
Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2012, Article ID 304868, 18 pages
doi:10.1155/2012/304868

Research Article
Hopf Bifurcation in an SEIDQV Worm Propagation
Model with Quarantine Strategy

Yu Yao,1, 2 Wenlong Xiang,1, 2 Andong Qu,1, 2

Ge Yu,1, 2 and Fuxiang Gao1, 2

1 Key Laboratory of Medical Image Computing of Ministry of Education, Northeastern University,
Shenyang 110004, China

2 College of Information Science and Engineering, Northeastern University, Shenyang 110819, China

Correspondence should be addressed to Wenlong Xiang, xiangwenlong1013@163.com

Received 22 July 2012; Accepted 26 October 2012

Academic Editor: Bimal Kumar Mishra

Copyright q 2012 Yu Yao et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

Worms exploiting zero-day vulnerabilities have drawn significant attention owing to their
enormous threats to the Internet. In general, users may immunize their computers with
countermeasures in exposed and infectious state, which may take a period of time. Through
theoretical analysis, time delay may lead to Hopf bifurcation phenomenon so that the worm
propagation system will be unstable and uncontrollable. In view of the above factors, a quarantine
strategy is thus proposed in the study. In real network, unknown worms and worm variants may
lead to great risks, which misuse detection system fails to detect. However, anomaly detection is of
help in detecting these kinds of worm. Consequently, our proposed quarantine strategy is built on
the basis of anomaly intrusion detection system. Numerical experiments show that the quarantine
strategy can diminish the infectious hosts sharply. In addition, the threshold τ0 is much larger after
using our quarantine strategy, which implies that people have more time to remove worms so
that the system is easier to be stable and controllable without Hopf bifurcation. Finally, simulation
results match numerical ones well, which fully supports our analysis.

1. Introduction

In recent years, with the rapid development of computer technologies and network ap-
plications, Internet has become a powerful mechanism for propagating malicious software
programs.Systems running on network computers becomemore vulnerable to digital threats.
In particular,worms that exploit zero-day vulnerabilities have brought severe threats to
Internet security. To a certain extent, the propagation of worms in a system of interacting
computers could be compared with infectious diseases in a population. Anderson and
May discussed the spreading nature of biological viruses, parasites and so forth.leading
to infectious diseases in human population through several epidemic models [1, 2]. The
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action of worms throughout a network can be studied by using epidemiological models
for disease propagation [3–8]. Mishra and Saini [4] present a SEIRS model with latent
and temporary immune periods, which can reveal common worm propagation. Dong et
al. propose a computer virus model with time delay based on an SEIR model and regard
time delay as bifurcating parameter to study the dynamical behaviors which include local
asymptotical stability and local Hopf bifurcation [9]. Ren et al. give a novel computer virus
propagation model and study its dynamic behaviors [10]. L.-X. Yang and X. Yang also
investigates the propagation behavior of virus programs provided infected computers are
connected to the Internet with positive probability [11]. Gan et al. examine the propagation
behavior of computer virus under human intervention [12]. The use of a quarantine strategy
has produced a tremendous effect on controlling disease. Inspired by this, quarantine strategy
is also widely used in worm containment [13–18]. Based on the two-factor model, Zou
et al. proposes a worm propagation model under dynamic quarantine defense [15]. Wang
et al. proposes a novel epidemic model, which combines both vaccinations and dynamic
quarantine methods, referred to as SEIQV model [18].

However, previous studies have failed to consider the appropriate quarantine strategy
to eliminate the negative effect of time delay, which may lead to Hopf bifurcation
phenomenon so that the worm propagation system will be unstable and uncontrollable. In
this paper, time delay is introduced in a worm propagation model. Users may immunize
their computers with countermeasures in exposed and infectious state, which may take a
period of time. Through theoretical analysis, it is proved that the system is stable when
time delay is less than the threshold τ0 and Hopf bifurcation appears when time delay is
equal to or greater than the threshold. Moreover, unknown worms and worm-variants may
lead to great risks. In order to make up the deficiency of vaccination strategy and eliminate
the negative effect of time delay, a quarantine strategy is thus proposed in our study. The
current quarantine strategy generally depends on the intrusion detection system, which can
be classified into two categories: misuse and anomaly intrusion detection. While misuse
detection system fails to detect unknown worms and worm-variants, anomaly detection is
of help in detecting these kinds of worm. Consequently, our proposed quarantine strategy is
on the basis of anomaly intrusion detection system. According to the above descriptions, we
present an SEIDQV worm propagation model to study the behaviors of worm propagation
in the real world. Then, the stability of the positive equilibrium and the critical value of Hopf
bifurcation are studied. By analysis, the quarantine strategy can diminish the infectious hosts
sharply. Moreover, the threshold τ0 is much larger after using our quarantine strategy, which
implies that people have more time to remove worms so that the system is easier to be stable
and controllable without Hopf bifurcation.

The rest of the paper is organized as follows. Section 2 provides an SEIDQV worm
propagation model. In Section 3, we analyze the stability of the positive equilibrium and
the threshold of Hopf bifurcation. Section 4 describes the numerical analysis of our model.
In Section 5, we present simulation experiments based on slammer worm. The simulation
results match well with numerical ones. Finally, Section 6 gives the conclusions.

2. Model Formulation

Considering worms exploiting zero-day vulnerabilities, none of effective and reliable safety
patches could immunize the hosts.Susceptible hosts first go through a latent period (exposed)
after infection before becoming infectious [9]. People may immunize their computers with
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countermeasures in exposed and infectious hosts, which may take a period of time. Since
time delay exists, infectious hosts go through a temporary state (delayed) after vaccination
before becoming vaccinated. What is more, unknown worms and worm-variants may lead
to great risks. To our knowledge, quarantine strategies have produced a tremendous effect
on controlling disease. Enlightened by this, quarantine strategies are also widely used in
worm containment. In order to make up the deficiency of vaccination strategy and eliminate
the negative effect of time delay, a quarantine strategy is thus proposed in the study. The
current quarantine strategy generally depends on the intrusion detection system, which can
be classified into two categories: misuse and anomaly intrusion detection. On one hand,
misuse intrusion detection system, which constructs a database with the feather of known
attack behaviors, can recognize invaders once their behaviors agree with one of the databases.
Although the system can accurately detect known worms, it fails to detect unknown
worms and worm variants. On the other hand, an attack can be detected by the anomaly
detection system as long as its behavior differs from any database consisting of normal
behaviors, which is of help in detecting unknown worms and worm variants. Consequently,
our proposed quarantine strategy is on the basis of anomaly intrusion detection system.
Meanwhile, anomaly detection system is accompanied by false-positive rates. The quarantine
is implemented as follows: the infectious, exposed and susceptible hosts are detected by the
anomaly intrusion detection system. The advantage of this strategy lies in detecting unknown
worms and worm variants effectively. As anomaly detection system is accompanied by false-
positive rates, the quarantine strategy adds two transitions as a result of the influence of the
anomaly detection method. The false-positive rates of exposed and susceptible hosts detected
by the anomaly detection method are set θ2 and θ3, respectively.

According to the descriptions above, we give an SEIDQV worm propagation model
with quarantine strategy. Assume all hosts are in one of six states: Susceptible state (S),
Exposed state (E), Infectious state (I), Delayed state (D), Quarantined state (Q), and
Vaccinated state (V ). Let S(t) denote the number of susceptible hosts at time t, E(t) denote
the number of exposed hosts at time t, I(t) denote the number of infectious hosts at time t,
D(t) denote the number of delayed hosts at time t, Q(t) denote the number of quarantined
hosts at time t, and V (t) denote the number of vaccinated hosts at time t. β is the infection
rate at which susceptible hosts are infected by infectious hosts, and γ is the rate of removal of
infectious for circulation. μ is the rate that vaccinated hosts become susceptible. Time delay is
denoted by τ . More parameters are listed in Table 1. The states and state transition diagram
of the SEIDQV model are given in Figure 1.

In order to understand clearly, we list in Table 1 some frequently used notations in this
paper.

From the above definitions in the paper, we write down the complete differential
equations of the SEIDQV model:

dS(t)
dt

= −βS(t)I(t) − θ3S(t) + μV (t),

dE(t)
dt

= βS(t)I(t) − αE(t) − θ2E(t) − νE(t − τ),

dI(t)
dt

= αE(t) − γI(t) − θ1I(t),
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Table 1: Notations in this paper.

Notation Explanation

N Total number of hosts in the network
S(t) Number of susceptible hosts at time t
E(t) Number of exposed hosts at time t
I(t) Number of infectious hosts at time t
D(t) Number of delayed hosts at time t
Q(t) Number of quarantined hosts at time t
V (t) Number of vaccinated hosts at time t
β Infection rate
α The rate at which exposed hosts become infectious
γ Removal rate of infectious hosts
μ The rate at which vaccinated hosts become susceptible
ν The rate at which exposed hosts are vaccinated or treated
δ Removal rate of quarantined hosts
θ1 θ2 θ3 Quarantine rate of infectious, exposed, and susceptible hosts
τ Time delay of detecting and removing worms

μ

v

S E I D V
β α γI(t) γI(t − τ)

Q

θ1θ2
θ3

δ

Figure 1: The states and state transitions in SEIDQV model.

dD(t)
dt

= γI(t) − γI(t − τ),

dQ(t)
dt

= θ1I(t) + θ2E(t) + θ3S(t) − δQ(t),

dV (t)
dt

= νE(t − τ) + γI(t − τ) + δQ(t) − μV (t).

(2.1)

As mentioned above, the population size is setN, which is set to unity

S(t) + E(t) + I(t) +D(t) +Q(t) + V (t) = N. (2.2)
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3. Stability of the Positive Equilibrium and Bifurcation Analysis

Theorem 3.1. The system has a unique positive equilibrium E∗(S∗, E∗, I∗, D∗, Q∗, V ∗) when it sat-
isfies the following condition:

(H1)
αβμδN

(
μδ + μθ3 + δθ3

)(
γ + θ1

)
(α + θ2 + ν)

> 1, where S∗ =

(
γ + θ1

)
(α + θ2 + ν)
αβ

,

E∗ =

(
γ + θ1

)

α
I∗, D∗ = 0, Q∗ =

αθ1 + θ2
(
γ + θ1

)

αδ
I∗ +

θ3
δ
S∗, V ∗ =

ν

μ
E∗ +

γ

μ
I∗ +

δ

μ
Q∗.

(3.1)

Proof. For system (2.1), if all the derivatives on the left of equal sign of the system are set to
0, which implies that the system becomes stable, we can derive

S =

(
γ + θ1

)
(α + θ2 + ν)
αβ

,

E =

(
γ + θ1

)

α
I∗,

D = 0,

Q =
αθ1 + θ2

(
γ + θ1

)

αδ
I∗ +

θ3
δ
S∗,

V =
ν

μ
E∗ +

γ

μ
I∗ +

δ

μ
Q∗.

(3.2)

Substituting the value of each variable in (3.2) for each of (2.2), then we can derive

S∗ +

(
γ + θ1

)

α
I∗ + I∗ +

αθ1 + θ2
(
γ + θ1

)

αδ
I∗ +

θ3
δ
S∗ +

ν

μ

(
γ + θ1

)

α
I∗ +

γ

μ
I∗ +

δ

μ
Q∗ = N. (3.3)

Obviously, if (H1) is satisfied, (3.3) has one unique positive root I∗, and there is one
unique positive equilibrium E∗(S∗, E∗, I∗, D∗, Q∗, V ∗) of system (2.1). The proof is completed.

According to (2.2),Q(t) = N − S(t) −E(t) − I(t) −D(t) − V (t), thus system (2.1) can be
simplified to

dS(t)
dt

= −βS(t)I(t) − θ3S(t) + μV (t),

dE(t)
dt

= βS(t)I(t) − αE(t) − θ2E(t) − νE(t − τ),

dI(t)
dt

= αE(t) − γI(t) − θ1I(t),
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dD(t)
dt

= γI(t) − γI(t − τ),

dV (t)
dt

= νE(t − τ) + γI(t − τ) + δ(N − S(t) − E(t) − I(t) −D(t) − V (t)) − μV (t).

(3.4)

The Jacobi matrix of (3) about E∗(S∗, E∗, I∗, D∗, V ∗) is given by

J(E∗) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−βI∗ − θ3 0 −βS∗ 0 μ
βI∗ −α − θ2 − νe−λτ βS∗ 0 0
0 α −γ − θ1 0 0
0 0 γ − γe−λτ 0 0
−δ νe−λτ − δ γe−λτ − δ −δ −δ − μ

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (3.5)

The characteristic equation of that matrix can be obtained by

P(λ) +Q(λ)e−λτ = 0,

P(λ) = λ5 + p4λ
4 + p3λ

3 + p2λ
2 + p1λ + p0, Q(λ) = q4λ

4 + q3λ
3 + q2λ

2 + q1λ + q0,
(3.6)

where

p4 = βI∗ + α + δ + μ + γ + θ1 + θ2 + θ3,

p3 =
(
α + γ + θ1 + θ2

)(
δ + μ + βI∗ + θ3

)
+
(
βI∗ + θ3

)(
δ + μ

) − (γ + θ1
)
ν,

p2 =
(
βI∗ + θ3

)(
α + γ + θ1 + θ2

)(
μ + δ

)
+
(
γ + θ1

)(
αβI∗ + θ2βI

∗ − δν − μν − θ3ν
)
+ δμβI∗,

p1 =
(
γ + θ1

)(
δ + μ

)(
(α + θ2)βI∗ − θ3ν

)
+
(
α + γ + θ1

)
δμβI∗, p0 = δαμγβI∗,

q4 = ν, q3 = ν
(
δ + μ + βI∗ + γ + θ1 + θ3

)
,

q2 = ν
[(
βI∗ + θ3

)(
δ + μ

)
+
(
γ + θ1

)(
βI∗ + θ3 + δ + μ

) − μβI∗
]
,

q1 =
(
γ + θ1

)(
βI∗ + θ3

)(
δ + μ

)
ν − (αγ + γν + θ1ν

)
δμβI∗, q0 = −δαμγβI∗.

(3.7)

Theorem 3.2. The positive equilibrium E∗ is locally asymptotically stable without time delay, if the
following holds:

(H2) p4 + q4 > 0, d1 > 0,
(
p2 + q2

)
d1 −

(
p1 + q1

)(
p4 + q4

)2
> 0, p1 + q1 > 0. (3.8)

Proof. If τ = 0, (3.6) reduces to

λ4 +
(
p4 + q4

)
λ3 +

(
p3 + q3

)
λ2 +

(
p2 + q2

)
λ +
(
p1 + q1

)
= 0. (3.9)
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According to Routh-Hurwitz criterion, all the roots of (3.9) have negative real parts.
Therefore, it can be deduced that the positive equilibrium E∗ is locally asymptotically stable
without time delay. The proof is completed.

Obviously, λ = iω (ω > 0) is a root of (3.6). After separating the real and imaginary
parts, it can be written as

p4ω
4 − p2ω

2 + p0 +
(
q4ω

4 − q2ω
2 + q0

)
cos(ωτ) +

(
q1ω − q3ω

3
)
sin(ωτ) = 0,

ω5 − p3ω
3 + p1ω −

(
q4ω

4 − q2ω
2 + q0

)
sin(ωτ) +

(
q1ω − q3ω

3
)
cos(ωτ) = 0,

(3.10)

which implies

ω8 +D3ω
6 +D2ω

4 +D1ω
2 +D0 = 0, (3.11)

where

D3 = p4
2 − q4

2 − 2p3,

D2 = p3
2 − q3

2 − 2p2p4 + 2q2q4 + 2p1,

D1 = p2
2 − q2

2 + 2p0p4 − 2q0q4 − 2p1p3 + 2q1q3,

D0 = p1
2 − q1

2 − 2p0p2 + 2q0q2.

(3.12)

Let z = ω2, (3.11) can be written as

h(z) = z4 +D3z
3 +D2z

2 +D1z +D0 (3.13)

Yang et al. [19] obtained the following results on the distribution of roots of (3.13). Denote

m =
1
2
D2 − 3

16
D3

2, n =
1
32

D3
3 − 1

8
D3D2 +D1, Δ =

(n
2

)2
+
(
m

3

)3

, σ =
−1 +√

3i
2

,

y1 = 3

√

−n
2
+
√
Δ + 3

√

−n
2
−
√
Δ, y2 = 3

√

−n
2
+
√
Δσ + 3

√

−n
2
−
√
Δσ2,

y3 = 3

√

−n
2
+
√
Δσ2 + 3

√

−n
2
−
√
Δσ, zi = yi − 3D3

4
(i = 1, 2, 3).

(3.14)

Lemma 3.3. For the polynomial equation (3.13)

(1) if D0 < 0, then (3.13) has at least one positive root.

(2) if D0 ≥ 0 and Δ ≥ 0, then (3.13) has positive roots if and only if z1 > 0 and h(z1) < 0,

(3) if D0 ≥ 0 and Δ < 0, then (3.13) has positive roots if and only if there exists at least one
z∗ ∈ (z1, z2, z3), such z∗ > 0 and h(z∗) ≤ 0.
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Lemma 3.4. Suppose that (H2) p4 + q4 > 0, d1 > 0, (p2 + q2)d1 − (p1 + q1)(p4 + q4)
2 > 0, p1 + q1 > 0

is satisfied.

(1) If one of following holds: (a) D0 < 0; (b) D0 ≥ 0,Δ ≥ 0, z1 > 0 and h(z1) < 0; (c)
D0 ≥ 0,Δ < 0, and there exists at least z∗ ∈ (z1, z2, z3) such that z∗ > 0 and h(z∗) ≤ 0,
then all roots of (3.6) have negative real parts when τ ∈ [0, τ0), τ0 is a certain positive
constant.

(2) If the conditions (a)–(c) are not satisfied, then all roots of (3.6) have negative real parts for
all τ ≥ 0.

Proof. When τ = 0, (3.6) can be reduced to

λ4 +
(
p4 + q4

)
λ3 +

(
p3 + q3

)
λ2 +

(
p2 + q2

)
λ +
(
p1 + q1

)
= 0. (3.15)

By the Routh-Hurwitz criterion,all roots of (3.9) have negative real parts and only if
p4 + q4 > 0, d1 > 0, (p2 + q2)d1 − (p1 + q1)(p4 + q4)

2 > 0, p1 + q1 > 0.
FromLemma 3.3, it can be known that if (a)–(c) are not satisfied, then (3.6) has no roots

with zero real part for all τ ≥ 0; if one of (a)–(c) holds, when τ ≥ τk
(j)(k = 1, 2, 3, 4, j ≥ 1),

(3.6) has no roots with zero real part and τ0 is the minimum value of τ , so (3.6) has purely
imaginary roots. According to [20], one obtains the conclusion of the lemma.

When conditions (a)–(c) of Lemma 3.4 are not satisfied, h(z) always has no positive
root. Therefore, under these conditions, (3.6) has no purely imaginary roots for any τ >
0, which implies that the positive equilibrium E∗(S∗, E∗, I∗, D∗, Q∗, V ∗) of system (2.1) is
absolutely stable. Therefore, the following theorem on the stability of positive equilibrium
E∗(S∗, E∗, I∗, D∗, Q∗, V ∗) can be easily obtained.

Theorem 3.5. Assume that (H1) and (H2) are satisfied, (a) D0 ≥ 0,Δ ≥ 0, z1 < 0 or h(z1) > 0;
(b) D0 ≥ 0,Δ < 0, and there is no z∗ ∈ (z1, z2, z3), such that z∗ > 0 and h(z∗) ≤ 0.
Then the positive equilibrium E∗(S∗, E∗, I∗, D∗, Q∗, V ∗) of system (2.1) is absolutely stable. Namely,
E∗(S∗, E∗, I∗, D∗, Q∗, V ∗) is asymptotically stable for any time delay τ ≥ 0.

Assume that the coefficients in h(z) satisfy the condition as follows:
(H3) (a) D0 ≥ 0,Δ ≥ 0, z1 < 0or h(z1) > 0; (b) D0 ≥ 0,Δ < 0, and there is no z∗ ∈

(z1, z2, z3), such that z∗ > 0 and h(z∗) ≤ 0.
According to the previous lemma,it is proved that (3.13) has at least a positive rootω0,

namely, the characteristic equation (3.6) has a pair of purely imaginary roots ±iω0.
In view of the fact that (3.6) has a pair of purely imaginary roots ±iω0, the cor-

responding τk > 0 is given by eliminating sin(ωτ) in (3.10):

τk

=
1
ω0

arc cos

[(
p2ω0

2−p4ω0
4−p0

)(
q4ω0

4−q2ω0
2 + q0

)
+
(
ω0

5−p3ω0
3+p1ω0

)(
q3ω0

3−q1ω0
)

(
q4ω0

4−q2ω0
2+q0

)2+
(
q3ω0

3−q1ω0
)2

]

+
2kπ
ω0

(k = 0, 1, 2, . . .).

(3.16)
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Let λ(τ) = v(τ) + iω(τ) be the root of (3.6), so that v(τk) = 0 and ω(τk) = ω0 are satisfied
when τ = τk.

Lemma 3.6. Suppose h′(z0)/= 0. If τ = τ0, then ±iω0 is a pair of purely imaginary roots of (3.6). In
addition, if the conditions in Lemma 3.4(1) are satisfied, then

d(Reλ)
dτ

∣
∣
∣
∣
τ=τk

> 0. (3.17)

This signifies that it exists at least one eigenvalue with positive real part for τ > τk.
Differentiating both sides of (3.6)with respect to τ , it can be written as:

(
dλ

dτ

)−1
=

(
5λ4 + 4p4λ3 + 3p3λ2 + 2p2λ + p1

)

(
q4λ4 + q3λ3 + q2λ2 + q1λ + q0

)
λe−λτ

+

(
4q4λ3 + 3q3λ2 + 2q2λ + q1

)
e−λτ

(
q4λ4 + q3λ3 + q2λ2 + q1λ + q0

)
λe−λτ

−
(
q4λ

4 + q3λ
3 + q2λ

2 + q1λ + q0
)
τe−λτ

(
q4λ4 + q3λ3 + q2λ2 + q1λ + q0

)
λe−λτ

=

(
5λ4 + 4p4λ3 + 3p3λ2 + 2p2λ + p1

)
eλτ

(
q4λ4 + q3λ3 + q2λ2 + q1λ + q0

)
λ

+

(
4q4λ3 + 3q3λ2 + 2q2λ + q1

)

(
q4λ4 + q3λ3 + q2λ2 + q1λ + q0

)
λ
− τ

λ
.

(3.18)

Therefore,

sgn
[
dReλ
dτ

]

τ=τk
= sgn

[

Re
(
dλ

dτ

)−1]

λ=iω0

= sgn

[

Re

((
5λ4 + 4p4λ3 + 3p3λ2 + 2p2λ + p1

)
eλτ

(
q4λ4 + q3λ3 + q2λ2 + q1λ + q0

)
λ

+

(
4q4λ3 + 3q3λ2 + 2q2λ + q1

)

(
q4λ4 + q3λ3 + q2λ2 + q1λ + q0

)
λ
− τ

λ

)]

λ=iω0

= sgn
ω0

2

K

{
4ω0

6 + 3D3ω0
4 + 2D2ω0

2 +D1

}

= sgn
{
h′
(
ω0

2
)}

,

(3.19)

whereK = (q3ω0
4 − q1ω0

2)2 + (q4ω0
5 − q2ω0

3 + q0ω0)
2, then it follows the hypothesis (H3) that

h′(ω0
2)/= 0.
Hence,

d(Reλ)
dτ

∣∣∣∣
τ=τk

> 0. (3.20)

The root of characteristic equation (3.6) crosses from left to right on the imaginary axis
as τ continuously varies from a value less than τk to one greater than τk according to
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Figure 2: Propagation trend of the five kinds of host when τ < τ0.

Routh’s theorem. Therefore, according to Hopf bifurcation theorem for functional differential
equations, the transverse condition holds and the conditions for Hopf bifurcation are satisfied
at τ = τk. Then the following result can be obtained.

Theorem 3.7. Suppose that the conditions (H1) and (H2) are satisfied.

(1) The equilibrium E∗(S∗, E∗, I∗, D∗, Q∗, V ∗) is locally asymptotically stable when τ ∈ [0, τ0),
but unstable when τ > τ0.

(2) If condition (H3) is satisfied, the system will undergo a Hopf bifurcation at the positive
equilibrium E∗(S∗, E∗, I∗, D∗, Q∗, V ∗) when τ = τk (k = 0, 1, 2, . . .) where τk is defined by
(3.16).

This implies that when time delay τ < τ0, the system will stabilize at its infection
equilibrium point, which is beneficial for us to implement a containment strategy; when time
delay τ > τ0, the system will be unstable and worms cannot be effectively controlled.

4. Numerical Analysis

In order to simulate the real behavior of the spread of a worm, the parameters in the
experiments are practical values. The slammer worm is selected for experiments. 750,000
hosts are picked as the population size, and the worm’s average scan rate is 3300 per
second. The worm infection rate can be calculated as α = ηN/232 = 0.5763. It means
that average 0.5763 hosts of all the hosts can be scanned by one host. The infection rate
is β = 3300/232 = 0.00000077, the recovery rate of infectious hosts is set γ = 0.19, the
quarantine rates of infectious, exposed and susceptible hosts are set θ1 = 0.15, θ2 = 0.0002,
θ3 = 0.00002315. Other parameters are set μ = 0.031, α = 0.45, ν = 0.0001, and δ = 0.04. At the
beginning, there are 50 infectious hosts, while others are susceptible. Figures 2–5 show that
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Figure 3: Comparison of infectious hosts before and after adopting quarantine strategy if τ < τ0.

the propagation trend of the five kinds of host and comparison of infectious hosts before and
after adopting quarantine strategy when τ < τ0 and τ > τ0.

According to the above parameters, Figure 2 shows the curves of five kinds of hosts
when τ = 5 < τ0. All of the five kinds of hosts get stable quickly, which illustrates that E∗

is asymptotically stable. It implies that the number of infectious hosts maintain a relatively
low value and can be predicted. Further strategies can be developed and utilized to eliminate
worms. In Figure 3, when τ = 5 < τ0, the maximum of infectious hosts is diminished sharply.
Finally, the number of infectious hosts is almost 18,000. It is much less than ones without
using quarantine strategy. However, when time delay τ gets increased and then reached
the threshold τ0, E∗ will lose its stability and a bifurcation will occur. Figure 4 shows the
susceptible, exposed, infectious, quarantined, and vaccinated hosts when τ = 100 > τ0. In
this figure, we can clearly see that the number of infectious hosts will outburst after a short
period of peace and repeat again and again but not in the same period, which is hard for us
to predict the worm spread or eliminate worms. In Figure 5, when τ = 100 > τ0, it is clearly
that the maximum of infectious hosts is diminished sharply from 170,000 to 40,000, which
illustrates that quarantine strategy has much better inhibition impact than single vaccination.

In order to see the influence of time delay, τ is set to a different value each time with
other parameters remaining the same. Figure 6 shows the number of infectious hosts in the
same coordinate with time delay τ = 5, τ = 25, τ = 75, and τ = 100.

Initially, the four curves are overlapped which means that time delay has little effect
in the initial stage of worm propagation. With the increase of time delay, the curve begins
to oscillate. When time delay passes through the threshold τ0, the infecting process gets
unstable. Meanwhile, it can be discovered that the amplitude and period of the number
infectious hosts increase.

Figure 7 shows the projection of the phase portrait of system (2.1) in (S, I, V )-space
when τ = 65, τ = 80, respectively. In Figure 8, when τ = 65, it is clear that the curve converges
to a fixed point, which suggests that the system is stable. When τ = 80, the curve converges
to a limit circle, which implies that the system is unstable.
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Figure 4: Propagation trend of the five kinds of host when τ > τ0.
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Figure 5: Comparison of infectious hosts before and after adopting quarantine strategy if τ > τ0.

Figure 9 shows bifurcation diagram with τ from 1 to 60; Hopf bifurcation will occur
when τ = τ0 = 42. In Figure 10, it shows bifurcation diagram with τ from 1 to 120; Hopf
bifurcation will occur when τ = τ0 = 74. The threshold is greater than model without
quarantine strategy, which illustrates that the model gets stable easier and the users have
more time to remove worms.
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Figure 6: The number of infectious hosts when τ is changed in one coordinate.
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Figure 7: The projection of the phase portrait of system (2.1) in (S, I, V )-space.
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5. Simulation Experiments

The discrete-time simulation is an expanded version of Zou’s program simulating Code
Red worm propagation. The system in our simulation experiment consists of 750,000 hosts
that can reach each other directly, which is consistent with the numerical experiments. At
the beginning of simulation, 50 hosts are randomly chosen to be infectious and the others
are all susceptible. In the simulation experiments, the implement of transition rates of the
model is based on probability. Under the propagation parameters of the slammer worm,
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Figure 11: Comparisons between numerical and simulation curves of SEIDQV model when τ < τ0.

several simulation experiments are carried out. Figure 11 shows the comparisons between
numerical and simulation curves of susceptible, infectious, quarantined and vaccinated hosts
respectively, when τ = 5 < τ0, which indicate that the simulation curves match the numerical
ones very well. When time delay passes the threshold, a bifurcation appears. Figure 12 shows
the difference between simulation and numerical results of the four kinds of host when
τ = 100 > τ0. In this figure, the periods of these two curves are well matched. But there is a
difference in amplitudes. This mainly results from the precision of experiments. The number
of hosts in numerical experiments can be either integers or decimals. However, in simulation
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Figure 12: Comparisons between numerical and simulation curves of SEIDQV model when τ > τ0.

experiments, the number of hosts must be integer. In addition, when the number of infectious
hosts is very little, the tiny difference may result in a big gap.

6. Conclusions

By considering that time delay may lead to Hopf bifurcation phenomenon so that the worm
propagation system will be unstable and uncontrollable, this paper proposes a quarantine
strategy to control worm propagation. An SEIDQV worm propagation model is constructed
for practical application. Then, the stability of the positive equilibrium and the critical
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value of Hopf bifurcation are studied. Through careful theoretical analysis, the following
conclusions can be derived.

(i) The critical time delay τ0 where Hopf bifurcation appears is obtained

τk

=
1
ω0

arc cos

[(
p2ω0

2−p4ω0
4−p0

)(
q4ω0

4−q2ω0
2+q0

)
+
(
ω0

5 − p3ω0
3+p1ω0

)(
q3ω0

3−q1ω0
)

(
q4ω0

4−q2ω0
2+q0

)2+
(
q3ω0

3−q1ω0
)2

]

+
2kπ
ω0

.

(6.1)

(ii) When time delay τ < τ0, the worm propagation system will stabilize at its infection
equilibrium point, which is beneficial for us to implement a containment strategy
to eliminate the worm completely.

(iii) When time delay τ ≥ τ0, Hopf bifurcation appears, which implies the system will
be unstable and the worm cannot be effectively controlled.

(iv) The quarantine strategy can diminish the infectious hosts sharply. The threshold
τ0 is much larger after using the proposed quarantine strategy, which implies that
people have more time to remove worms so that the system is easier to be stable
and controllable without Hopf bifurcation.

In order to control and predict the worm propagation, time delay τ should remain less
than the threshold τ0 by decreasing the time of detecting and removing worm. In real world,
various factors can affect worm propagation. The paper focuses on analyzing the influence of
time delay. Other impact factors to worm propagation will be a major emphasis of our future
research.
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