
between two networks and proved analytically by using the Lyapunov-Krasovskii stability
theory.

However, in real world, studying the phenomena of synchronizing two different
complex networks is closer to reality. The so-called different implies that the drive and
response networks have different node dynamics, different number of nodes, or different
topological structures. Recently, some related works have come out, such as [31, 32]. In [31],
Zheng et al. probed into adaptive projective synchronization between two complex networks
with different topological structures, although its systems contained time-varying delays.
Some results on topology identification were obtainedwhich can be also seen as a highlight of
this paper. In [32], the generalized projective synchronizationwith the above three differences
was investigated based on the LaSalle invariance principle. However, the model of complex
network only has linear coupling and coupling time delay.

Due to the finite information transmission and processing speeds among the units,
the connection delays in realistic modeling of many large networks with communication
must be taken into account. Therefore, it is important to study the effect of time delay
in synchronization of coupled systems. Usually, time delay involves two parts. One is the
delay inside the systems, called internal delay. The other is caused by the exchange of
information between systems referred to as coupling delay. Moreover, nonlinear functions
can display more nature phenomena. Hence, the internal delay and nonlinear functions
are introduced into the considered neural networks in this writing. What is more, the
nonlinear functions in the drive and response networks are also different. In particular,
three comparable nonlinear controllers are presented to realize the GPS based on the LaSalle
invariance principle and some basic inequalities. On the contrary, an optimal nonlinear
controller is produced eventually. In the last theorem, we use an adaptive control technique
for the optimal nonlinear controller in order to make the feedback control gain small
enough.

Notation. Throughout this paper, Rn and Rm×n denote n-dimensional Euclidean space
and the set of m × n real matrices, respectively. λmin(A) represents the smallest eigenvalue
of a symmetric matrix A. ⊗ is the Kronecker product. The superscript T of xT or AT denotes
the transpose of the vector x ∈ Rn or the matrix A ∈ Rm×n. In is identity matrix with n
nodes.
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2. Model Description and Preliminaries

Consider a general neural network with mixed time delays consisting of N1 nodes and
nonlinear couplings, which is described as follows:

ẋi(t) = −C1xi(t) +A1f1(xi(t)) + B1g1(xi(t − τ1)) +
N1∑

j=1

GijΓ1h1
(
xj(t)

)

+
N1∑

j=1

Gτ
ijΓ2h1

(
xj(t − τ2)

)
, i ∈ I1,

(2.1)

where xi(t) = (xi1(t), xi2(t), . . . , xin(t))
T ∈ Rn, (i ∈ I1 = {1, 2, . . . ,N1}) are the state variables

of the ith node at time t; C1 = diag{c11, c12, . . . , c1n} is the decay constant matrix with
c1m > 0 (m ∈ {1, 2, . . . , n}); A1 = (a1

ij)n×n and B1 = (b1ij)n×n are system matrices; f1(xi(t)) =

[f1
1 (xi1(t)), f1

2 (xi2(t)), . . . , f1
n(xin(t))]

T , g1(xi(t)) = [g1
1(xi1(t)), g1

2(xi2(t)), . . . , g1
n(xin(t))]

T and
h1(xi(t)) = [h1

1(xi1(t)), h1
2(xi2(t)), . . . , h1

n(xin(t))]
T are the continuous functions of the neurons;

the positive constants τ1 and τ2 are internal delay and coupling delay, respectively; Γ1 and
Γ2 are the inner coupling matrices at time t and t − τ2, respectively, which describe the
way of linking the components in each pair of connected two nodes; G = (Gij)N1×N1

and
Gτ = (Gτ

ij)N1×N1
are coupling configuration matrices which are not necessarily irreducible

and symmetric.
In this paper, the neural network (2.1) is used as the drive network, and the response

neural network consisting of N2 nodes is expressed by

ẏi(t) = −C2yi(t) +A2f2
(
yi(t)

)
+ B2g2

(
yi(t − τ1)

)
+

N2∑

j=1

HijΓ1h2
(
yj(t)

)

+
N2∑

j=1

Hτ
ijΓ2h2

(
yj(t − τ2)

)
+ ui(t), i ∈ I2,

(2.2)

where yi(t) = (yi1(t), yi2(t), . . . , yin(t))
T ∈ Rn, i ∈ I2 = {1, 2, . . . ,N2} are the

state variables of the ith node at time t. Without loss of generality, we suppose N1 ≥
N2 > 0. C2 = diag{c21, c22, . . . , c2n} is the decay constant matrix with c2m > 0 (m ∈
{1, 2, . . . , n}); A2 = (a2

ij)n×n and B2 = (b2ij)n×n are system matrices; f2(yi(t)) = [f2
1 (yi1(t)),

f2
2 (yi2(t)), . . . , f2

n(yin(t))]
T , g2(yi(t)) = [g2

1(yi1(t)), g2
2(yi2(t)), . . . , g2

n(yin(t))]
T and h2(yi(t)) =

[h2
1(yi1(t)), h2

2(yi2(t)), . . . , h2
n(yin(t))]

T are the continuous functions of the neurons; τ1, τ2, Γ1,
and Γ2 have the same meaning as those in (2.1). H = (Hij)N2×N2

and Hτ = (Hτ
ij)N2×N2

are
coupling configuration matrices which are not necessarily irreducible and symmetric either.

Now, two mathematical definitions for the generalized projective synchronization are
introduced as follows.

Definition 2.1. If there is a nonzero constant σ such that

lim
t→+∞

∥∥yi(t) − σxi(t)
∥∥ = 0, i ∈ I2, (2.3)

the GPS between neural networks (2.1) and (2.2) is said to be achieved. The parameter σ is
called a scaling factor.
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Definition 2.2. A continuous function f(·) : R → R is said to be the nonnegative-bound function
class, denoted as f ∈ NBF(ξ), if there exists a positive scalar ξ, such that

0 ≤ f(x) − f
(
y
)

x − y
≤ ξ (2.4)

holds for any x, y ∈ R.
The following hypothesis is used throughout the paper.

Assumption 2.3. For activation functions f1
i , f

2
i , g

1
i , g

2
i , h

1
i , h

2
i (i ∈ {1, 2, . . . , n}), there exist

positive constants θi, βi, μi, γi, πi, δi (i ∈ {1, 2, . . . , n}), such that f1
i (·) ∈ NBF(θi), f2

i (·) ∈
NBF(βi), g1

i (·) ∈ NBF(μi), g2
i (·) ∈ NBF(γi), h

1
i (·) ∈ NBF(πi), h2

i (·) ∈ NBF(δi).
For better convenience, we denote that

θ = max
1≤i≤n

{θi}; μ = max
1≤i≤n

{
μi

}
; π = max

1≤i≤n
{πi};

β = max
1≤i≤n

{
βi
}
; γ = max

1≤i≤n
{
γi
}
; δ = max

1≤i≤n
{δi}.

(2.5)

Lemma 2.4 (see [33]). For a matrix B = (bij) ∈ Rp×q, denote α(B) = (1/2)max[p, q]maxi,j |bij |,
then

xTBy ≤ α(B)
(
xTx + yTy

)
(2.6)

holds for all x ∈ Rp, y ∈ Rq.

3. GPS between Two Different Neural Networks with
Mixed Time Delays

In this section, we will make a study of GPS between two different neural networks with
mixed time delays bymeans of the LaSalle invariance principle; the, Lyapunov direct method,
and nonlinear feedback control technique.

Define the synchronization errors between the drive network (2.1) and the response
network (2.2) as ei(t) = yi(t) − σxi(t), i ∈ I2, then we have the following error system:

ėi(t) = −C2ei(t) + (C1 − C2)σxi(t) +A2f2
(
yi(t)

) − σA1f1(xi(t)) + B2g2
(
yi(t − τ1)

)

− σB1g1(xi(t − τ1)) +
N2∑

j=1

HijΓ1h2
(
yj(t)

) − σ
N1∑

j=1

GijΓ1h1
(
xj(t)

)

+
N2∑

j=1

Hτ
ijΓ2h2

(
yj(t − τ2)

) − σ
N1∑

j=1

Gτ
ijΓ2h1

(
xj(t − τ2)

)
+ ui(t), i ∈ I2.

(3.1)

Theorem 3.1. Suppose Assumption 2.3 holds; if the nonlinear controllers are chosen as follows:

ui(t) = σC2xi(t) − C1yi(t) − kiei(t) −A2f2(σxi(t)) + σA1f1

(
yi(t)
σ

)
− B2g2(σxi(t − τ1))

+ σB1g1

(
yi(t − τ1)

σ

)
−

N2∑

j=1

[
HijΓ1h2

(
σxj(t)

)
+Hτ

ijΓ2h2
(
σxj(t − τ2)

)]
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+ σ
N2∑

j=1

GijΓ1h1

(
yj(t)
σ

)
+ σ

N2∑

j=1

Gτ
ijΓ2h1

(
yj(t − τ2)

σ

)

+ σ
N1∑

j=N2+1

[
GijΓ1h1

(
xj(t)

)
+Gτ

ijΓ2h1
(
xj(t − τ2)

)]
, i ∈ I2,

(3.2)

where ki are the feedback control gains, let k = mini∈I2{ki}, and when

k ≥ −λmin(C1 + C2) + α(A2)
(
β2 + 1

)
+ α(B2)

(
1 + γ2

)
+ α(A1)

(
|σ| + θ2

|σ|

)

+ α(B1)|σ| + α(H ⊗ Γ1)
(
δ2 + 1

)
+ α(Hτ ⊗ Γ2)

(
1 + δ2

)

+ α(G ⊗ Γ1)

(
|σ| + π2

|σ|

)
+ α(Gτ ⊗ Γ2)|σ| +

α(B1)μ2

|σ| +
α(Gτ ⊗ Γ2)π2

|σ| + ε1,

(3.3)

where ε1 is a positive constant, then the GPS between the two neural networks (2.1) and (2.2) can be
achieved.

Proof. Consider the Lyapunov functional candidate

V (t) =
1
2

N2∑

i=1

eTi (t)ei(t) +

(
α(B1)μ2

|σ| + α(B2)γ2
)

N2∑

i=1

∫ t

t−τ1
eTi (s)ei(s)ds

+

(
α(Gτ ⊗ Γ2)π2

|σ| + α(Hτ ⊗ Γ2)δ2

)
N2∑

i=1

∫ t

t−τ2
eTi (s)ei(s)ds.

(3.4)

Calculating V̇ with respect to t along the solution of (3.1), and noticing the nonlinear feedback
controllers (3.2), one has

V̇ (t)|(3) =
N2∑

i=1

eTi (t)ėi(t) +

(
α(B1)μ2

|σ| + α(B2)γ2
)

N2∑

i=1

[
eTi (t)ei(t) − eTi (t − τ1)ei(t − τ1)

]

+

(
α(Gτ ⊗ Γ2)π2

|σ| + α(Hτ ⊗ Γ2)δ2

)
N2∑

i=1

[
eTi (t)ei(t) − eTi (t − τ2)ei(t − τ2)

]

=
N2∑

i=1

eTi (t)

⎡

⎣− (C1 + C2)ei(t) − kiei(t) +A2
[
f2
(
yi(t)

) − f2(σxi(t))
]

+ B2
[
g2
(
yi(t − τ1)

) − g2(σxi(t − τ1))
]
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+
N2∑

j=1

HijΓ1
[
h2
(
yj(t)

) − h2
(
σxj(t)

)]

+
N2∑

j=1

Hτ
ijΓ2
[
h2
(
yj(t − τ2)

) − h2
(
σxj(t − τ2)

)]

+ σA1

[
f1

(
yi(t)
σ

)
− f1(xi(t))

]
+ σB1

[
g1

(
yi(t − τ1)

σ

)
− g1(xi(t − τ1))

]

+ σ
N2∑

j=1

GijΓ1
[
h1

(
yj(t)
σ

)
− h1
(
xj(t)

)]

+σ
N2∑

j=1

Gτ
ijΓ2
[
h1

(
yj(t − τ2)

σ

)
− h1
(
xj(t − τ2)

)]
⎤

⎦

+

(
α(B1)μ2

|σ| + α(B2)γ2
)

N2∑

i=1

[
eTi (t)ei(t) − eTi (t − τ1)ei(t − τ1)

]

+

(
α(Gτ ⊗ Γ2)π2

|σ| + α(Hτ ⊗ Γ2)δ2

)
N2∑

i=1

[
eTi (t)ei(t) − eTi (t − τ2)ei(t − τ2)

]
.

(3.5)

By utilizing Lemma 2.4 and Assumption 2.3, we have the following four inequalities: the first
one is

N2∑

i=1

eTi (t)A2
(
f2
(
yi(t)

) − f2(σxi(t))
)

≤ α(A2)
N2∑

i=1

[
eTi (t)ei(t) +

(
f2
(
yi(t)

) − f2(σxi(t))
)T(

f2
(
yi(t)

) − f2(σxi(t))
)]

≤ α(A2)
(
β2 + 1

)N2∑

i=1

eTi (t)ei(t).

(3.6)

Denote H2(e(t)) = [(h2(y1(t)) − h2(σx1(t)))
T , (h2(y2(t)) − h2(σx2(t)))

T , . . . , (h2(yN2(t)) −
h2(σxN2(t)))

T ]T and e(t) = (eT1 (t), e
T
2 (t), . . . , e

T
N2

(t))T , and then we can get the second
inequality:

N2∑

i=1

N2∑

j=1

eTi (t)HijΓ1
(
h2
(
yj(t)

) − h2
(
σxj(t)

))

= eT (t)(H ⊗ Γ1)H2(e(t))

≤ α(H ⊗ Γ1)
[
eT (t)e(t) +HT

2 (e(t))H2(e(t))
]
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= α(H ⊗ Γ1)
N2∑

i=1

[
eTi (t)ei(t) +

(
h2
(
yi(t)

) − h2(σxi(t))
)T(

h2
(
yi(t)

) − h2(σxi(t))
)]

≤ α(H ⊗ Γ1)
(
δ2 + 1

)N2∑

i=1

eTi (t)ei(t),

(3.7)

and the third one is as follows:

N2∑

i=1

eTi (t)(σA1)
[
f1

(
yi(t)
σ

)
− f1(xi(t))

]

≤ |σ|α(A1)
N2∑

i=1

[
eTi (t)ei(t) +

(
f1

(
yi(t)
σ

)
− f1(xi(t))

)T(
f1

(
yi(t)
σ

)
− f1(xi(t))

)]

≤ |σ|α(A1)
N2∑

i=1

[
eTi (t)ei(t) +

θ2

σ2
eTi (t)ei(t)

]

=

(
|σ| + θ2

|σ|

)
α(A1)

N2∑

i=1

eTi (t)ei(t).

(3.8)

Let H1(e(t)) = [(h1(y1(t)/σ) − h1(x1(t)))
T , (h1(y2(t)/σ) − h1(x2(t)))

T , . . . , (h1(yN2(t)/σ) −
h1(xN2(t)))

T ]T ; thus, we have the last one:

σ
N2∑

i=1

N2∑

j=1

eTi (t)GijΓ1
[
h1

(
yj(t)
σ

)
− h1
(
xj(t)

)]

= σeT(t)(G ⊗ Γ1)H1(e(t))

≤ |σ|α(G ⊗ Γ1)
N2∑

i=1

[
eTi (t)ei(t) +

(
h1

(
yi(t)
σ

)
− h1(xi(t))

)T(
h1

(
yi(t)
σ

)
− h1(xi(t))

)]

≤ |σ|α(G ⊗ Γ1)
N2∑

i=1

[
eTi (t)ei(t) +

π2

σ2
eTi (t)ei(t)

]

=

(
|σ| + π2

|σ|

)
α(G ⊗ Γ1)

N2∑

i=1

eTi (t)ei(t).

(3.9)

Similarly, we can obtain the following four inequalities:

N2∑

i=1

eTi (t)B2
[
g2
(
yi(t − τ1)

) − g2(σxi(t − τ1))
]

≤ α(B2)
N2∑

i=1

[
eTi (t)ei(t) + γ2eTi (t − τ1)ei(t − τ1)

]
,

(3.10)
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N2∑

i=1

N2∑

j=1

eTi (t)H
τ
ijΓ2
(
h2
(
yj(t − τ2)

) − h2
(
σxj(t − τ2)

))

≤ α(Hτ ⊗ Γ2)
N2∑

i=1

[
eTi (t)ei(t) + δ2eTi (t − τ2)ei(t − τ2)

]
,

(3.11)

N2∑

i=1

eTi (t)(σB1)
[
g1

(
yi(t − τ1)

σ

)
− g1(xi(t − τ1))

]

≤ |σ|α(B1)
N2∑

i=1

[
eTi (t)ei(t) +

μ2

σ2
eTi (t − τ1)ei(t − τ1)

]
,

(3.12)

σ
N2∑

i=1

N2∑

j=1

eTi (t)G
τ
ijΓ2
[
h1

(
yj(t − τ2)

σ

)
− h1
(
xj(t − τ2)

)]

≤ |σ|α(Gτ ⊗ Γ2)
N2∑

i=1

[
eTi (t)ei(t) +

π2

σ2
eTi (t − τ2)ei(t − τ2)

]
.

(3.13)

Substituting (3.6)–(3.13) into (3.5), we can obtain

V̇ (t) ≤
[
−λmin(C1 + C2) + α(A2)

(
β2 + 1

)
+ α(B2)

(
1 + γ2

)
+ α(A1)

(
|σ| + θ2

|σ|

)
+ α(B1)|σ|

+ α(H ⊗ Γ1)
(
δ2+1

)
+α(Hτ ⊗ Γ2)

(
1+δ2

)
+α(G ⊗ Γ1)

(
|σ|+π2

|σ|

)
+α(Gτ ⊗ Γ2)|σ|− k

+
α(B1)μ2

|σ| +
α(Gτ ⊗ Γ2)π2

|σ|

]
eT (t)e(t),

(3.14)

Taking account of condition (3.3), we have V̇ (t) ≤ −ε1eT (t)e(t) ≤ 0.
Clearly, S = {ei(t) = 0, ki = k, i ∈ I2} is the largest invariant set contained in

{V̇ (t) = 0} = {ei(t) = 0, i ∈ I2}. In terms of the LaSalle invariant principle, the trajectory
asymptotically converges to the largest invariant set Swith any initial value of (3.1), namely,
limt→+∞‖ei(t)‖ = 0, i ∈ I2. Hence, the GPS between neural networks (2.1) and (2.2) is
realized. The proof is completed.

In Theorem 3.1, the generalized projective synchronization of two different neural
networks with time delay has been investigated by choosing suitable nonlinear feedback
controllers. However, it requires feedback control gains to be large in ui given by (3.2), which
is not practical. Hence, it is desirable to improve the scheme for reducing the feedback control
gains to be as small as possible. Now, we give the following improvement scheme.
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Theorem 3.2. Suppose Assumption 2.3 holds; if the nonlinear controllers are chosen as follows:

ui(t) = σ(C2 − C1)xi(t) −A2f2(σxi(t)) + σA1f1(xi(t)) − B2g2(σxi(t − τ1))

+ σB1g1(xi(t − τ1)) −
N2∑

j=1

[
HijΓ1h2

(
σxj(t)

)
+Hτ

ijΓ2h2
(
σxj(t − τ2)

)]

+ σ
N1∑

j=1

[
GijΓ1h1

(
xj(t)

)
+Gτ

ijΓ2h1
(
xj(t − τ2)

)] − kiei(t), i ∈ I2,

(3.15)

where ki are the feedback gains, denote k = mini∈I2{ki}, and if

k ≥ −λmin(C2) + α(A2)
(
β2 + 1

)
+ α(B2)

(
1 + γ2

)

+ α(H ⊗ Γ1)
(
δ2 + 1

)
+ α(Hτ ⊗ Γ2)

(
1 + δ2

)
+ ε2,

(3.16)

where ε2 is a positive constant, then the GPS between neural networks (2.1) and (2.2) can be achieved.

Proof. Select the following Lyapunov functional candidate:

V (t) =
1
2

N2∑

i=1

eTi (t)ei(t) + α(B2)γ2
N2∑

i=1

∫ t

t−τ1
eTi (s)ei(s)ds + α(Hτ ⊗ Γ2)δ2

N2∑

i=1

∫ t

t−τ2
eTi (s)ei(s)ds.

(3.17)

Differentiating V with respect to time along (3.1), we have

dV

dt
|(3) =

N2∑

i=1

eTi (t)ėi(t) + α(B2)γ2
N2∑

i=1

[
eTi (t)ei(t) − eTi (t − τ1)ei(t − τ1)

]

+ α(Hτ ⊗ Γ2)δ2
N2∑

i=1

[
eTi (t)ei(t) − eTi (t − τ2)ei(t − τ2)

]

=
N2∑

i=1

eTi (t)

⎡

⎣ − C2ei(t) − kiei(t) +A2
(
f2
(
yi(t)

) − f2(σxi(t))
)

+ B2
(
g2
(
yi(t − τ1)

) − g2(σxi(t − τ1))
)
+

N2∑

j=1

HijΓ1
(
h2
(
yj(t)

) − h2
(
σxj(t)

))

+
N2∑

j=1

Hτ
ijΓ2
(
h2
(
yj(t − τ2)

) − h2
(
σxj(t − τ2)

))
⎤

⎦
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+ α(B2)γ2
N2∑

i=1

[
eTi (t)ei(t) − eTi (t − τ1)ei(t − τ1)

]

+ α(Hτ ⊗ Γ2)δ2
N2∑

i=1

[
eTi (t)ei(t) − eTi (t − τ2)ei(t − τ2)

]
.

(3.18)

Substituting (3.6), (3.7), (3.10), and (3.11) into (3.18), we can obtain

V̇ (t) ≤
[
−λmin(C2) + α(A2)

(
β2 + 1

)
+ α(B2)

(
1 + γ2

)

+α(H ⊗ Γ1)
(
δ2 + 1

)
+ α(Hτ ⊗ Γ2)

(
1 + δ2

)
− k
]
eT (t)e(t).

(3.19)

By condition (3.16), we have V̇ (t) ≤ −ε2eT(t)e(t) ≤ 0. Similarly, in light of the proof
of Theorem 3.1, the GPS between neural networks (2.1) and (2.2) can be achieved under
nonlinear controllers (3.15) too.

Remark 3.3. Comparing the infimum of the feedback control gain k in Theorem 3.2 with that
in Theorem 3.1 implies that kres = −λmin(C1) + α(A1)(|σ| + θ2/|σ|) + α(B1)|σ| + α(G ⊗ Γ1)(|σ| +
π2/|σ|) + α(Gτ ⊗ Γ2)|σ| + α(B1)μ2/|σ| + α(Gτ ⊗ Γ2)π2/|σ| is the extra part compared with the
needed feedback gain in Theorem 3.2. Usually, it can be considered that kres > 0, which will
be demonstrated in simulation.

Furthermore, in order to obtain much smaller feedback control gains, we choose more
suitable controllers as follows.

Theorem 3.4. Suppose Assumption 2.3 holds. Under the nonlinear controllers

ui(t) = σC2xi(t) − C1yi(t) −A2f2(σxi(t)) + σA1f1(xi(t)) − B2g2(σxi(t − τ1))

+ σB1g1(xi(t − τ1)) −
N2∑

j=1

[
HijΓ1h2

(
σxj(t)

)
+Hτ

ijΓ2h2
(
σxj(t − τ2)

)]

+ σ
N1∑

j=1

[
GijΓ1h1

(
xj(t)

)
+Gτ

ijΓ2h1
(
xj(t − τ2)

)] − kiei(t), i ∈ I2,

(3.20)

where ki are the feedback control gains, denote k = mini∈I2{ki}, and if

k ≥ −λmin(C1 + C2) + α(A2)
(
β2 + 1

)
+ α(B2)

(
1 + γ2

)
+ α(H ⊗ Γ1)

(
δ2 + 1

)

+ α(Hτ ⊗ Γ2)
(
1 + δ2

)
+ ε3,

(3.21)

where ε3 is some positive constant, then the GPS between the two neural networks (2.1) and (2.2) can
be achieved.
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Proof. Choose the same Lyapunov functional as (3.17) in the proof of Theorem 3.2, and then
we can get

dV

dt
| (3) =

N2∑

i=1

eTi (t)

⎡

⎣− (C1 + C2)ei(t) − kiei(t) +A2
(
f2
(
yi(t)

) − f2(σxi(t))
)

+ B2
(
g2
(
yi(t − τ1)

) − g2(σxi(t − τ1))
)
+

N2∑

j=1

HijΓ1
(
h2
(
yj(t)

) − h2
(
σxj(t)

))

+
N2∑

j=1

Hτ
ijΓ2
(
h2
(
yj(t − τ2)

) − h2
(
σxj(t − τ2)

))
⎤

⎦

+ α(B2)γ2
N2∑

i=1

[
eTi (t)ei(t) − eTi (t − τ1)ei(t − τ1)

]

+ α(Hτ ⊗ Γ2)δ2
N2∑

i=1

[
eTi (t)ei(t) − eTi (t − τ2)ei(t − τ2)

]
.

(3.22)

Combining (3.6), (3.7), (3.10), (3.11), and (3.22), we could change inequality (3.19)
into

V̇ (t) ≤
[
−λmin(C1 + C2) + α(A2)

(
β2 + 1

)
+ α(B2)

(
1 + γ2

)

+α(H ⊗ Γ1)
(
δ2 + 1

)
+ α(Hτ ⊗ Γ2)

(
1 + δ2

)
− k
]
eT(t)e(t).

(3.23)

Taking into account condition (3.21), the GPS can be realized under nonlinear controllers
(3.18).

Remark 3.5. It is easy to find that the infimum of k in (3.21) has one more term −λmin(C1) than
(3.16). Because C1 is diagonally positive definite, −λmin(C1) < 0 demonstrates the required k
in Theorem 3.4 is smaller than the one in Theorem 3.2.

If the two neural networks (2.1) and (2.2) have identical number of nodes, node
dynamics, and topological structure, that is, N1 = N2, C1 = C2, A1 = A2, B1 = B2, f1 = f2,
g1 = g2, Gij = Hij , Gτ

ij = Hτ
ij , and Γ1 = Γ2, the error system (3.1) can be rewritten as follows:

ėi(t) = −C1ei(t) +A1
[
f1
(
yi(t)

) − σf1(xi(t))
]
+ B1

[
g1
(
yi(t − τ1)

) − σg1(xi(t − τ1))
]

+ ui(t) +
N1∑

j=1

GijΓ1
[
h1
(
yj(t)

) − σh1
(
xj(t)

)]

+
N1∑

j=1

Gτ
ijΓ2
[
h2
(
yj(t − τ2)

) − σh2
(
xj(t − τ2)

)]
, i ∈ I2.

(3.24)

Thus, we can obtain the following corollary for synchronizing the error system (3.24).
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Corollary 3.6. Suppose the two neural networks (2.1) and (2.2) have identical number of nodes, node
dynamics, and topological structure. If the following nonlinear controllers:

ui(t) = −A1
[
f1(σxi(t)) − σf1(xi(t))

] − B1
[
g1(σxi(t − τ1)) − σg1(xi(t − τ1))

]

− kiei(t) −
N1∑

j=1

GijΓ1
[
h1
(
yj(t)

) − σh1
(
xj(t)

)]

−
N1∑

j=1

Gτ
ijΓ2
[
h2
(
yj(t − τ2)

) − σh2
(
xj(t − τ2)

)]
, i ∈ I1,

(3.25)

are employed, where ki are the feedback control gains, denote k = mini∈I2{ki}, and when k ≥ −C1 +
α(A1)(β2 + 1) + α(B1)(1 + γ2), the error system (3.24) can be synchronized.

Proof. We construct the Lyapunov function as follows:

V (t) =
1
2

N2∑

i=1

eTi (t)ei(t) + α(B1)γ2
N2∑

i=1

∫ t

t−τ1
eTi (s)ei(s)ds. (3.26)

We can conclude that k ≥ −C1 + α(A1)(β2 + 1) + α(B1)(1 + γ2) by using the same method as
that in the above theorems.

Furthermore, let us assume that system (3.24) is without time-delay terms; then,
system (3.24) reduces to

ėi(t) = −C1ei(t) +A1
[
f1
(
yi(t)

) − σf1(xi(t))
]

+
N1∑

j=1

GijΓ1
[
h1
(
yj(t)

) − σh1
(
xj(t)

)]
+ ui(t), i ∈ I1.

(3.27)

Then, a simpler corollary can be produced.

Corollary 3.7. The following controllers:

ui(t) = −A1
[
f1(σxi(t)) − σf1(xi(t))

] −
N1∑

j=1

GijΓ1
[
h1
(
yj(t)

) − σh1
(
xj(t)

)] − kiei(t), i ∈ I1,

(3.28)

can be applied to synchronize the system (3.27)when the feedback control gain k satisfies the inequality
k ≥ −C1 + α(A1)(β2 + 1).

Similarly, in the drive network (2.1) and the response network (2.2), if A1 = IN1 , A2 = IN2 ,
B1 = B2 = 0, h1, h2 are linear functions and G = H = 0, the error system (3.1) can be rewritten as
follows:

ėi(t) = −(C1 + C2)ei(t) + f2(ei(t)) +
N2∑

j=1

Hτ
ijσ2ei(t − τ2) − kiei(t), i ∈ I2. (3.29)
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Thus, we can obtain the following corollary for synchronizing the error system (3.24).

Corollary 3.8. By applying the nonlinear controllers

ui(t) = σC2xi(t) − C1yi(t) − f2(σxi(t)) + σf1(xi(t)) − σ
N2∑

j=1

Hτ
ijΓ2xj(t − τ2)

+ σ
N1∑

j=1

Gτ
ijΓ2xj(t − τ2) − kiei(t), i ∈ I2,

(3.30)

where ki are the feedback control gains, denote k = mini∈I2{ki}, and when k ≥ −λmin(C1 + C2) +
2α(Hτ ⊗ Γ2) + 1, the GPS between the two neural networks (2.1) and (2.2) can be achieved.

Proof. We construct the Lyapunov function as follows:

V (t) =
1
2

N2∑

i=1

eTi (t)ei(t) + α
(
Hτ ⊗ Γ2

)∫ t

t−τ2
eTi (s)ei(s)ds. (3.31)

We can conclude that k ≥ −λmin(C1 +C2) + 2α(Hτ ⊗ Γ2) + 1 by using the same method as that
in the above theorems. Meanwhile, this conclusion also contains the result of [32].

It is easy to see that the theoretical feedback gains given in the above results
(Theorems 3.1–3.4) are too conservative, usually much larger than the needed value; clearly,
it is desirable to make the feedback gains as small as possible. Here, the adaptive technique
is adopted to achieve this goal.

Theorem 3.9. Suppose that Assumption 2.3 holds and the feedback controllers are chosen as (3.20).
If the feedback control gains satisfy the update law

k̇i = 
ie
T
i (t)ei(t), i ∈ I2, (3.32)

(
i are arbitrary positive constants), then the GPS between the neural network (2.1) and (2.2) can be
realized.

Proof. We construct the Lyapunov function as follows:

V (t) =
1
2

N2∑

i=1

eTi (t)ei(t) + α(B2)γ2
N2∑

i=1

∫ t

t−τ1
eTi (s)ei(s)ds +

1
2

N2∑

i=1

1

i

(
ki − 


)2

+ α(Hτ ⊗ Γ2)δ2
N2∑

i=1

∫ t

t−τ2
eTi (s)ei(s)ds,

(3.33)

where 
 is a sufficient large positive constant to be determined.
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Let

V1(t) =
1
2

N2∑

i=1

1

i

(
ki − 


)2
. (3.34)

Then we have

V̇1(t) =
N2∑

i=1

(
ki − 


)
eTi (t)ei(t). (3.35)

Combining (3.18) and (3.35)with (3.33), one can obtain the following inequality:

V̇ (t) ≤
[
−λmin(C1 + C2) + α(A2)

(
β2 + 1

)
+ α(B2)

(
1 + γ2

)

+α(H ⊗ Γ1)
(
δ2 + 1

)
+ α(Hτ ⊗ Γ2)

(
1 + δ2

)
− 

]
eT (t)e(t).

(3.36)

Therefore, according to the above proof of the three theorems, it is easy to verify the
conclusion of Theorem 3.9.

4. Numerical Simulations

In this section, several examples are given to verify the conclusions established above. Con-
sider the two neural networks (2.1) and (2.2)with the following parameters

C1 =

[
1 0

0 1

]
, C2 =

[
0.97 0

0 1.1

]
, A1 =

[
2 −0.11
−5 3.2

]
, A2 =

[
2.1 −0.1
−5.1 3.2

]
,

B1 =

[ −1.6 0.1

−0.18 −2.4

]
, B2 =

[ −1.5 0

−0.15 −2.3

]
, Γ1 = Γ2 =

[
1 0

0 1

]
,

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−5 1 1 1 1 1

1 −5 1 1 1 1

1 1 −3 1 0 0

1 1 1 −4 1 0

1 1 0 1 −4 1

1 1 0 0 1 −3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Gτ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 1 0 0 0

0 −1 0 0 1 0

0 1 −1 0 0 0

0 0 1 −1 0 0

0 1 0 0 −1 0

0 1 0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

H =

⎡
⎢⎢⎢⎢⎢⎣

−3 1 1 1

1 −3 1 1

1 1 −3 1

1 1 1 −3

⎤
⎥⎥⎥⎥⎥⎦
, Hτ =

⎡
⎢⎢⎢⎢⎢⎣

−1 0 1 0

1 −1 0 0

0 1 −1 0

0 1 0 −1

⎤
⎥⎥⎥⎥⎥⎦
,

(4.1)

and g
j

i (x) = f
j

i (x) = tanh(x(t)) for j = 1, 2, N1 = 6 andN2 = 4.
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Figure 1: (a) Trajectory of the drive system. (b) trajectory of the response systemwith α = 0.7. (c) trajectory
of the response system with α = −0.7. (d) Trajectory of the response system with α = −1.

Simulation 1

The four graphs in Figure 1 represent the motion trace of drive and response systems.
Comparing Figures 1(b), 1(c), and 1(d) with Figure 1(a), we can find a trivial conclusion.
Because the parameters in response system and the ones in drive system are very similar,
the shape of the motion orbit of response systems looks like the one of drive system. But the
biases between the four traces and the “0” orbit is rather different.

Simulation 2

Setting θ = 1, μ = 1, π = 1, β = 1, γ = 1, δ = 1, it is easy to verify that Assumption 2.3 holds.
Choose xij(t) = 100(12 − 3i − j) and xij(t) = 100(−8 + 3i + j) for t ≤ 0 as the initial values and
define

Ex =
∑

i>j

∥∥∥xi(t) − xj(t)
∥∥∥, Ey =

∑

i>j

∥∥∥yi(t) − yj(t)
∥∥∥, Exy =

6∑

i=1

4∑

j=1

∥∥∥xi(t) + yj(t)
∥∥∥, (4.2)

for measuring the process of projective synchronization.
In Figure 2, the top three plots present the synchronization process of drive system

with α = 0.7,−0.7,−1, respectively; the middle three graphs demonstrate the change trend of
Ey as t → ∞ with the former three projective factors; the bottom three ones represent the
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Figure 2: The change process of Ex, Ey , and Exy as time t → ∞ for different projective factors.

synchronization trace of the two neural networks for the three αs. The nine figures say that,
for different α, the required synchronization times are all in the interval [4, 6]. However, the
change amplitudes of the nine curves show obvious differences. By the same way, for the
three projective factors, we can provide the three infimums of feedback control gains that are
k ≥ 40.65 with α = 0.7, k ≥ 40.65 with α = −0.7 and k ≥ 39.33 with α = −1, respectively.

Remark 4.1. The reason why we apply three different nonlinear controllers for obtaining
Theorems 1, 2, and 3 is that we want to find smaller feedback control gain. By computing,
we have k ≥ 40.65 for Theorem 3.1, k ≥ 21.43 for Theorem 3.2, and k ≥ 20.43 for Theorem 3.4,
respectively. It shows that our conjecture and simulation meet these results.

Simulation 3

In this simulation, we want to verify the synchronization process of the two neural networks
when an adaptive control is applied to the response system. Figure 3 shows the time
evolution ofEx,Ey,Exy and k(t), as well as the fourth plot Figure 3(d) tell us that the feedback
control gain trends towards 11.15 approximately as t → ∞ which is far lower than 39.33.
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Figure 3: (a), (b), and (c) show the change process of Ex, Ey , and Exy with the adaptive control (3.32); (d)
shows the change curve of the adaptive control gain.

Actually, this proves that the adaptive control method can diminish the feedback control
gain.

5. Conclusion

The GPS between two neural networks with mixed time delays and different parameters was
investigated in this paper. By means of the Lyapunov stability theories, the GPS was realized
under control of three nonlinear controllers. By comparison, we found that the nonlinear
controller in Theorem 3.4 was simpler and easier to ensure that the GPS was achieved.
Therefore, it was also applied in practical design. According to the optimal nonlinear
controller, an adaptive update technique was designed to guarantee that the feedback control
gain was sufficiently small. Eventually, several numerical simulations verified the validity of
those results.
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