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We discuss stochastic functional differential equation under regime switching dx(t) =
f(xt, r(t), t)dt + q(r(t))x(t)dW1(t) + σ(r(t))|x(t)|βx(t)dW2(t). We obtain unique global solution of
this system without the linear growth condition; furthermore, we prove its asymptotic ultimate
boundedness. Using the ergodic property of the Markov chain, we give the sufficient condition of
almost surely exponentially stable of this system.

1. Introduction

Recently, many papers devoted their attention to the hybrid system, they concerned that how
to change if the system undergoes the environmental noise and the regime switching. For the
detailed understanding of this subject, [1] is good reference.

In this paper we will consider the following stochastic functional equation:

dx(t) = f(xt, r(t), t)dt + q(r(t))x(t)dW1(t) + σ(r(t))|x(t)|βx(t)dW2(t). (1.1)

The switching between these N regimes is governed by a Markovian chain r(t) on the
state space S = {1, 2, . . . ,N}. xt ∈ C([−τ, 0];Rn) is defined by xt(θ) = x(t + θ); θ ∈
[−τ, 0]. C([−τ, 0];Rn) denote the family of continuous functions from [−τ, 0] to Rn, which
is a Banach space with the norm ‖φ‖ = sup−τ≤θ≤0|φ(θ)|. f : C([−τ, 0];Rn) × S × R+ → Rn

satisfies local Lipschitz condition as follows.

Assumption A. For each integer k ≥ 1, . . ., there is a positive numberHk such that
∣
∣f
(

ϕ1, k
) − f(ϕ2, k

)∣
∣ ≤ Hk

∥
∥ϕ1 − ϕ2

∥
∥ (1.2)

for all t ≥ 0 and those ϕ1, ϕ2 ∈ C([−τ, 0];Rn)with ‖ϕ1‖ ∨ ‖ϕ2‖ ≤ k.
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Throughout this paper, unless otherwise specified, we let (Ω,F, {Ft}t≥0, P) be a
complete probability space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e., it
is right continuous and F0 contains all P-null sets). LetWi(t) (i = 1, 2), t ≥ 0, be the standard
Brownian motion defined on this probability space. We also denote by Rn

+ = {x ∈ Rn : xi >
0 for all 1 ≤ i ≤ n}. Let r(t) be a right-continuous Markov chain on the probability space
taking values in a finite state space S = {1, 2, . . . ,N} with the generator Γ = (γuv)N×N given
by

P{r(t + δ) = v | r(t) = u} =

{

γuvδ + o(δ), if u/=v,
1 + γuvδ + o(δ), if u = v,

(1.3)

where δ > 0. Here γuv is the transition rate from u to v and γuv ≥ 0 if u/=v while

γuu = −
∑

v /=u
γuv. (1.4)

We assume that the Markov chain r(·) is independent on the Brownian motionWi(·), i = 1, 2;
furthermore,W1 andW2 are independent.

In addition, throughout this paper, let C2,1(Rn × [−τ,∞) × S;R+) denote the family of
all positive real-valued functions V (x, t, k) on Rn × [−τ,∞) × S which are continuously twice
differentiable in x and once in t. If for the following equation

dx(t) = f(xt, r(t), t)dt + g(x, r(t), t)dB(t), (1.5)

there exists V ∈ C2,1(Rn × [−τ,∞) × S;R+), define an operator 
V from C([−τ, 0];Rn) ×R+ × S

to R by


V
(

ϕ, t, k
)

= Vt
(

ϕ(0), t, k
)

+ Vx
(

ϕ(0), t, k
)

f
(

ϕ, k, t
)

+
1
2
trace

[

gT
(

ϕ(0), k, t
)

Vxx
(

ϕ(0), k, t
)

g
(

ϕ(0), k, t
)]

+
N∑

l=1

γklV
(

ϕ(0), t, l
)

,

(1.6)

where

Vt(x, t, k) =
∂V (x, t, k)

∂t
, Vx(x, t, k) =

(
∂V (x, t, k)

∂x1
, . . . ,

∂V (x, t, k)
∂xn

)

,

Vxx(x, t, k) =

(

∂V 2(x, t, k)
∂xi∂xj

)

n×n
.

(1.7)

Here we should emphasize that [1, Page 305] the operator 
V (thought as a single notation
rather than 
 acting on V ) is defined on C([−τ, 0];Rn) × R+ × S although V is defined on
Rn × [−τ,∞) × S.
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2. Global Solution

Firstly, in this paper, we are concerned about that the existence of global solution of stochastic
functional differential equation (1.1).

In order to have a global solution for any given initial data for a stochastic functional
equation, it is usually required to satisfy the local Lipschitz condition and the linear growth
condition [1, 2]. In addition, as a generation of linear condition, it is also mentioned in [3, 4]
with one-sided linear growth condition. The authors improve the results using polynomial
growth condition in [5, 6]. After that, these conditions were mentioned under regime systems
[7–9].

Replacing the linear growth condition or the one-sided linear growth condition, we
impose the so-called polynomial growth condition on the function f for (1.1).

Assumption B. For each i ∈ S, there exist nonnegative constants α, κi, κi, γ,K and probability
measures μ, on [−τ, 0] such that

〈

φ(0), f
(

ϕ, i, t
)〉 ≤ ∣∣ϕ(0)∣∣2

[

κi
∣
∣ϕ(0)

∣
∣
α + κi

∫0

−τ

∣
∣ϕ(θ)

∣
∣
α
dμ(θ) + γ

]

+K
∣
∣φ(0)

∣
∣ (2.1)

for any ϕ ∈ C([−τ, 0];Rn).

Theorem 2.1. Under the conditions of Assumptions A and B, if 2β > α, and σ(i)/= 0 for i =
1, 2, . . . , n, there almost surely exists a unique globally solution x(t) to (1.1) on t ≥ −τ for any given
initial data ϕ ∈ C([−τ, 0];Rn).

Proof. Since the coefficients of (1.1) are locally Lipschitz, there is a unique maximal local
solution x(t) on t ∈ [−τ, τe), where τe is the explosion time. In order to prove this solution
is global, we need to show that τe = ∞ a.s. Let m0 > 0 be sufficiently large such that
1/m0 < min−τ≤θ≤0|ξ(θ)| < max−τ≤θ≤0|ξ(θ)| < m0. For each m ≥ m0, we define the stopping
time

τm = inf
{

t ∈ [−τ, τe) : xi(t) /∈
(

1
m
,m

)

for some i = 1, 2, . . . , n
}

. (2.2)

Clearly τm is increasing as m → ∞. Set τ∞ = limm→∞τm, if we can obtain that τ∞ = ∞ a.s.,
then τe = ∞ a.s. for all t ≥ 0. That is, to complete the proof, also equivalent to prove that, for
any t > 0, P(τm ≤ t) → 0 as m → ∞. If this conclusion is false, there is a pair of constants
T > 0 and ε ∈ (0, 1) such that

P{τ∞ ≤ T} > ε. (2.3)

So there exists an integerm1 ≥ m0 such that

P{τm ≤ T} > ε ∀m ≥ m1. (2.4)
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To prove the conclusion that we desired, for any p ∈ (0, 1/2), define a C2-function:
Rn × S → R+ by

V (x, k) = c(k)
[

1 + |x|2
]p
, (2.5)

where {c(k), 1 ≤ k ≤N} is positive constant sequence. Applying the generalized Itô formula,

dV (x, k) = d
[

c(k)
(

1 + |x|2
)p]

= 
V
(

ϕ, k
)

dt + 2c(k)p
(

1 + |x|2
)p−1[

q(k)|x|2dW1(t) + σ(k)|x|β+2dW2(t)
]

,

(2.6)

where 
V is computed as


V
(

ϕ, k
)

= pc(k)
(

1 + |x|2
)p−2[

2
(

1 + |x|2
)〈

x, f
(

ϕ, k, t
)〉

+ q2(k)|x|2

+σ2(k)|x|2β+2 + (2p − 1
)(

q2(k)|x|4 + σ2(k)|x|2β+4
)]

+
N∑

l=1

γklV
(

ϕ(0), l
)

.

(2.7)

Let q̃ = maxk,l∈S{c(l)/c(k)}. For any k, l ∈ S, we get

V (x, l) = c(l)
(

1 + |x|2
)p ≤ q̃c(k)

(

1 + |x|2
)p

= q̃V (x, k). (2.8)

Therefore,

N∑

l=1

γklV (x, l) ≤ q̃
N∑

l=1

∣
∣γkl
∣
∣V (x, k). (2.9)

According to Assumption B, the first term in (2.7)

pc(k)
(

1 + |x|2
)p−2[

2
(

1 + |x|2
)〈

x, f
(

ϕ, k, t
)〉]

≤ 2c(k)p
(

1 + |x|2
)p−1[

κk|x|α+2 + γ |x|2 +K|x|
]

+ 2c(k)κkp
(

1 + |x|2
)p−1

|x|2
∫0

−τ
|x(t + θ)|αdμ(θ).

(2.10)
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By the Young inequality and noting that p ∈ (0, 1/2), it is obvious that

2c(k)κkp
(

1 + |x|2
)p−1

|x|2
∫0

−τ
|x(t + θ)|αdμ(θ)

≤ 2c(k)κkp
(

1 + |x|2p
)
∫0

−τ
|x(t + θ)|αdμ(θ)

≤ 2c(k)κkp
∫0

−τ
|x(t + θ)|αdμ(θ) + 4c(k)κkp2

α + 2p
|x|α+2p

+
2c(k)ακkp
α + 2p

∫0

−τ
|x(t + θ)|α+2pdμ(θ)

≤ 2c(k)κkp
(

|x|α + |x|α+2p
)

+ 2c(k)κkp

{∫0

−τ
|x(t + θ)|αdμ(θ) − |x|α

}

+
2c(k)ακkp
α + 2p

{∫0

−τ
|x(t + θ)|α+2pdμ(θ) − |x|α+2p

}

,

(2.11)

where the first inequality we have used the elementary inequality: for any a, b ≥ 0 and r ∈
(0, 1), (a + b)r ≤ ar + br . Therefore we have

d
[

c(k)
(

1 + |x|2
)p]

≤
{

Hk(x) + 2c(k)κkp

[∫0

−τ
|x(t + θ)|αdμ(θ) − |x|α

]

+
2c(k)ακkp
α + 2p

[∫0

−τ
|x(t + θ)|α+2pdμ(θ) − |x|α+2p

]}

dt

+ 2c(k)p
(

1 + |x|2
)p−1[

q(k)|x|2dW1(t) + σ(k)|x|β+2dW2(t)
]

,

(2.12)

where

Hk(x) = 2c(k)κkp
(

|x|α + |x|α+2p
)

+ pc(k)
(

1 + |x|2
)p−2[

q2(k)|x|2 + σ2(k)|x|2β+2

+
(

2p − 1
)(

q2(k)|x|4 + σ2(k)|x|2β+4
)]

+ 2c(k)p(1 + |x|2)p−1
[

κk|x|α+2 + γ |x|2 +K|x|
]

+
N∑

l=1

γklV
(

ϕ(0), l
)

.

(2.13)
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Using the elementary inequality: for any a, b ≥ 0 and r ≥ 1, (a + b)r ≤ 2r−1(ar + br), we obtain

that (1 + |x|2)2−p ≤ 21−p[1 + |x|4−2p], also we have

(

1 + |x|2
)2−p N∑

l=1

γklV (x, l) ≤ q̃
N∑

l=1

∣
∣γkl
∣
∣21−p

(

1 + |x|4−2p
)(

1 + |x|2p
)

. (2.14)

Therefore,

Hk(x) ≤
(

1 + |x|2
)2−p

Hk(x)

≤ 22−pc(k)κkp
[

1 + |x|4−2p
](

|x|α + |x|α+2p
)

+ pc(k)
[

q2(k)|x|2 + σ2(k)|x|2β+2

+
(

2p − 1
)(

q2(k)|x|4 + σ2(k)|x|2β+4
)]

+ 2c(k)p
(

1 + |x|2
)[

κk|x|α+2 + γ |x|2 +K|x|
]

+ q̃
N∑

l=1

∣
∣γkl
∣
∣21−p

(

1 + |x|4−2p
)(

1 + |x|2p
)

.

(2.15)

Noting that p ∈ (0, 1/2) and 2β > α ≥ 0, by the boundedness property of polynomial

functions, there exists a positive constant Mk such that Hk(x) ≤ (1 + |x|2)2−pHk(x) ≤ Mk.
Taking expectation from two sides of (2.6) leads to

EV (x(τm ∧ T), r(τm ∧ T)) = EV (x(0), r(0)) + E

∫ τm∧T

0

V (xs, r(s))ds, (2.16)

and from (2.12) and (2.15), we have

EV (x(τm ∧ T), r(τm ∧ T)) ≤ EV (x(0), r(0)) +MkT

+ 2čκkpE

{∫ τm∧T

0

[∫0

−τ
|x(t + θ)|αdμ(θ) − |x|α

]

ds

}

+
2čακkp
α + 2p

E

{∫ τm∧T

0

[∫0

−τ
|x(t + θ)|α+2pdμ(θ) − |x|α+2p

]

ds

}

,

(2.17)

where we denote č = maxk∈S,1≤i≤nci(k).
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By the Fubini theorem and a substitution technique, we may compute that

∫ τm∧T

0

∫0

−τ
|x(s + θ)|α+2pdμ(θ)ds −

∫ τm∧T

0
|x(s)|α+2pds

=
∫0

−τ
dμ(θ)

∫ τm∧T+θ

θ

|x(s)|α+2pds −
∫ τm∧T

0
|x(s)|α+2pds

≤
∫0

−τ
dμ(θ)

∫ τm∧T

−τ
|x(s)|α+2pds −

∫ τm∧T

0
|x(s)|α+2pds

≤
∫0

−τ
|ξ(s)|α+2pds.

(2.18)

Similarly,

∫ τm∧T

0

∫0

−τ
|x(s + θ)|αdμ(θ)ds −

∫ τm∧T

0
|x(s)|αds ≤

∫0

−τ
|ξ(s)|αds. (2.19)

Therefore we rewrite (2.17) into

EV (x(τm ∧ T), r(τm ∧ T)) ≤ V (ξ(0), r(0)) +MT

+ 2čκkp
∫0

−τ
E|ξ(s)|αds + 2čακkp

α + 2p

∫0

−τ
E|ξ(s)|α+2pds

:= KT,

(2.20)

where KT is bounded and KT is independent ofm.
By the definition of τm, x(τm) = m or 1/m, so let Ωm = {τm ≤ T} for m ≥ m1 and by

(2.6), noting that for every ω ∈ Ωm, there is some m such that xm(τm,ω) equals either m or
1/m hence

P(τm ≤ T)min
i∈S

{

c(i)
(

1 +m2
)p ∧ c(i)

(

1 +
1
m2

)p}

≤ P(τm ≤ T)V (x(τm), i)

≤ E
[

I{τm≤T}V (x(τm ∧ T), r(τm ∧ T))]

≤ EV (x(τm ∧ T), r(τm ∧ T)) ≤ KT.

(2.21)

Lettingm → ∞ implies that

lim sup
m→∞

P(τm ≤ T) = 0. (2.22)

So we must obtain τ∞ = ∞ a.s., as required. The proof is complete.
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3. Asymptotic Boundedness

Theorem 2.1 shows that the solution of SDE (1.1) exists globally and will not explode
under some reasonable conditions. In the study of stochastic system, stochastically ultimate
boundedness is more important topic comparing with nonexplosion of the solution, which
means that the solution of this system will survive under finite boundedness in the future.
Here we examine the 2pth moment boundedness.

Lemma 3.1. Under the conditions of Theorem 2.1, for any p ∈ (0, 1/2), there exists a constant Kp

independent on the initial data such that the global solution x(t) of SDE (1.1) has the property that

lim sup
t→∞

E

(

|x(t)|2p
)

≤ Kp. (3.1)

Proof. First, Theorem 2.1 indicates that the solution x(t) of (1.1) almost surely remain in Rn

for all t ≥ −τ with probability 1.
Applying the Itô formula to eεtV (x, k) and taking expectation yields

EV (x, k) = e−εtV (ξ(0), r(0)) + e−εtE
∫ t

0
eεs[
V (xs, k) + εV (x(s), k)]ds. (3.2)

Here 
V (ϕ, k) is defined as before (2.7).
Now we consider the function

Φk(x) = 2c(k)κkp
(

eετ |x|α + αeετ + 2p
α + 2p

|x|α+2p
)

+ pc(k)
(

1 + |x|2
)p−2[

q2(k)|x|2 + σ2(k)|x|2β+2

+
(

2p − 1
)(

q2(k)|x|4 + σ2(k)|x|2β+4
)]

+ 2c(k)p
(

1 + |x|2
)p−1[

κk|x|α+2 + γ |x|2 +K|x|
]

+

[

čq̃
N∑

l=1

∣
∣γkl
∣
∣ + εč

]
(

1 + |x|2p
)

.

(3.3)

Similar to the proof of Theorem 2.1, then we know (3.3) is upper bounded; there exists
constant ψk such that Φk(x) ≤ (1 + |x|2)2−pΦk(x) ≤ ψk ≤ Ψ := max1≤k≤Nψk; therefore, (3.2)
implies that

EV (x, k) ≤ e−εtV (ξ(0), r(0))

+ e−εtE
∫ t

0
eεs
[

Ψ + 2c(k)κkp

(∫0

−τ
|x(s + θ)|αdμ(θ) − eετ |x(s)|α

)

+
2c(k)ακkp
α + 2p

(∫0

−τ
|x(s + θ)|α+2pdμ(θ) − eετ |x(s)|α+2p

)]

ds.

(3.4)
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We have the following calculus transformation:

∫ t

0
eεs
∫0

−τ
|x(s + θ)|αdμ(θ)ds −

∫ t

0
eε(s+τ)|x(s)|αds

=
∫0

−τ
dμ(θ)

∫ t+θ

θ

eε(s−θ)|x(s + θ)|αds −
∫ t

0
eε(s+τ)|x(s)|αds

≤
∫0

−τ
dμ(θ)

∫ t

−τ
eε(s+τ)|x(s)|αds −

∫ t

0
eε(s+τ)|x(s)|αds

≤ eετ
∫0

−τ
eεθ|ξ(θ)|αdθ <∞.

(3.5)

Similarly,

∫ t

0

∫0

−τ
eεs|x|α+2p(s + θ)dμ(θ)ds −

∫ t

0
eε(s+τ)|x|α+2p(s)ds ≤ eετ

∫0

−τ
eεθξ

α+2p
i (θ)dθ <∞. (3.6)

We therefore have from (3.4)

EV (x, k) ≤ e−εtV (ξ(0), r(0)) + Ψε−1
(

1 − e−εt)

+ 2čκkpe−ε(t−τ)E
∫0

−τ
eεθ|ξ(θ)|αdθ

+ e−ε(t−τ)
2čακkp
α + 2p

E

∫0

−τ
eεθ|ξ(θ)|α+2pdθ.

(3.7)

Clearly,

lim sup
t→∞

EV (x, k) ≤ Ψε−1; (3.8)

denote ĉ = min{ci(k) : 1 ≤ i ≤ n, k ∈ S}; therefore,

ĉ lim sup
t→∞

E|x|2p ≤ lim sup
t→∞

E

[

c(k)
(

1 + |x|2
)p] ≤ lim sup

t→∞
EV (x, k), (3.9)

which yields

lim sup
t→∞

E|x|2p ≤ Ψ
ĉε

=: Kp. (3.10)

This means that the solution is bounded in the 2pth moment; the stochastically ultimate
boundedness will follow directly.
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Definition 3.2. The solutions x(t) of SDE (1.1) are called stochastically ultimately bounded, if
for any ε ∈ (0, 1), there is a positive constant χ(= χ(ε)), such that the solution of SDE (1.1)
with any positive initial value has the property that

lim sup
t→+∞

P
{|x(t)| > χ} < ε. (3.11)

Theorem 3.3. The solution of (1.1) is stochastically ultimately bounded under the condition
Lemma 3.1; that is, for any ε ∈ (0, 1), there is a positive constant χ(= χ(ε)), such that for any
positive initial value the solution of Lemma 3.1 has the property that

lim sup
t→+∞

P
{|x(t)| > χ} < ε. (3.12)

Proof. This can be easily verified by Chebyshev’s inequality and Lemma 3.1 by choosing χ =
(Kp/ε)

1/p sufficiently large because of the following

lim sup
t→+∞

P
(|x(t)| > χ) ≤ lim supt→+∞E

[|x|p]

χp
. (3.13)

4. Stabilization of Noise

From Sections 2 and 3, we know that under the condition σ(i)/= 0 and 2β > α, the
Brownian noise σ(i)|x(t)|βx(t)dW1(t) can suppress the potential explosion of the solution
and guarantee this global solution to be bounded in the sense of the 2pth moment. Clearly, the
boundedness results are also dependent only on the choice of β under the condition σ(i)/= 0
and independent of q(i). This implies that the noiseW1(t) plays no role to guarantee existence
and boundedness of the global solution to (1.1). This section is devoted to consider the effect
of noise q(i)x(t)dW1(t), we will show that the system (1.1) is exponential stability if for some
sufficiently large q(i).

For the purpose of stability study, we impose the following the general polynomial
growth condition:

Assumption C. For each i ∈ S, there exist nonnegative constants α, κi, κi, γ, and K and
probability measures μ, on [−τ, 0] such that

∣
∣f
(

ϕ, i, t
)∣
∣ ≤ ∣∣ϕ(0)∣∣

[

κi
∣
∣ϕ(0)

∣
∣
α + κi

∫0

−τ

∣
∣ϕ(θ)

∣
∣
α
dμ(θ) + γ

]

(4.1)

for any ϕ ∈ C([−τ, 0];Rn).
Clearly, Assumption C is stronger than the one-sided polynomial growth condition

Assumption B. Therefore, Theorems 2.1 and Lemma 3.1 still hold under Assumption C.
In [10, Page 165], for a given nonlinear SDE with Markovian switching

dx(t) = f(x(t), r(t), t)dt + g(x(t), r(t), t)dB(t), (4.2)
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any solution starting form a nonzero state will remain to be non-zero. But for the system (1.1)

dx(t) = f(xt, r(t), t)dt + q(r(t))x(t)dW1(t) + σ(r(t))|x(t)|βx(t)dW2(t), (4.3)

the drift coefficient is a functional, so wewill prove this non-zero property under Assumption
C.

Lemma 4.1. Let x(t) be the global solution of (1.1). Under Assumption C, if 2β > α and σ(i)/= 0, for
any non-zero initial data x(0)/= 0

P(x(t)/= 0) = 1, t ≥ 0; (4.4)

that is, almost all the sample path of any solution starting from a non-zero state will never reach the
origin.

Proof. For any initial data ξ ∈ C([−τ, 0];Rn) satisfying x(0)/= 0, for sufficiently large positive
number i0, such that |x(0)| > 1/i0. For each integer i ≥ i0, define the stopping time

ρi = inf
{

t ≥ 0 : |x(t)| ≤ 1
i

}

. (4.5)

Clearly, ρi is increasing as i → ∞ and ρi → ρ∞ a.s. If we can show that ρ∞ = ∞ a.s., the
desired result P(x(t)/= 0) = 1 on t ≥ 0 follows. This is equivalent to proving that, for any
t > 0, P(ρi ≤ t) → 0 as i → ∞.

To prove this statement, define a C2-function

V1(x, k) = c(k)
[√

x − 1
2
logx

]

, (4.6)

where V1(·) > 0 and V1(0+) = ∞. Applying the Itô formula and taking the expectation yield

EV1
(∣
∣x
(

t ∧ ρi
)

, r
(

t ∧ ρi
)∣
∣
)

= EV1(|x(0, r(0))|) + E

∫ t∧ρi

0

V1(xs, r(s))ds, (4.7)

where 
V1 is defined as


V1
(

ϕ, k
)

=
1
2
c(k)
(∣
∣ϕ(0)

∣
∣
−3/2 − ∣∣ϕ(0)∣∣−2

)

ϕT (0)f
(

ϕ, t, k
)

− σ2(k)c(k)
8

(∣
∣ϕ(0)

∣
∣
2β+(1/2) − 2

∣
∣ϕ(0)

∣
∣
2β
)

− q2(k)c(k)
8

(∣
∣ϕ(0)

∣
∣
1/2 − 2

)

+
N∑

l=1

γklV
(

ϕ(0), l
)

,

(4.8)
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for any ϕ ∈ C([−τ, 0];Rn). By Assumption C and the Young inequality, the first term of (4.8)
will be written as

(∣
∣ϕ(0)

∣
∣
−3/2 − ∣∣ϕ(0)∣∣−2

)

ϕT (0)f
(

ϕ, t, k
)

≤
(∣
∣ϕ(0)

∣
∣
−1/2 +

∣
∣ϕ(0)

∣
∣
−1)∣
∣f
(

ϕ, t, k
)∣
∣

≤
(∣
∣ϕ(0)

∣
∣
1/2 + 1

)
[

κk
∣
∣ϕ(0)

∣
∣
α + κk

∫0

−τ

∣
∣ϕ(θ)

∣
∣
α
dμ(θ) + γ

]

≤ (κk + κk)
(∣
∣ϕ(0)

∣
∣
α+1/2 +

∣
∣ϕ(0)

∣
∣
α
)

+ γ
∣
∣ϕ(0)

∣
∣
1/2 + γ

+
ακk

α + (1/2)

[∫0

−τ

∣
∣ϕ(0)

∣
∣
α+(1/2)

dμ(θ) − ∣∣ϕ(0)∣∣α+(1/2)
]

+ κk

[∫0

−τ

∣
∣ϕ(0)

∣
∣
α
dμ(θ) − ∣∣ϕ(0)∣∣α

]

.

(4.9)

Substituting (4.9) into (4.8) gives


V1
(

ϕ, k
) ≤ Ĥk

(

ϕ(0)
)

+
c(k)ακk
α + (1/2)

[∫0

−τ

∣
∣ϕ(0)

∣
∣
α+(1/2)

dμ(θ) − ∣∣ϕ(0)∣∣α+(1/2)
]

+ c(k)κk

[∫0

−τ

∣
∣ϕ(0)

∣
∣
α
dμ(θ) − ∣∣ϕ(0)∣∣α

]

,

(4.10)

where

Ĥk(x) ≤ − σ2(k)c(k)
8

(

|x|2β+(1/2) − 2|x|2β
)

− q2(k)c(k)
8

(

|x|1/2 − 2
)

+ c(k)(κk + κk)
(

|x|α+(1/2) + |x|α
)

+ γ |x|1/2 + γ

+ q̃
N∑

l=1

∣
∣γkl
∣
∣c(k)

(

|x|1/2 − log|x|
)

≤ − σ2(k)c(k)
8

(

|x|2β+(1/2) − 2|x|2β
)

− q2(k)c(k)
8

(

|x|1/2 − 2
)

− q̃
N∑

l=1

∣
∣γkl
∣
∣c(k) log|x|

+ c(k)(κk + κk)
(

|x|α+1/2 + |x|α
)

+ γ |x|1/2 + γ

+ q̃
N∑

l=1

∣
∣γkl
∣
∣c(k)|x|1/2.

(4.11)
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Noting (2.9) and 2β > α, σ(k)/= 0, using the boundedness property of polynomial functions,
there exists a constant M̂k such that Ĥk(x) ≤ M̂k ≤ M̂ =: max1≤k≤N{M̂k}.

Furthermore, we may estimate that

∫ t∧ρi

0

[∫0

−τ
|x(s + θ)|α+(1/2)dμ(θ) − |x(s)|α+(1/2)

]

ds ≤
∫0

−τ
|ξ(s)|α+(1/2)ds,

∫ t∧ρi

0

[∫0

−τ
|x(s + θ)|αdμ(θ) − |x(s)|α

]

ds ≤
∫0

−τ
|ξ(s)|αds.

(4.12)

It therefore follows that

EV1
(∣
∣x
(

t ∧ ρi
)

, r
(

t ∧ ρi
)∣
∣
) ≤ EV1(|x(0, r(0))|) + M̂t

+
∫0

−τ
|ξ(s)|α+(1/2)ds +

∫0

−τ
|ξ(s)|αds

=: K̂t.

(4.13)

We know that

1
2
log iP

(

ρi ≤ t
) ≤ P

(

ρi ≤ t
)

⎛

⎝

√

1
i
− 1
2
log

1
i

⎞

⎠

≤ E
[

I{ρi≤t}
]

V1
(∣
∣x
(

ρi ≤ t
)∣
∣
) ≤ EV1

(∣
∣x
(

ρi ≤ t
)∣
∣
)

≤ K̂t,

(4.14)

which implies that

lim sup
i→∞

P
(

ρi ≤ t
) ≤ lim

i→∞
2K̂t

log i
= 0, (4.15)

as required. The proof is completed.

This lemma shows that almost all the sample path of any solution of (1.1) starting
from a non-zero state will never reach the origin. Because of this nice property, the Lyapunov
functions we can choose need not be imposed globally but only in a deleted neighborhood of
the origin.

Especially, the hybrid system always switch from any regime to another regime,
so it is reasonable to assume that the Markov chain r(t) is irreducible. It means to the
condition that irreducible Markov chain has a unique stationary probability distribution
π = (π1, π2, . . . , πN) ∈ R1×N which can be determined by solving the following linear
equation πΓ = 0 subject to

∑N
k=1 πk = 1 and πk > 0 for any k ∈ S, where Γ is generator

Γ = (γuv)N×N .
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Theorem 4.2. Suppose the Markov chain r(t) is irreducible, under Assumption A and C, if for
δ ∈ (0, 1), k ∈ S, σ(k)/= 0 and 2β > α, the solution x(t) of SDE (1.1) with any initial data
ξ ∈ C([−τ, 0];Rn) satisfying x(0)/= 0 has the property

lim sup
t→∞

1
t
log|x(t)| ≤

N∑

j=1

πj

[

φj −
q2j

2

]

a.s., (4.16)

where

φ(k) = max
x>0

{

−σ
2(k)
2

|x|2β + (κk + κk)|x|α + γ
}

. (4.17)

In particular, the nonlinear hybrid system (1.1) is almost surely exponentially stable if

N∑

j=1

πj

[

φj −
q2j

2

]

< 0. (4.18)

Proof. By Theorem 2.1 and Lemma 4.1, (1.1) almost surely admits a global solution x(t) for all
t ≥ 0 and x(t)/= 0 almost surely. Applying the Itô formula to the function log |x(t)| leads to

log|x(t)| = log|x(0)|

+
∫ t

0

{

|x(t)|−2〈x(s), f(xs, r(s), s)
〉 − 1

2

[

σ(r(s))2|x(s)|2β + q2(r(s))
]}

ds

+
∫ t

0
q(r(s))dW1(s) + σ(r(s))|x(s)|βdW2(s).

(4.19)

DefineM(t) =
∫ t

0 σ(r(s))|x(s)|βdW2(s); clearlyM(t) is a continuous local martingale with the
quadratic variation

〈M(t),M(t)〉 =
∫ t

0
σ2(r(s))|x(s)|2βds. (4.20)

For any δ ∈ (0, 1), choose ϑ > 0 such that δϑ > 1 and each positive integer n > 0; the
exponential martingale inequality yields

P

{

sup
0≤t≤n

[

M(t) − δ

2

∫ t

0
σ2(r(s))|x(s)|2βds

]

≥ lognϑ
}

≤ 1
nδϑ

. (4.21)

Since
∑∞

n=1 n
−δϑ <∞, by the Borel-Cantelli lemma, there exists anΩ0 ⊂ Ωwith P(Ω0) =

1 such that for any ω ∈ Ω0, there exists an integer n(ω), when n > n(ω) and n − 1 ≤ t ≤ n,

M(t) ≤ δ

2

∫ t

0
σ2(r(s))|x(s)|2βds + ϑδ log(t + 1). (4.22)
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This, together with Assumption C, denote q̃ =: maxk∈S{q(k)} and κ̃ =: maxk∈S{κ(k)}; noting
the definition of (4.17), we therefore have

log|x(t)| ≤ log|x(0)| +
∫ t

0

[

−σ
2(r(s))(1 − δ)

2
|x(s)|2β + κ(r(s))|x(s)|α

+κ(r(s))
∫0

−τ
|x(s + θ)|αdμ(θ) + γ − q2(r(s))

2

]

ds

+ q̃W1(t) + ϑδ log(t + 1)

≤ log|x(0)| +
∫ t

0

[

φδ(r(s)) −
q2(r(s))

2

]

ds + κ̃
∫0

−τ
|ξ(s)|αds

+ q̃W1(t) + ϑδ log(t + 1),

(4.23)

where

φδ(k) = −σ
2(k)(1 − δ)

2
|x|2β + (κ(k) + κ(k))|x|α + γ

∫ t

0

∫0

−τ
|x(s + θ)|αdμ(θ)ds −

∫ t

0
|x(s)|αds ≤

∫0

−τ
|ξ(s)|αds.

(4.24)

Applying the strong law of large number [2, Page 12] to the Brownian motion, we
therefore have

lim
t→∞

W1(t)
t

= 0 a.s.. (4.25)

Moreover, letting δ → 0, by the ergodic property of the Markov chain, we have

lim
t→∞

1
t

∫ t

0

[

φ(r(s)) − q2(r(s))
2

]

ds =
N∑

j=1

πj

[

φj −
q2j

2

]

a.s.. (4.26)

Combined (4.25) and (4.26), it follows from (4.23)

lim sup
t→∞

1
t
log|x(t)| ≤

N∑

j=1

πj

[

φj −
q2j

2

]

a.s.. (4.27)

Thus the assertion (4.16) follows.
Clearly, if

N∑

j=1

πj

[

φj −
q2j

2

]

< 0, (4.28)

system (1.1) is almost surely exponentially stable; the proof is completed.
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Euler Maruyama, numerical solution for (1.1)1

Figure 1: We choose h = a = b = 1/4, q = 2, σ = 1 in (1.1)1

Remark. This results is generation of Theorem 4.2 in [6]. The author consider functional
differential equation:

dx(t) = f(xt, t)dt + qx(t)dW1(t) + σ|x(t)|βx(t)dW2(t); (4.29)

for example,

dx(t) = x(t)

[

h + ax(t) + b
∫0

−τ
x(t + θ)dμ(θ)

]

dt + qx(t)dW1(t) + σx2(t)dW2(t), (1.1)1

with β = 1, α = 1, κ = |a|, κ = |b|, γ = |h|, σ = 1,

φ = max
x>0

{

−1
2
x2 + (|a| + |b|)x + |h|

}

= |h| + 1
2
(|a| + |b|)2; (4.30)

hence, we choose q2/2 > |h|+1/2(|a| + |b|)2 satisfying φ− (q2/2) < 0; the stochastic functional
system (1.1)1 is almost surely exponentially stable. We can observe the numerical simulation
in Figure 1.

Example 4.3. Let us assume that the Markov chain r(t) is on the state space S = {1, 2}with the
generator

Γ =
(−γ12 γ12
γ21 −γ21

)

, (4.31)
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where γ12 > 0 and γ21 > 0. It is easy to see that the Markov chain has its stationary probability
distribution π = (π1, π2) given by

π1 =
γ21

γ12 + γ21
, π2 =

γ12
γ12 + γ21

. (4.32)

As pointed out in Section,we may regard SDE (1.1) as the result of the following two
equations:

dx(t) = f(xt, 1, t)dt + q(1)x(t)dW1(t) + σ(1)|x(t)|βx(t)dW2(t), (1.1)21

dx(t) = f(xt, 2, t)dt + q(2)x(t)dW1(t) + σ(2)|x(t)|βx(t)dW2(t). (1.1)22

Noting that
∑n

i=1 πi[φ(i) − (q2(i)/2)] has the form

2∑

i=1

πi

[

φ(i) − q2(i)
2

]

=
γ21

γ12 + γ21

[

φ(1) − q2(1)
2

]

+
γ12

γ12 + γ21

[

φ(2) − q2(2)
2

]

, (4.33)

that is, for a given state 1, (1.1)21 may be written as

dx(t) = x(t)

[

1 + x(t) +
∫0

−τ
x(t + θ)dμ(θ)

]

dt + x(t)dW1(t) + x2(t)dW2(t), (4.34)

with x(0) = 1 when t ≥ 0. Applied the condition (4.17)with q(1) = 1, σ(1) = κ(1) = κ(1) = γ =
α = β = 1 to the system (4.34) yields

φ(1) = max
x>0

{

−1
2
x2 + 2x + 1

}

= 3, (4.35)

satisfying φ(1) − (q2(1)/2) > 0, which shows that the trajectory of (4.34)will not satisfied the
conditions of Theorem 4.2 in [6] although it has global solution.

However, as the result of Markovian switching, the overall behavior, that is SDE (1.1)
will be almost surely exponentially stable as long as

φ(2) − q2(2)
2

< 0,
2∑

i=1

πi

[

φ(i) − q2(i)
2

]

< 0, (4.36)

namely, the transition rate γ21 from (1.1)22 to (1.1)21 is less than the transition rate γ12 from
(1.1)21 to (1.1)22 , which ensure that

γ21
γ12 + γ21

[

φ(1) − q2(1)
2

]

+
γ12

γ12 + γ21

[

φ(2) − q2(2)
2

]

< 0. (4.37)
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Example 4.4. Consider another stochastic differential equation with Markovian switching,
where r(t) is a Markov chain taking values in S = {1, 2, 3}. Here subsystem of (1.1) is writtern
as three different equations:

dx(t) = x(t)

[

1
4
+
1
4
x(t) +

1
4

∫0

−τ
x(t + θ)dμ(θ)

]

dt + 2x(t)dW1(t) + x2(t)dW2(t), (1.1)31

where q(1) = 2, σ(1) = 1, κ(1) = κ(1) = 1/4, γ = 1/4, α = β = 1,

φ(1) = max
x>0

{

−1
2
x2 +

(
1
4
+
1
4

)

x +
1
4

}

=
3
8
, φ(1) − 1

2
q2(1) = −13

8
< 0;

dx(t) = x(t)

[

1 + x2(t) +
∫0

−τ
x2(t + θ)dμ(θ)

]

dt + 2x(t)dW1(t) + x3(t)dW2(t),

(1.1)32

where q(2) = 2, σ(2) = κ(2) = κ(2) = γ = 1, α = β = 2,

φ(2) = max
x>0

{

−1
2
x4 + 2x2 + 1

}

= 3, φ(2) − 1
2
q2(2) = 1 > 0;

dx(t) = x(t)

[

1 − 2x2(t) − 6
∫0

−τ
x2(t + θ)dμ(θ)

]

dt + 4x(t)dW1(t) + 2x3(t)dW2(t),

(1.1)33

where q(3) = 4, σ(3) = κ(3) = 2, κ(3) = 6, γ = 1, α = β = 2,

φ(3) = max
x>0

{

−2x4 + 8x2 + 1
}

= 9, (4.38)

we compute

φ(3) − 1
2
q2(3) = 1 > 0. (4.39)

Case 1. Let the generator of the Markov chain r(t) be

Γ =

⎛

⎝

−2 1 1
3 −4 1
1 1 −2

⎞

⎠. (4.40)

By solving the linear equation πΓ = 0 subject to
∑N

k=1 πk = 1 and πk > 0 for any k ∈ S, we
obtain the unique stationary (probability) distribution

π = (π1, π2, π3) =
(

7
15
,
1
5
,
1
3

)

. (4.41)
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Then
3∑

i=1

πi

[

φ(i) − 1
2
q2(i)

]

= − 27
120

< 0. (4.42)

Case 2. Suppose the generator of the Markov chain r(t) be

Γ =

⎛

⎝

−5 2 3
1 −1 0
3 0 −3

⎞

⎠. (4.43)

By solving the linear equation πΓ = 0 subject to
∑N

k=1 πk = 1 and πk > 0 for any k ∈ S,
we obtain the unique stationary distribution

π = (π1, π2, π3) =
(
1
4
,
1
2
,
1
4

)

. (4.44)

Then
3∑

i=1

πi

[

φ(i) − 1
2
q2(i)

]

=
11
32

> 0. (4.45)

Therefore, by Theorems 4.2, System (1.1) is almost surely exponentially stable in Case 1.
We can see the impact of the Markov chain r(t). The distribution (π = (π1, π2, . . . , πn))

of r(t) plays a very important role, which, combined with
∑n

i=1 πi[φ(i) − (1/2)q2(i)] < 0,
determine that system (1.1) is almost surely exponentially stable. If r(t) spends enough time
in the “good” states (the state where φ(i) − (q2(i)/2) < 0 for some i), even if there exist some
“bad” states (the states where φ(i) − (q2(i)/2) > 0 for some i), the system (1.1) will still be
almost surely exponentially stable.
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