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By using the theory of calculus on time scales and some mathematical methods, several dynamic
inequalities on time scales are established. Based on these results, we derive some sufficient
conditions for permanence of predator-prey system incorporating a prey refuge on time scales.
Finally, examples and numerical simulations are presented to illustrate the feasibility and
effectiveness of the results.

1. Introduction

An important and ubiquitous problem in predator-prey theory and related topics in
mathematical ecology concerns the long-term coexistence of species. In the past few years,
permanence of different classes of continuous or discrete ecosystem has been studied wildly
both in theories and applications; we refer the readers to [1–6] and the references therein.

However, in the natural world, there are many species whose developing processes
are both continuous and discrete. Hence, using the only differential equation or difference
equation cannot accurately describe the law of their developments. Therefore, there is a need
to establish correspondent dynamic models on new time scales.

The theory of calculus on time scales (see [7] and references cited therein)was initiated
by Stefan Hilger in his Ph.D. thesis in 1988 [8] in order to unify continuous and discrete
analysis, and it has a tremendous potential for applications and has recently received much
attention since his foundational work; one may see [9–15]. Therefore, it is practicable to study
that on time scales which can unify the continuous and discrete situations. However, to the
best of the authors’ knowledge, there are few papers considered permanence of predator-prey
system on time scales.
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Motivated by the previous, in this paper, we first establish some dynamic inequalities
on time scales by using the theory of calculus on time scales and some mathematical
methods, then, based on these results, as an application, we will study the permanence of the
following delayed predator-prey system incorporating a prey refuge with Michaelis-Menten
and Beddington-DeAngelis functional response on time scales:

xΔ(t) = x(t)
[
b(t) − c(t)x(δ−(τ1, t)) −

d(t)y(t)(1 −m)
a(t)y(t) + x(t)(1 −m)

− h(t)z(t)(1 −m)
k(t) + p(t)x(t)(1 −m) + n(t)z(t)

]
,

yΔ(t) = y(t)
[
−d1(t) +

f(t)x(δ−(τ2, t))(1 −m)
a(t)y(δ−(τ2, t)) + x(δ−(τ2, t))(1 −m)

]
,

zΔ(t) = z(t)
[
−d2(t) +

g(t)x(δ−(τ3, t))(1 −m)
k(t) + p(t)x(δ−(τ3, t))(1 −m) + n(t)z(δ−(τ3, t))

]
,

(1.1)

where t ∈ T, T is a time scale. x(t) denotes the density of prey specie and y(t) and z(t) denote
the density of two predators species. a(t), b(t), c(t), d(t), f(t), g(t), h(t), k(t), p(t), n(t), d1(t),
d2(t) are continuous, positive, and bounded functions,m ∈ [0, 1] is a constant, andm denotes
the prey refuge parameter. δ−(τi, t), i = 1, 2, 3, are delay functions with t ∈ T and τi ∈ [0,∞)

T
,

i = 1, 2, 3, where δ− be a backward shift operator on the set T
∗ and T

∗ is a nonempty subset of
the time scale T. For the ecological justification of (1.1), one can refer to [2, 12].

The initial conditions of (1.1) are of the form

x(t) = ϕ1(t), y(t) = ϕ2(t), z(t) = ϕ3(t), t ∈ [δ−(τ, 0), 0]T
, ϕi(0) > 0, i = 1, 2, 3,

(1.2)

where τ = max{τi}, τi ≥ 0, i = 1, 2, 3.
For convenience, we introduce the notation

fu = sup
t∈T

{
f(t)
}
, f l = inf

t∈T

{
f(t)
}
, (1.3)

where f is a positive and bounded function.

2. Dynamic Inequalities on Time Scales

Let T be a nonempty closed subset (time scale) of R. The forward and backward jump
operators σ, ρ : T → T, and the graininess μ: T → R

+ are defined, respectively, by

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}, μ(t) = σ(t) − t. (2.1)

A point t ∈ T is called left dense if t > inf T and ρ(t) = t, left scattered if ρ(t) < t,
right dense if t < supT and σ(t) = t, and right scattered if σ(t) > t. If T has a left scattered
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maximum m, then T
k = T \ {m}; otherwise T

k = T. If T has a right scattered minimum m,
then Tk = T \ {m}; otherwise Tk = T.

The basic theories of calculus on time scales, one can see [7].
A function p : T → R is called regressive provided 1 + μ(t)p(t)/= 0 for all t ∈ T

k. The
set of all regressive and rd-continuous functions p : T → R will be denoted by R = R(T) =
R(T,R). We define the set R+ = R+(T,R) = {p ∈ R : 1 + μ(t)p(t) > 0, for all t ∈ T}.

If r is a regressive function, then the generalized exponential function er is defined by

er(t, s) = exp

{∫ t

s

ξμ(τ)(r(τ))Δτ

}
(2.2)

for all s, t ∈ T, with the cylinder transformation

ξh(z) =

⎧⎪⎨
⎪⎩

Log(1 + hz)
h

, if h/= 0,

z, if h = 0.
(2.3)

Let p, q : T → R be two regressive functions and define

p ⊕ q = p + q + μpq, �p = − p

1 + μp
, p � q = p ⊕ (�q). (2.4)

Lemma 2.1 (See [7]). Assume that p, q : T → R are two regressive functions, then

(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;

(ii) ep(σ(t), s) = (1 + μ(t)p(t))ep(t, s);

(iii) ep(t, s) = 1/ep(s, t) = e�p(s, t);

(iv) ep(t, s)ep(s, r) = ep(t, r);

(v) (e�p(t, s))
Δ = (�p)(t)e�p(t, s).

Lemma 2.2. Assume that a > 0, b > 0 and −a ∈ R+. Then

yΔ(t) ≥ (≤)b − ay(t), y(t) > 0, t ∈ [t0,∞)
T

(2.5)

implies

y(t) ≥ (≤)b
a

[
1 +
(
ay(t0)

b
− 1
)
e(−a)(t, t0)

]
, t ∈ [t0,∞)

T
. (2.6)
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Proof. We only prove the “≥” case; the proof of the “≤” case is similar. For

[
ye�(−a)(·, t0)

]Δ(t) = yΔ(t)e�(−a)(σ(t), t0) + y(t)(�(−a))e�(−a)(t, t0)

= yΔ(t)e�(−a)(σ(t), t0) + y(t)
(�(−a))

1 + μ(t)(�(−a))e�(−a)(σ(t), t0)

=
[
yΔ(t) − (�(�(−a)))y(t)

]
e�(−a)(σ(t), t0)

=
[
yΔ(t) − (−a)y(t)

]
e�(−a)(σ(t), t0),

(2.7)

then, integrate both side from t0 to t to conclude

y(t)e�(−a)(t, t0) − y(t0) =
∫ t

t0

[
yΔ(s) − (−a)y(s)

]
e�(−a)(σ(s), t0)Δs

≥
∫ t

t0

be�(−a)(σ(s), t0)Δs

= b

∫ t

t0

e(−a)(t0, σ(s))Δs,

(2.8)

that is, y(t) ≥ y(t0)e(−a)(t, t0) + b
∫ t
t0
e(−a)(t, σ(s))Δs. So

y(t) ≥ y(t0)e(−a)(t, t0) + b

∫ t

t0

e(−a)(t, σ(s))Δs

= y(t0)e(−a)(t, t0) − b

a

∫ t

t0

e(−a)(t, σ(s))(−a)Δs

= y(t0)e(−a)(t, t0) − b

a

[
e(−a)(t, t0) − 1

]

= e(−a)(t, t0)
[
y(t0) − b

a

]
+
b

a
,

(2.9)

that is, y(t) ≥ (b/a)[1 + (ay(t0)/b − 1)e(−a)(t, t0)]. This completes the proof.

Lemma 2.3. Assume that a > 0, b > 0. Then

yΔ(t) ≥ (≤)b − ay(σ(t)), y(t) > 0, t ∈ [t0,∞)
T

(2.10)

implies

y(t) ≥ (≤)b
a

[
1 +
(
ay(t0)

b
− 1
)
e�a(t, t0)

]
, t ∈ [t0,∞)

T
. (2.11)



Discrete Dynamics in Nature and Society 5

Proof. We only prove the “≥” case; the proof of the “≤” case is similar. For

[
yea(·, t0)

]Δ(t) = yΔ(t)ea(t, t0) + aea(t, t0)y(σ(t)) = ea(t, t0)
[
yΔ(t) + ay(σ(t))

]
, (2.12)

then, integrate both side from t0 to t to conclude

y(t)ea(t, t0) − y(t0) =
∫ t

t0

ea(s, t0)
[
yΔ(s) + ay(σ(s))

]
Δs

≥ b

∫ t

t0

ea(s, t0)Δs,

(2.13)

then

y(t) ≥ e�a(t, t0)y(t0) + b

∫ t

t0

e�a(t, s)Δs

= e�a(t, t0)y(t0) + b

∫ t

t0

(
1 + μ(s)a

)
ea(s, t)

1
1 + μ(s)a

Δs

= e�a(t, t0)y(t0) + b

∫ t

t0

ea(σ(s), t)
1

1 + μ(s)a
Δs

= e�a(t, t0)y(t0) + b

∫ t

t0

e�a(t, σ(s))
1

1 + μ(s)a
Δs

= e�a(t, t0)y(t0) − b

a

∫ t

t0

e�a(t, σ(s))(�a)Δs

= e�a(t, t0)y(t0) − b

a
(e�a(t, t0) − 1)

= e�a(t, t0)
[
y(t0) − b

a

]
+
b

a
,

(2.14)

that is, y(t) ≥ (b/a)[1 + (ay(t0)/b − 1)e�a(t, t0)]. This completes the proof.

Lemma 2.4. Assume that a > 0, b > 0 and −b ∈ R+. Then

yΔ(t) ≤ (≥)y(σ(t))(b − ay(t)
)
, y(t) > 0, t ∈ [t0,∞)

T
(2.15)

implies

y(t) ≤ (≥)b
a

[
1 +
(

b

ay(t0)
− 1
)
e(−b)(t, t0)

]−1
, t ∈ [t0,∞)

T
. (2.16)

Proof. We only prove the “≤” case; the proof of the “≥” case is similar.
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Let y(t) = 1/x(t), then (1/x(t))Δ ≤ (1/x(σ(t)))(b − a/x(t)), that is, −xΔ(t)/(x(t)
x(σ(t))) ≤ (1/x(σ(t)))(b − a/x(t)), so, xΔ(t) ≥ a − bx(t). By Lemma 2.2, we have x(t) ≥
(a/b)[1 + (bx(t0)/a − 1)e(−b)(t, t0)]. Therefore, y(t) ≤ (b/a)[1 + (b/ay(t0) − 1)e(−b)(t, t0)]

−1.
This completes the proof.

Lemma 2.5. Assume that a > 0, b > 0. Then

yΔ(t) ≤ (≥)y(t)(b − ay(σ(t))
)
, y(t) > 0, t ∈ [t0,∞)

T
(2.17)

implies

y(t) ≤ (≥)b
a

[
1 +
(

b

ay(t0)
− 1
)
e�b(t, t0)

]
, t ∈ [t0,∞)

T
. (2.18)

Proof. We only prove the “≤” case; the proof of the “≥” case is similar.
Let y(t) = 1/x(t), then (1/x(t))Δ ≤ (1/x(t))(b − a/x(σ(t))), that is, −xΔ(t)/(x(t)x

(σ(t))) ≤ (1/x(t))(b − a/x(σ(t))), so, xΔ(t) ≥ a − bx(σ(t)). By Lemma 2.3, we have x(t) ≥
(a/b)[1 + (bx(t0)/a − 1)e�b(t, t0)]. Therefore, y(t) ≤ (b/a)[1 + (b/ay(t0) − 1)e�b(t, t0)]

−1. This
completes the proof.

Definition 2.6 (see [16]). Let T
∗ be a nonempty subset of the time scale T and t0 ∈ T

∗ a
fixed number. The operator δ− associated with t0 ∈ T

∗ (called the initial point) is said to
be backward shift operator on the set T

∗. The variable s ∈ [t0,∞)
T
in δ−(s, t) is called the shift

size. The value δ−(s, t) in T
∗ indicate s units translation of the term t ∈ T

∗ to the left.

Now, we state some different time scales with their corresponding backward shift
operators: let T = R and t0 = 0; then δ−(s, t) = t − s; let T = Z and t0 = 0; then δ−(s, t) = t − s;
let T = hZ and t0 = 0; then δ−(s, t) = t − s; let T = N

1/2 and t0 = 0; then δ−(s, t) =
√
t2 − s2; let

T = 2N and t0 = 1; then δ−(s, t) = t/s; and so on.

Lemma 2.7. If a ∈ R+ and yΔ(t) ≤ (≥)a(t)y(t), t ∈ [t0,∞)
T
, then

y(δ−(s, t)) ≥ (≤)e�a(σ(t), δ−(s, t))y(σ(t)), (2.19)

where δ−(s, t) be defined in Definition 2.6 and (s, t) ∈ [t0,∞)
T
× [s,∞)

T
.

Proof. We only prove the “≤” case; the proof of the “≥” case is similar. For

[
ye�a(·, t0)

]Δ(t) = yΔ(t)e�a(σ(t), t0) + y(t)(�a)(t)e�a(t, t0)

= yΔ(t)e�a(σ(t), t0) + y(t)
(�a)(t)

1 + μ(t)(�a)(t)e�a(σ(t), t0)

=
[
yΔ(t) − (�(�a))(t)y(t)

]
e�a(σ(t), t0)

=
[
yΔ(t) − a(t)y(t)

]
e�a(σ(t), t0)

≤ 0,

(2.20)



Discrete Dynamics in Nature and Society 7

then, integrate both side from δ−(s, t) to σ(t) to conclude

y(σ(t))e�a(σ(t), t0) ≤ y(δ−(s, t))e�a(δ−(s, t), t0), (2.21)

then

y(δ−(s, t)) ≥ e�a(σ(t), δ−(s, t))y(σ(t)). (2.22)

This completes the proof.

3. Permanence

As an application, based on the results obtained in Section 2, we will establish a permanent
result for system (1.1).

Definition 3.1. System (1.1) is said to be permanent if there exists a compact regionD ⊆ IntR3
+,

such that for any positive solution (x(t), y(t), z(t)) of system (1.1) with initial condition (1.2)
eventually enters and remains in region D.

In this section, we consider the time scale T that satisfies ea(σ(t), δ−(τ, t)) to be a
constant on [0,∞)

T
, where a ∈ R+, τ ∈ [0,∞)

T
are constants. For example, let t0 = 0 (the

initial point), when T = R, then ea(σ(t), δ−(τ, t)) = eaτ ; when T = Z, then ea(σ(t), δ−(τ, t)) =
(1 + a)1+τ ; when T = hZ, then ea(σ(t), δ−(τ, t)) = (1 + ah)1+τ/h, and so on.

For convenience, we introduce the following notations:

M1 =
buebu(σ(t), δ−(τ1, t))

cl
+ ε,

M2 =

(
fu − dl

1

)
(1 −m)M1e(fu−dl

1)
(σ(t), δ−(τ2, t))

aldl
1

+ ε,

M3 =

((
gu − pldl

2

)
/pl − kldl

2/
(
pu(1 −m)M1

))
puM1(1 −m)e(gu/pl−dl

2)
(σ(t), δ−(τ3, t))

dl
2n

l
+ ε,

m1 =

[
bl − du(1 −m)/al − hu(1 −m)/nl

]
eβl(σ(t), δ−(τ1, t))

cu
− ε,

m2 =
(m1/2)

(
fl − du

1

)
(1 −m)e(−du

1 )(σ(t), δ−(τ2, t))

audu
1

− ε,

m3 =

[
(m1/2)pl(1 −m)

(
gl − du

2

) − kudu
2

]
e(−du

2 )(σ(t), δ−(τ3, t))
nudu

2
− ε,

(3.1)

where βl = bl − du(1 −m)/al − hu(1 −m)/nl − cuM1.
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Hereafter, we assume that

(H1) f(t) − d1(t) ∈ R+;

(H2) fu − dl
1 > 0;

(H3) g(t)/p(t) − d2(t) ∈ R+;

(H4) (gu − pldl
2)/p

l − kldl
2/(p

u(1 −m)M1) > 0;

(H5) b(t) − d(t)(1 −m)/a(t) − h(t)(1 −m)/n(t) − c(t)M1 ∈ R+;

(H6) bl − du(1 −m)/al − hu(1 −m)/nl > 0;

(H7) −d1(t) ∈ R+;

(H8) fl − du
1 > 0;

(H9) −d2(t) ∈ R+;

(H10) (m1/2)(1 −m)(gl − du
2p

u) − kudu
2 > 0.

Proposition 3.2. Assume that (x(t), y(t), z(t)) is any positive solution of system (1.1) with initial
condition (1.2). If (H1)–(H4) hold, then

x(t) ≤ M1, y(t) ≤ M2, z(t) ≤ M3. (3.2)

Proof. Assume that (x(t), y(t), z(t)) is any positive solution of system (1.1) with initial
condition (1.2). From the first equation of system (1.1), for t ∈ [τ1,∞)

T
, we have

xΔ(t) ≤ x(t)(b(t) − c(t)x(δ−(τ1, t))). (3.3)

From (3.3), we can see xΔ(t) ≤ b(t)x(t); then by Lemma 2.7, we can get

x(δ−(τ1, t)) ≥ e�b(σ(t), δ−(τ1, t))x(σ(t)). (3.4)

Together with (3.3) and (3.4), we have

xΔ(t) ≤ x(t)(b(t) − c(t)e�b(σ(t), δ−(τ1, t))x(σ(t)))

≤ x(t)
(
bu − cle�bu(σ(t), δ−(τ1, t))x(σ(t))

)
.

(3.5)

By Lemma 2.5, for arbitrary small positive constant ε, there exists T1 > 0 such that

x(t) ≤ bu

cle�bu(σ(t), δ−(τ1, t))
+ ε

=
buebu(σ(t), δ−(τ1, t))

cl
+ ε := M1, t ∈ [T1,∞)

T
.

(3.6)
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Again, from the second equation of system (1.1) and (3.6), for t ∈ [T1 + τ2,∞)
T
, we

have

yΔ(t) ≤ y(t)
(
−d1(t) +

f(t)(1 −m)M1

a(t)y(δ−(τ2, t)) + (1 −m)M1

)
. (3.7)

From (3.7), we can see yΔ(t) ≤ (−d1(t) + f(t))y(t); then by (H1) and Lemma 2.7, we can
get

y(δ−(τ2, t)) ≥ e(�α)(σ(t), δ−(τ2, t))y(σ(t)), (3.8)

where α(t) = f(t) − d1(t).
Together with (3.7) and (3.8), we have

yΔ(t) ≤ y(t)
(
−d1(t) +

f(t)(1 −m)M1

a(t)e(�α)(σ(t), δ−(τ2, t))y(σ(t)) + (1 −m)M1

)

≤ y(t)

(
(1 −m)M1

(
f(t) − d1(t)

) − a(t)d1(t)e(�α)(σ(t), δ−(τ2, t))y(σ(t))
a(t)e(�α)(σ(t), δ−(τ2, t))y(σ(t)) + (1 −m)M1

)

≤ y(t)

⎛
⎝fu − dl

1 −
aldl

1e�(fu−dl
1)
(σ(t), δ−(τ2, t))

(1 −m)M1
y(σ(t))

⎞
⎠.

(3.9)

By (H2) and Lemma 2.5, for arbitrary small positive constant ε, there exists T2 > T1 + τ2
such that

y(t) ≤

(
fu − dl

1

)
(1 −m)M1

aldl
1e�(fu−dl

1)
(σ(t), δ−(τ2, t))

+ ε

=

(
fu − dl

1

)
(1 −m)M1e(fu−dl

1)
(σ(t), δ−(τ2, t))

aldl
1

+ ε := M2, t ∈ [T2,∞)
T
.

(3.10)

Similarly, under conditions (H3)-(H4), by Lemmas 2.5 and 2.7, we can get that, for
arbitrary small positive constant ε, there exists T3 > T2 + τ3 such that

z(t) ≤

((
gu − pldl

2

)
/pl − kldl

2/
(
pu(1 −m)M1

))
puM1(1 −m)e(gu/pl−dl

2)
(σ(t), δ−(τ3, t))

dl
2n

l

+ ε := M3, t ∈ [T3,∞)
T
.

(3.11)

The conclusion of Proposition 3.2 follows. This completes the proof.
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Proposition 3.3. Assume that (x(t), y(t), z(t)) is any positive solution of system (1.1) with initial
condition (1.2). If (H1)–(H10) hold, then

x(t) ≥ m1, y(t) ≥ m2, z(t) ≥ m3. (3.12)

Proof. Assume that (x(t), y(t), z(t)) is any positive solution of system (1.1) with initial
condition (1.2). From Theorem 3.4, there exists a T1 > 0, such that x(t) ≤ M1, t ∈ [T1,∞)

T
. By

the first equation of system (1.1), for t ∈ [T1 + τ1,∞)
T
, we have

xΔ(t) ≥ x(t)
(
b(t) − d(t)(1 −m)

a(t)
− h(t)(1 −m)

n(t)
− c(t)x(δ−(τ1, t))

)
, (3.13)

then

xΔ(t) ≥ x(t)
(
b(t) − d(t)(1 −m)

a(t)
− h(t)(1 −m)

n(t)
− c(t)M1

)
. (3.14)

By (3.14), (H5), and Lemma 2.7, we can get

x(δ−(τ1, t)) ≤ e�β(σ(t), δ−(τ1, t))x(σ(t)), (3.15)

where β = b(t) − d(t)(1 −m)/a(t) − h(t)(1 −m)/n(t) − c(t)M1.
Together with (3.13) and (3.15), we have

xΔ(t) ≥ x(t)
(
b(t) − d(t)(1 −m)

a(t)
− h(t)(1 −m)

n(t)
− c(t)e�β(σ(t), δ−(τ1, t))x(σ(t))

)

≥ x(t)
(
bl − du(1 −m)

al
− hu(1 −m)

nl
− cue�βl(σ(t), δ−(τ1, t))x(σ(t))

)
,

(3.16)

where βl = bl − du(1 −m)/al − hu(1 −m)/nl − cuM1.
By (H6) and Lemma 2.5, for arbitrary small positive constant ε, there exists T4 > T1 + τ1

such that

x(t) ≥ bl − du(1 −m)/al − hu(1 −m)/nl

cue�βl(σ(t), δ−(τ1, t))
− ε

=

[
bl − du(1 −m)/al − hu(1 −m)/nl

]
eβl(σ(t), δ−(τ1, t))

cu
− ε := m1, t ∈ [T4,∞)

T
.

(3.17)

Again, from the second equation of system (1.1) and (3.17), for t ∈ [T4 + τ2,∞)
T
, we

have

yΔ(t) ≥ y(t)
(
−d1(t) +

(m1/2)f(t)(1 −m)
a(t)y(δ−(τ2, t)) + (m1/2)(1 −m)

)
. (3.18)
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From (3.18), we can see yΔ(t) ≥ −d1(t)y(t); then by (H7) and Lemma 2.7, we can get

y(δ−(τ2, t)) ≤ e�(−d1)(σ(t), δ−(τ2, t))y(σ(t)). (3.19)

Together with (3.18) and (3.19), we have

yΔ(t) ≥ y(t)
(
−d1(t) +

(m1/2)f(t)(1 −m)
a(t)e�(−d1)(σ(t), δ−(τ2, t))y(σ(t)) + (m1/2)(1 −m)

)

≥ y(t)

(
(m1/2)

(
fl − du

1

)
(1 −m) − audu

1e�(−du
1 )(σ(t), δ−(τ2, t))y(σ(t))

aue�(−du
1 )(σ(t), δ−(τ2, t))M2 + (m1/2)(1 −m)

)
.

(3.20)

By (H8) and Lemma 2.5, for arbitrary small positive constant ε, there exists T5 > T4 + τ2
such that

y(t) ≥ (m1/2)
(
fl − du

1

)
(1 −m)

audu
1e�(−du

1 )(σ(t), δ−(τ2, t))
− ε

=
(m1/2)

(
fl − du

1

)
(1 −m)e(−du

1 )(σ(t), δ−(τ2, t))

audu
1

− ε := m2, t ∈ [T5,∞)
T
.

(3.21)

Similarly, under conditions (H9) and (H10), by Lemmas 2.5 and 2.7, we can get that,
for arbitrary small positive constant ε, there exists T6 > T5 + τ3 such that

z(t) ≥
[
(m1/2)pl(1 −m)

(
gl − du

2

) − kudu
2

]
e(−du

2 )(σ(t), δ−(τ3, t))
nudu

2

− ε := m3, t ∈ [T6,∞)
T
.

(3.22)

The conclusion of Proposition 3.3 follows. This completes the proof.

Together with Propositions 3.2 and 3.3, we can obtain the following theorem.

Theorem 3.4. Assume that (H1)–(H10) hold; then system (1.1) is permanent.
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Figure 1: T = R, m = 0.6. Dynamics behavior of system (4.1) with initial condition x(0) = 0.3, y(0) = 0.3,
z(0) = 0.3.

4. Examples and Simulations

Consider the following system on time scales with m = 0.6:

xΔ(t) = x(t)
[(

0.08 + 0.05 sin
π

2
t
)
− 0.2x(δ−(τ1, t)) −

0.05y(t)(1 −m)
2y(t) + x(t)(1 −m)

− 0.05z(t)(1 −m)
0.005 + x(t)(1 −m) + 2z(t)

]
,

yΔ(t) = y(t)
[
−
(
0.7 − 0.25 cos

5π
2
t

)
+

2x(δ−(τ2, t))(1 −m)
2y(δ−(τ2, t)) + x(δ−(τ2, t))(1 −m)

]
,

zΔ(t) = z(t)
[
−
(
0.75 + 0.2 sin

3π
2
t

)
+

4x(δ−(τ3, t))(1 −m)
0.005 + x(δ−(τ3, t))(1 −m) + 2z(δ−(τ3, t))

]
.

(4.1)

Let T = R; then μ(t) = 0. Obviously, (H1), (H3), (H5), (H7), and (H9) hold. Taking
τi = 1, i = 1, 2, 3, by a direct calculation, we can get

(H2) fu − dl
1 = 1.5500 > 0;

(H4) (gu − pldl
2)/p

l − kldl
2/(p

u(1 −m)M1) = 3.4407 > 0;

(H6) bl − du(1 −m)/al − hu(1 −m)/nl = 0.0100 > 0;

(H8) fl − du
1 = 1.0500 > 0;

(H10) (m1/2)(1 −m)(gl − du
2p

u) − kudu
2 = 0.0218 > 0.

From the above results, we can see that all conditions of Theorem 3.4 hold. So, system
(4.1) is permanent, see Figure 1.

Let T = Z; then μ(t) = 1. It is easy to check (H1), (H3), (H5), (H7), and (H9) hold.
Taking τi = 1, i = 1, 2, 3, by a direct calculation, we can get
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Figure 2: T = Z, m = 0.6. Dynamics behavior of system (4.1) with initial condition x(0) = 0.35, y(0) = 0.2,
z(0) = 0.4.
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Figure 3: T =
⋃∞

k=0[2k, 2k+1],m = 0.6. Dynamics behavior of system (4.1)with initial condition x(0) = 0.3,
y(0) = 0.2, z(0) = 0.3.

(H2) fu − dl
1 = 1.5500 > 0;

(H4) (gu − pldl
2)/p

l − kldl
2/(p

u(1 −m)M1) = 3.4086 > 0;

(H6) bl − du(1 −m)/al − hu(1 −m)/nl = 0.0100 > 0;

(H8) fl − du
1 = 1.0500 > 0;

(H10) (m1/2)(1 −m)(gl − du
2p

u) − kudu
2 = 0.0244 > 0.
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From the above results, we can see that all conditions of Theorem 3.4 hold. So, system
(4.1) is permanent, see Figure 2.

Let T =
⋃∞

k=0[2k, 2k + 1]; then μ(t) =
{

0, for t∈⋃∞
k=0[2k,2k+1),

1, for t∈⋃∞
k=0{2k+1}. It is easy to check (H1), (H3),

(H5), (H7), and (H9) hold. Taking τi = 2, i = 1, 2, 3, by a direct calculation, we can get

(H2) fu − dl
1 = 1.5500 > 0;

(H6) bl − du(1 −m)/al − hu(1 −m)/nl = 0.0100 > 0;

(H8) fl − du
1 = 1.0500 > 0.

Furthermore, if t ∈ ⋃∞
k=0[2k, 2k + 1), then

(H4) (gu − pldl
2)/p

l − kldl
2/(p

u(1 −m)M1) = 3.4418 > 0;

(H10) (m1/2)(1 −m)(gl − du
2p

u) − kudu
2 = 0.0175 > 0;

if t ∈ ⋃∞
k=0{2k + 1}, then

(H4) (gu − pldl
2)/p

l − kldl
2/(p

u(1 −m)M1) = 3.4133 > 0;

(H10) (m1/2)(1 −m)(gl − du
2p

u) − kudu
2 = 0.0233 > 0.

From the above results, we can see that all conditions of Theorem 3.4 hold. So, system
(4.1) is permanent, see Figure 3.
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