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This paper investigates the local asymptotic stabilization of a very general class of instable
autonomous nonlinear difference equations which are subject to perturbed dynamics which
can have a different order than that of the nominal difference equation. In the general case,
the controller consists of two combined parts, namely, the feedback nominal controller which
stabilizes the nominal (i.e., perturbation-free) difference equation plus an incremental controller
which completes the stabilization in the presence of perturbed or unmodeled dynamics in the
uncontrolled difference equation. A stabilization variant consists of using a single controller to
stabilize both the nominal difference equation and also the perturbed one under a small-type
characterization of the perturbed dynamics. The study is based on Banach fixed point principle,
and it is also valid with slight modification for the stabilization of unstable oscillatory solutions.

1. Introduction

In this paper, the following nonautonomous difference equation is investigated:

xn = hn(xn−1, . . . , xn−m)

= fn(xn−1, . . . , xn−m0) + ˜fn(xn−1, . . . , xn−m̃) + gn
(

xn−1, . . . , xn−mg

)

+ g̃n
(

xn−1, . . . , xn−m̃g

)

= x0
n + x̃n + xc

n + x̃c
n; n ∈ N,

(1.1)

of order m := max(m0, m̃,mg, m̃g) ≥ 1 and initial conditions x1−m, . . . , x0, where the four
terms of the second identity are pair-wise identical in the same order as written, in which
hn : D ⊂ Rm → R, fn : Df ⊂ Rm0 → R, ˜fn : D

˜f ⊂ Rm̃ → R, gn : Dg ⊂ Rmg → R, and
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g̃n : Dg̃ ⊂ Rm̃g → R; D is a nonempty subset of the union of the sets Df ,D ˜f ,Dg , and Dg̃ . The
four pair-wise identical terms of the last identity have the following interpretations:

(i) x0
n is the nominal value of the uncontrolled nominal solution xn at the nth sample

in the absence of perturbations and controls;

(ii) x̃n is the perturbed uncontrolled solution which can be generated for perturbed
parameterizations (then m̃ ≤ m0) and possibly contributed by unmodeled
dynamics (then m̃ > m0);

(iii) xc
n is the correction by some nominal feedback controller of the uncontrolled

nominal solution which can be potentially used to stabilize it or to improve it in
some practical suitable sense provided it is already stable;

(iv) x̃c
n is the correction by adding some incremental feedback controller of the

perturbed nominally controlled solution;

(v) N is the set of natural numbers, and N0 = N ∪ {0} is that of nonnegative integers;
(vi) S0 and clS denote, respectively, the interior and closure of the set S.

The stability and instability properties of nonlinear difference equations have been inves-
tigated in a set of papers. See, for instance, [1–13] and references therein. There is a wide set
of problems where stability of discrete systems involving either the discretization of time-
continuous systems or being essentially digital by nature are of interest and involving very
often the presence of nonlinearities. In those problems stability is commonly a required
property to be well posed. Among such problems, we can mention (a) those related to
signal processing, (b) models involving neural networks, (c) adaptive control to deal with
not perfectly known systems under combined estimation and control, (d) problems related
to modelling dynamic systems describing biological, medical, or ecological systems, and
(e) those related to descriptions to rational difference equations. See, for instance, [14–20]
and references therein. Note that the nominal uncontrolled particular case of (1.1) is given
by the constraint ˜fn + gn + g̃n ≡ 0 for all n ∈ N. The main objective of this paper is
the study of the stability and instability of equilibrium points of a very general nonlinear
autonomous difference equations which include additive perturbations. There is no essential
formal distinction through the paper between parametrical perturbations, or structured and
unstructured unmodeled dynamics except that each of them has its own description part
in the relevant formulas [21–23]. Note that parametrical perturbations do not modify the
order of the nominal equation, while unmodeled dynamics increases such an order. There
are abundant examples in nature where unmodeled dynamics is inherently present as, for
instance, the problem of the antimissile/missile targeting process under fast attack/defence
manoeuvres, which generates high-frequency signals, or the parasite capacitors between an
electronic amplifier and ground for high-frequency exciting signals. The perturbation-free
difference equation will be referred to as the nominal uncontrolled one, while the perturbed
difference equation will be referred to as the uncontrolled perturbed difference equation. Two
classes of feedback controllers are also proposed to stabilize the uncontrolled autonomous
difference equation. The first class consists of two additive dynamics, namely, the nominal
control for stabilization of the uncontrolled nominal equation plus an incremental controller
for stabilization of the unmodeled dynamics. The second class consists of a single controller
which stabilizes the whole uncontrolled dynamics for a certain tolerance to presence of
perturbation dynamics of sufficiently small size characterized in terms of sufficiently small
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norm. The perturbed uncontrolled difference equation and the controlled difference equation
can potentially possess distinct equilibrium points than the uncontrolled nominal difference
equation. The formalism can also be applied to the study of feedback stabilization of unstable
oscillations.

2. Vectorization Preliminaries and Linearization-Based Relations
between Equilibrium Points and Limit Oscillatory Solutions

Problems of major interest concerning (1.1) are (a) the characterization of a controller
which stabilizes, at least locally around an equilibrium point, an unstable nominal difference
equation and (b) the stabilization of either a particular or a class of perturbed uncontrolled
equations under a combined nominal plus incremental controller. It has to be pointed out that
any equilibrium point of the uncontrolled equations can be reallocated under a control action.
In other words, the local stabilization via feedback control of an unstable equilibrium point
of the uncontrolled equations may lead in parallel to a reallocation of such an equilibrium
point. An associate vector function to (1.1) of dimension m is

Vh(u1, . . . , um) = (h(u1, . . . , um), u1, . . . , um−1)

= Vf(u1, . . . , um) + V
˜f(u1, . . . , um) + Vg(u1, . . . , um) + Vg̃(u1, . . . , um)

=
(

f(u1, . . . , um0)+ ˜f(u1, . . . , um̃)+g
(

u1, . . . , umg

)

+g̃
(

u1, . . . , um̃g

)

, u1, . . . , um−1
)

,

(2.1)

where

Vf(u1, . . . , um) :=
(

f(u1, . . . , um0), u1, . . . , um−1
)

,

V
˜f(u1, . . . , um) :=

(

˜f(u1, . . . , um̃), u1, . . . , um−1
)

,

Vg(u1, . . . , um) :=
(

g
(

u1, . . . , umg

)

, u1, . . . , um−1
)

,

Vg̃(u1, . . . , um) =
(

g̃
(

u1, . . . , umg̃

)

, u1, . . . , um−1
)

.

(2.2)

In particular, Vh(u1) = (h(u1), u1) ifm = 1, one has the following particular case of (2.2)

Vf(u1) :=
(

f(u1)
)

; V
˜f(u1) :=

(

˜f(u1)
)

; Vg(u1) :=
(

g(u1)
)

; Vg̃(u1) :=
(

g̃(u1)
)

.

(2.3)

The following result follows by simple inspection of (2.1) sincem ≥ m0, that is, the dimension
of the current difference equation is not less than that of its nominal version. Note that, ifm =
m0, then the current difference equation has the same dimensionality as that of its nominal
counterpart as discussed for such a case in the formalism proposed and developed in [12].
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Lemma 2.1. The vector function (2.1) can be expressed equivalently as

Vh(u1, . . . , um) =

⎛

⎜

⎜

⎜

⎝

f

⎛

⎜

⎜

⎜

⎝

u1, . . . , um0 ,

m −m0
︸ ︷︷ ︸

0, . . . , 0

⎞

⎟

⎟

⎟

⎠

, u1, . . . , um−1

⎞

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎝

˜f(u1, . . . , um̃) + g
(

u1, . . . , umg

)

+ g̃
(

u1, . . . , um̃g

)

, 0,

m − 1
︸︷︷︸

. . . , 0

⎞

⎟

⎟

⎟

⎠

,

(2.4)

where f : (Df ∪D
˜f) ⊂ Rm → R is defined from f : Df ⊂ Rm0 → R by adding (m −m0) identically

zero arguments. The set D can be identical (although it is non-necessarily identical) to Df only if
m = m0, and then there is a unique such a mapping which is the identity self-mapping.

The nominal and perturbed uncontrolled difference equations as well as the nominal
controlled and perturbed controlled ones can have potentially distinct equilibrium points
as follows. A generic “ad hoc” description is also useful to describe some limit oscillatory
solutions:

(1) x0 is an equilibrium point of the uncontrolled nominal difference equation xn =
fn(xn−1, . . . , xn−m0) if and only if x0 = fn(x

0, . . . , x0) for all n ∈ N. Then,

X
0
= (x0, . . . , x0) is the associate equilibrium point of the first-order autonomous

m0-order vector equation Xn = Vfn(Xn−1); for all n ∈ N obtained from the
particular difference equation (1.1) xn = fn(xn−1, . . . , xn−m0) for all n ∈ N via the
nominal vector equation Vfn(u1, . . . , um) = (f(u1, . . . , um0), u1, . . . , um−1) provided
that Vfn(Df) ⊆ Df . A sequence solution (x0

1, . . . , x
0
m0
) of xn = fn(xn−1, . . . , xn−m0) is

a limit oscillatory solution of order at mostm0 if and only if x0
km0+i = fn(x

0
1, . . . , x

0
m0
)

for all k, n ∈ N for all i ∈ m0 := {1, 2, . . . , m0}. Such a solution is trivially an

equilibrium point if x0
i = x0 for all i ∈ m0. The m0-real vector X

0
= (x0

1, . . . , x
0
m0
)

is the associate nominal limit oscillatory solution of order at most m0 of the
first-order autonomous m0-order vector equation Xn = Vfn(Xn−1) for all n ∈ N
obtained from the particular difference equation (1.1) xn = fn(xn−1, . . . , xn−m0) for
all n ∈ N via the nominal vector equation Vfn(u1, . . . , um) = (f(u1, . . . , um0), u1, . . . ,
um−1);

(2) x0p is an equilibrium point of the uncontrolled perturbed difference equation
xn = fn(xn−1, . . . , xn−m0) + ˜fn(xn−1, . . . , xn−m̃) if and only if x0p = fn(x

0p, . . . , x0p) +
˜fn(x

0p, . . . , x0p) for all n ∈ N. Then, X
0p

= (x0p, . . . , x0p) is the associate equilibrium
point of the first-order autonomous m0p := max(m0, m̃)-order vector equation
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Xn = Vfn+ ˜fn
(Xn−1) for all n ∈ N according to:

Vf+ ˜f

(

u1, . . . , um0p

)

=

⎛

⎜

⎜

⎜

⎝

f0

⎛

⎜

⎜

⎜

⎝

u1, . . . , um0p ,

m0p −m0
︸ ︷︷ ︸

0, . . . , 0

⎞

⎟

⎟

⎟

⎠

, u1, . . . , um0p−1

⎞

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎜

⎝

˜f 0

⎛

⎜

⎜

⎜

⎜

⎝

u1, . . . , um̃,

m0p − m̃
︸ ︷︷ ︸

0, . . . , 0

⎞

⎟

⎟

⎟

⎟

⎠

,

m0p − 1
︸ ︷︷ ︸

0, . . . , 0,

⎞

⎟

⎟

⎟

⎟

⎠

(2.5)

provided that Vfn+ ˜fn
(Df∪ D

˜f) ⊆ Df∪D ˜f provided the set union is nonempty, where

f0,
˜f : (Df∪D ˜f) ⊂ Rm0p → R in (2.5), provided thatDf∪D ˜f is non-empty, take into

account that the uncontrolled and nominal perturbed difference equations have
potentially distinct orders and are built from f : Df ⊂ Rm0 → R, ˜f : D

˜f ⊂ Rm̃ → R
as in the parallel construction of Lemma 2.1, (2.4). We can describe limit oscillatory
solutions of the uncontrolled perturbed difference equation of order at mostm0p, or
equivalently those of its associate vector function, by a sequence solution:

x
0p
km0p+i

= fn
(

x
0p
1 , . . . , x

0p
m0p

)

+ ˜fn
(

x
0p
1 , . . . , x

0p
m0p

)

; ∀k, n ∈ N, ∀i ∈ m0p; (2.6)

(3) xc is an equilibrium point of the controlled nominal difference equation xn =
fn(xn−1, . . . , xn−m0) + gn(xn−1, . . . , xn−mg ) if and only if xc = fn(x

c, . . . , xc) +

gn(x
c, . . . , xc) for all n ∈ N. Then, X

c
= (xc, . . . , xc) is the associate equilibrium

point of the first-order autonomous mc := max(m0, mg)-order vector equation
Xn = Vfn+gn(Xn−1) for all n ∈ N, provided that Vf+g(Df ∪Dg) ⊆ Df ∪Dg , provided
that such a union is non-empty. The equivalent first-order vector equations are
defined via the associate vector function Vf+g(Df ∪ Dg) through ad hoc functions
fc : D → Df and gc : D → Dg built according to the corresponding associate
vector equation defined in a similar way to (2.4) and (2.5). This is directly extended
to limit oscillatory solutions of order at mostmc of the controlled nominal difference
equation, which can be equivalently expressed in vector form, in the same way as
above;

(4) xcp is an equilibrium point of the controlled perturbed difference equation (1.1) if
and only if

xcp = hn

(

xcp, . . . , xcp)

= fn
(

xcp, . . . , xcp) + ˜fn
(

xcp, . . . , xcp) + gn
(

xcp, . . . , xcp) + g̃n
(

xcp, . . . , xcp); ∀n ∈ N.
(2.7)

Then, X
cp

= (xcp, . . . , xcp) is the associate equilibrium point of the first-order autonomous
m-order vector equation Xn = Vhn(Xn−1) for all n ∈ N defined via (2.4) provided that



6 Discrete Dynamics in Nature and Society

Vhn(D) ⊆ D. A sequence solution (xcp

1 , . . . , x
cp
m ) of xn = fn(xn−1, . . . , xn−m) is a limit oscillatory

solution of order at mostm if and only if xcp

km+i = fn(x
cp

1 , . . . , x
cp
m ) for all k, n ∈ N for all i ∈ m.

Such a solution is trivially an equilibrium point if xcp

i = xcp for all i ∈ m. The m-real vector
X

cp
= (xcp

1 , . . . , x
cp
m ) is the associate nominal limit oscillatory solution of order at mostm of the

first-order autonomous m-order vector equation Xn = Vfn(Xn−1) for all n ∈ N obtained from
the particular difference equation (1.1) xn = fn(xn−1, . . . , xn−m) for all n ∈ N via the nominal
vector equation Vfn(u1, . . . , um) = (f(u1, . . . , um), u1, . . . , um−1).

Remark 2.2. Note that the above description allows the characterization of equilibrium points
as particular cases of limit oscillatory solutions. Note also that limiting oscillatory solutions
can exceed the order of the difference equations if such a solution has a repeated pattern
of more elements than the order of the difference equations. Details are omitted since the
analysis method is close to the above one in both scalar and equivalent vector forms.
Limiting oscillatory solutions are relevant in some applications, in particular, in the fields
of communications, design of electronic oscillators, and so forth.

Remark 2.3. The difference equation xn = fn(xn−1, . . . , xn−m) for all n ∈ N has been pointed to
be equivalent to its associate vector equation Xn = Vfn(Xn−1) for all n ∈ N. Then, the nominal
uncontrolled difference equation admits the representation xn = fn(Xn−1) = fn(Vfn−1(Xn−2))
for all n ∈ N. Proceeding recursively:

xn = fn(Xn−1) = fn
(

Vfn−1(Xn−2)
)

= fn
(

G
f

n−1(X0)
)

; ∀n ∈ N. (2.8)

By defining G
f
n := Vfno Vfn−1o · · · o Vf1 for all n ∈ N0 with G

f

0 being identity. Close composed
mappings to describe the various uncontrolled and controlled (nominal or) versions of (1.1)
are

G
f+ ˜f
0 = id, G

f+ ˜f
n := Vfn+ ˜fn

o Vfn−1+ ˜fn−1
o · · · o Vf1+ ˜f1

; ∀n ∈ N,

G
f+ ˜f+g
0 = id, G

f+ ˜f+g
n := Vfn+ ˜fn+gn

o Vfn−1+ ˜fn−1+gn−1
o · · · o Vf1+ ˜f1+g1

; ∀n ∈ N,

Gh
0 = id, Gh

n := Vhno Vhn−1o · · · o Vh1 ; ∀n ∈ N.

(2.9)

The following result is direct by inspection of (1.1).

Proposition 2.4. The nominal and perturbed uncontrolled associate vector functions may have a
common equilibrium point or a common limiting oscillation of order at most m only if m = m0 =
max(m0, m̃). The nominal and perturbed uncontrolled associate vector functions as well as the
controlled and perturbed controlled ones may have a common equilibrium point only if, in addition,

m0 = max
(

m0, mg, m̃g

)

= max
(

m0, m̃g

)

. (2.10)

Proof. If the conditions fail and the vector functions referred to have some common
equilibrium point, this one, should have different dimension depending on the equation,
which is a contradiction. The proof is also valid “mutatis-mutandis” for limiting oscillation
of orders at most m.
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It is now discussed the presence of limit oscillations of the uncontrolled perturbed
difference equations in a neighbourhood centred about a nominal limit oscillation. A similar
analysis is also useful for closeness of the limiting oscillatory solutions to that of a given
difference equation of any of the three remaining difference ones under investigation.

Theorem 2.5. Assume the following:

(1) mp := max(m0, m̃) = m0, Vfn(Df) ⊆ Df /= ∅ and Vfn+ ˜fn
(Df ∪D

˜f) ⊆ Df ∪D
˜f /= ∅ for all

n ∈ N, where Vfn+ ˜fn
(u1, . . . , ump) is defined in (2.5) for all n ∈ N;

(2) ∂fn(X)/∂XT |
X

0 , ∂ ˜fn(X)/∂XT |
X

0 exist within a neighborhood of X
0
, which is a limit

oscillatory solution of the vector uncontrolled nominal equation of order at most mp = m0

(including potentially nominal equilibrium points as particular cases);

(3) the inverse m0-matrix (Imp −M0(X
0
))

−1
exists, where M0(X

0
) = ∂Vf(X)/∂XT |

X
0 +

∂V
˜f(X)/∂XT |

X
0 , and Im0 is the m0-identity matrix of Rm0 .

Then, ̂X
0p

= X
0
+(Im −M0(X

0
))

−1
V
˜f(X

0
) is a linear estimate of limit oscillatory solutions of order at

mostm0 (including, as particular cases, potential equilibrium points) of the vector perturbed difference

equation. The estimate is closed to the true values of X
0p

as ‖V
˜f(X

0
)‖ is sufficiently small.

If rank(Imp −M0(X
0
), V

˜f(X
0
)) = rank(Imp −M0(X

0
)) < mp, then there are infinitely many

first-order estimates ̂X
0p

of limiting oscillatory solutions of the vector uncontrolled nominal equation

of order at mostm0. Ifmp −1 ≥ rank(Im −M0(X
0
) and V

˜f(X
0
)) > rank(Imp −M0(X

0
)), then there

is no such an estimate.

Proof. Note that mp = m0 implies that m̃ ≤ m0. Define ΔX
0p,0

:= X
0p − X

0
which is rewritten

below after using a linearized perturbed difference vector equation since the perturbed
equilibrium point is within a neighbourhood of the nominal one:

ΔX
0p,0
n+1 = M0

n

(

X
0)
ΔX

0p,0
n + V

˜fn

(

X
0)

+ o
(∥

∥

∥ΔX
0p,0
n

∥

∥

∥

)

Imp

= M0
(

X
0)
ΔX

0p,0
n + V

˜f

(

X
0)

+ o
(∥

∥

∥ΔX
0p,0
n

∥

∥

∥

)

Imp ; ∀n ∈ N,

(2.11)

where

M0
n

(

X
0)

=
∂Vfn(X)
∂XT

∣

∣

∣

∣

∣

X
0
+

∂V
˜fn
(X)

∂XT

∣

∣

∣

∣

∣

X
0
=

⎡

⎢

⎣

∂fn(X)
∂XT

∣

∣

∣

∣

X
0
+

∂ ˜fn(X)
∂XT

∣

∣

∣

∣

∣

X
0

Imp−1 0

⎤

⎥

⎦

= M0
(

X
0)

=
∂Vf(X)
∂XT

∣

∣

∣

∣

∣

X
0
+

∂V
˜f(X)

∂XT

∣

∣

∣

∣

∣

X
0

=

⎡

⎢

⎣

∂f(X)
∂XT

∣

∣

∣

∣

X
0
+

∂ ˜f(X)
∂XT

∣

∣

∣

∣

∣

X
0

Im−1 0

⎤

⎥

⎦
; ∀n ∈ N,

(2.12)
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ifm0 ≥ 2, where Im0−1 is the (m0 − 1) identity matrix and superscript T denotes transposition,

since Vfn(X
0
) = Vf(X

0
), V

˜fn
(X

0
) = V

˜f(X
0
), fn(X

0
) = f(X

0
), ˜fn(X

0
) = ˜f(X

0
) for all n ∈ N;

M0
n

(

X
0)

=
∂Vfn(X)

∂X

∣

∣

∣

∣

∣

X
0
+

∂V
˜fn
(X)

∂X

∣

∣

∣

∣

∣

X
0
= M0

(

X
0)

=
∂Vf(X)
∂X

∣

∣

∣

∣

∣

X
0
+

∂V
˜f(X)

∂X

∣

∣

∣

∣

∣

X
0
; ∀n ∈ N,

(2.13)

ifm0 = 1. Taking ΔX
0p,0
n+1 = ΔX

0p,0
n = ΔX

0p,0
for all n ∈ N, one gets from (2.11):

ΔX
0p,0

=
(

Im0 −M0
(

X
0))−1

V
˜f

(

X0

)

+ o
(∥

∥

∥ΔX
0p,0∥
∥

∥

)

Im0 , (2.14)

provided that (Im0 −M0(X
0
))

−1
exists so that Δ ̂X

0p,0
= (Im −M0(X

0
))

−1
V
˜f(X0) is an estimate

of ΔX
0p,0
n+1 so that if ‖M0(X

0
)‖ < 1 and ‖V

˜f(X0)‖ < (1−‖M0(X
0
)‖)ε for some ε ∈ R+, then one

gets from Banach’s perturbation lemma [24]:

∥

∥

∥

∥

Δ ̂X
0p,0∥
∥

∥

∥

≤
∥

∥

∥

∥

(

Im −M0
(

X
0))−1

∥

∥

∥

∥

∥

∥

∥V
˜f

(

X0

)∥

∥

∥ ≤

∥

∥

∥V
˜f

(

X
0)∥
∥

∥

1 −
∥

∥

∥M0
(

X
0)∥
∥

∥

< ε. (2.15)

Since for ε = 0, V
˜f(X0) = ΔX

0p,0
= 0 then, for a sufficiently small ε∗ such that ‖V

˜f(X
0
)‖/(1 −

‖M0(X
0
)‖) < ε∗ and for any ε ≤ ε∗, o(‖ΔX

0p,0‖) ≤ ε/2 what occurs in particular, for ε < 1
if f, ˜f : R m → R are furthermore analytic in an open ball of Rm centred at X0 of radius

ρ = 3ε/2. The conditions for the existence of infinitely many first-order estimates of Δ ̂X
0p,0

or the existence of none of them is direct from compatible and incompatible conditions for
linear algebraic systems of equations according to Rouché-Froebenius theorem from linear
algebra.

Note that it can occur for the nominal and perturbed uncontrolled difference equations
to have common equilibrium points. On the other hand, it is possible to obtain linear similar
first-order comparison results to those of Theorem 2.5 for the estimates of the equilibrium
points of the corrected closed-loop system via an incremental controller related to those of the
controlled system without incremental controller. An “ad hoc” result is now stated without
proof which can be performed very closely to that of Theorem 2.5:

Theorem 2.6. Assume the following:

(1) m = max(m0, m̃,mg) and m̃g ≤ max(m0, m̃,mg), so that m = max(m0, m̃,mg, m̃g),
and Vhn(D) ⊆ D/= ∅, Vfn+ ˜fn+gn

(Df ∪D
˜f ∪Dg) ⊆ Df ∪D

˜f ∪Dg /= ∅ for all n ∈ N; where
Vfn+ ˜fn+gn

(u1, . . . , um) is defined correspondingly to (2.5) for this case for all n ∈ N;

(2) ∂(fn(X) + ˜fn(X) + gn(X))/∂XT |Xc , ∂g̃n(X)/∂XT |Xc exist within a neighborhod of X
c
,

which is a limit oscillatory solution of order at most m of the vector controlled nominal
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equation, that is, the vector nominal uncontrolled via feedback of the nominal controller
(including potentially nominal equilibrium points);

(3) the inverse m-matrix (Im −Mc(X
c
))

−1
exists, whereMc(X

c
) = ∂Vh(X)/∂XT |Xc .

Then ̂X
cp

= X
c
+(Im −Mc(X

c
))

−1
Vg̃(X

c
) is a linear estimate of limit oscillatory solutions of order at

most m (including potential equilibrium points as particular cases) of the vector controlled difference
equation under the combined nominal and correction controllers from its corresponding counterpart
under the nominal controller only. The estimate closes to true values as ‖Vg̃(X

c
)‖ is sufficiently small.

If rank(Im −Mc(X
c
), Vg̃(X

c
)) = rank(Im −Mc(X

c
)) < m, then there are infinitely many

first-order estimates ̂X
cp

of limiting oscillatory solutions of the vector uncontrolled nominal equation
of order at mostm. Ifm − 1 ≥ rank(Im −Mc(X

c
), V

˜f(X
c
)) > rank(Im −Mc(X

c
)), then there is no

such an estimate.

The same linearization technique can be used to compare closely allocated equilibrium
points of the same dimension for other pairs of the involved systems. In this way, the
following results follow, respectively, for the nominal uncontrolled and controlled difference
equations and for the uncontrolled nominal and controlled perturbed ones and, equivalently,
for the associate pairs of vector systems as follows.

Theorem 2.7. Assume the following:

(1) mc := max(m0, mg) = m0, Vfn(Df) ⊆ Df /= ∅ and Vfn+gn(Df ∪ Dg) ⊆ Df ∪ Dg /= ∅;
for all n ∈ N, where Vfn+gn(u1, . . . , umc) is defined correspondingly to (2.5) for this case
for all n ∈ N;

(2) ∂fn(X)/∂XT |
X

0 , ∂gn(X)/∂XT |
X

0 exist within a neighborhod of X
0
, which is a limit

oscillatory solution of the vector uncontrolled nominal equation of order at most m0

(including potentially nominal equilibrium points as particular cases);

(3) the inverse m0-matrix (Im0 −Mc(X
0
))

−1
exists, where Mc(X

0
) = ∂Vf(X)/∂XT |

X
0 +

∂Vg(X)/∂XT |
X

0 , and Im0 is them0-identity matrix of Rm0 .

Then, ̂X
c

= X
0
+(Im −Mc(X

0
))

−1
Vg(X

0
) is a linear estimate of limit oscillatory solutions of order at

mostm0 (including, as particular cases, potential equilibrium points) of the vector controlled difference

equation from its nominal uncontrolled counterpart. The estimate closes to true values as ‖Vg(X
0
)‖ is

sufficiently small.

If rank(Im0 −Mc(X
0
), Vg(X

0
)) = rank(Im0 −Mc(X

0
)) < m0, then there are infinitely many

first-order estimates ̂X
c

of limiting oscillatory solutions of the vector controlled nominal equation of

order at mostmc = m0. Ifm0 − 1 ≥ rank(Im0 −Mc(X
0
), Vg(X

0
)) > rank(Im0 −Mc(X

0
)), then there

is no such an estimate.

Theorem 2.8. Assume the following:

(1) mcp := max(m0, m̃,mg) = max(m0, m̃) = m0, Vfn(Df ∪ D
˜f) ⊆ Df ∪ D

˜f /= ∅, and
Vfn+ ˜fn+gn

(Df ∪D
˜f ∪Dg) ⊆ Df ∪D

˜f ∪Dg /= ∅ for all n ∈ N, where Vfn+ ˜fn+gn
(u1, . . . , umcp)

is defined correspondingly to (2.5) for this case for all n ∈ N;
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(2) ∂fn(X)/∂XT |X0 , ∂ ˜fn(X)/∂XT |X0 , ∂gn(X)/∂XT |X0 exist within a neighborhod of X0,
which is a limit oscillatory solution of the vector uncontrolled nominal equation of order
at mostm0 (including potentially nominal equilibrium points as particular cases);

(3) the inverse m0-matrix (Im0 −Mcp(X0))−1 exists, where Mcp(X0) = ∂Vf(X)/∂XT |X0 +
∂V

˜f(X)/∂XT |X0 + ∂ Vg(X)/∂XT |X0 , and Im0 is them0-identity matrix of Rm0 .

Then, ̂X
cp

= X0 + (Im −Mcp(X0))−1V
˜f+g(X

0) is a linear estimate of limit oscillatory solutions of
order at most m0 (including, as particular cases, potential equilibrium points) of the vector controlled
difference equation from its nominal uncontrolled counterpart. The estimate closes to true values as
‖V
˜f+g(X

0)‖ is sufficiently small.
If rank(Im0 −Mcp(X0), V

˜f+g(X
0)) = rank(Im0 −Mcp(X0)) < m0 then there are infinitely

many first-order estimates ̂X
cp

of limiting oscillatory solutions of the vector controlled nominal
equation of order at most mcp = m0. If m0 − 1 ≥ rank(Im0 − Mcp(X0), V

˜f+g(X
0)) > rank(Im0 −

Mcp(X0)), then there is no such an estimate.

3. Some Stability and Instability Properties

The following result holds concerning the stabilization via a feedback controller of an
unstable uncontrolled equilibrium point. The controller consists, in general, of two parts,
namely, (a) the nominal controller used to stabilize the uncontrolled difference equation;
(b) the incremental controller used to stabilize the difference equation which includes
perturbed parameters and/or perturbed dynamics. The stabilization process admits the
double interpretation of the above section in terms of stabilization of either equilibrium
points or that of oscillatory solutions. The equilibrium points can potentially vary under
perturbations and the presence of feedback controllers.

Theorem 3.1. The following properties hold:

(i) let x0and xc be two equilibrium points of the nominal and nominal controlled difference

equations with corresponding ones X
0
and X

c
in the associate vector equations. Assume

that m = m0 = mc, X
0 ∈ cl S ∩ A0 and X

c ∈ clS ∩ Ac with ∅ /= S0 ⊆ S ⊆ A0 ∩ Ac,
where S is an invariant subset of solutions of the associate vector equations for all Vfn and
Vfn+gn , that is, Vfn(S) ⊆ S and Vfn+gn(S) ⊆ S, for any controller in C consisting in a
nominal controller, with

A0 :=
{

X ∈ Rm :
∣

∣

∣fn(X) − x0
∣

∣

∣ ≥ αn

∥

∥

∥X −X
0∥
∥

∥; ∀n ∈ N
}

,

Ac :=
{

X ∈ Rm :
∣

∣fn(X) + gn(X) − xc∣
∣ ≤ βcn

∥

∥

∥X −X
c
∥

∥

∥; ∀n ∈ N
}

,

(3.1)

for some real nonnegative sequences {αi}i∈N and {βci }i∈N. If {αn}n∈N is unbounded, where

αn =
∏n

i=1αi, and {βcn}n∈N is such that lim supn→∞ β
c

n < 1, where β
c

n =
∏n

i=1β
c
i , then X

0

is unstable where X
c
is locally asymptotically stable with respect to S;

(ii) let x0p and xc be two equilibrium points of the uncontrolled perturbed and nominal
controlled (via the nominal plus the incremental controllers) difference equations with
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corresponding ones X
0p

and X
c
in the associate vector equations. If m = m0p = max(m0,

m̃) = mcp, X
0p ∈ clS ∩ A0p and X

c ∈ clS ∩ Ac with ∅ /= S0 ⊆ S ⊆ A0p ∩ Ac, where
S is an invariant subset of the solutions of the associate vector equations for all Vfn+ ˜fn

and
Vfn+ ˜fn+gn

; that is, Vfn+ ˜fn
(S) ⊆ S and Vfn+ ˜fn+gn

(S) ⊆ S, with

A0p :=
{

X ∈ Rm :
∣

∣

∣fn(X) + ˜fn(X) − x0p
∣

∣

∣ ≥ αpn

∥

∥

∥X −X
0p∥
∥

∥; ∀n ∈ N
}

,

Ac :=
{

X ∈ Rm :
∣

∣

∣fn(X) + ˜fn(X) + gn(X) − xc
∣

∣

∣ ≤ βcn

∥

∥

∥X −X
c
∥

∥

∥; ∀n ∈ N
}

,

(3.2)

for some nonnegative sequences {αpi}i∈N and {βci }i∈N. Thus, if {αpn}n∈N is unbounded,

where αpn =
∏n

i=1αpi, and { β
c

n}n∈N is such that lim supn→∞ β
c

n < 1, where β
c

n =
∏n

i=1β
c
i ,

then X
0p

is unstable where X
c
is locally asymptotically stable with respect to S;

(iii) let x0p and xcp be two equilibrium points of the perturbed and perturbed controlled (via
the nominal plus the incremental controllers) difference equations with corresponding ones

X
0p

and X
cp

in the associate vector equations. If m = m0p = mcp, X
0p ∈ cl S ∩ A0p, and

X
cp ∈ cl S ∩ Acp with ∅ /= S0 ⊆ S ⊆ A0p ∩ Acp, where S is an invariant subset of the

solutions of the associate vector equations for all Vfn+ ˜fn
and Vhn , that is, Vfn+ ˜fn

(S) ⊆ S and
Vhn(S) ⊆ S, for some nonnegative real sequences {αi}i∈N and {βcpi}i∈N, and

Acp :=
{

X ∈ Rm :
∣

∣hn(X) − xcp∣
∣ ≤ βcpn

∥

∥

∥X −X
cp
∥

∥

∥; ∀n ∈ N
}

. (3.3)

Thus, if { αn}n∈N is unbounded, where αn =
∏n

i=1αi, and { β
c

pn}n∈N is such that

lim supn→∞ β
c

pn < 1, where β
c

pn =
∏n

i=1β
c
pi, then X

0p
is unstable where X

cp
is locally

asymptotically stable with respect to S.

The above result is extendable to stabilization of unstable oscillatory solutions in the light of
the former discussions in Section 2. Explicit conditions for the fulfilment of Theorem 3.1(iii),
which imply the local asymptotic stabilization within an invariant set around the equilibrium
points of the unstable perturbed uncontrolled system, are given in the subsequent result.
The stabilization mechanism is achieved by synthesizing a controller consisting of combined
nominal controller with an incremental controller. The nominal controller stabilized the
nominal difference equation in the absence of perturbations, while the incremental one
completes the stabilization for the whole uncontrolled difference equation.

Theorem 3.2. Assume that m = m0p = mcp with X
0p ∈ cl S ∩ A0 and X

cp ∈ cl S ∩ Acp being
unique equilibrium points in cl S ∩A0, respectively in cl S ∩Acp, where S ⊆ A0p ∩Acp is invariant
under all Vfn+ ˜fn

and Vhn for a class of controllers C, that is, Vfn+ ˜fn
(S) ⊆ S and Vhn(S) ⊆ S for any

combined nominal plus incremental controller in the class C for all n ∈ N. Define Δx0p := xcp − x0p

and ΔX
0p

:= X
cp −X

0p
being sufficiently close to zero to satisfy

∥

∥

∥ΔX
0p∥
∥

∥ ≤
(

βcpn

)−1(
αpn − βcpn

)∥

∥

∥X −X
0p∥
∥

∥, ∀X ∈ cl S, ∀n ∈ N. (3.4)
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Assume also that the nominal and incremental controllers are

gn(Xn−1) = λn(Xn−1)fn−σn(Xn−1−σn); g̃n(Xn−1) = ˜λn(Xn−1) ˜fn−σ̃n(Xn−1−σ̃n); ∀n ∈ N, (3.5)

with their corresponding gain sequences {λn}n∈N and {˜λn}n∈N being chosen to satisfy the constraints:

sign λn(Xn−1) = − sign
((

fn(Xn−1) − x0p
)

fn−σn (Xn−1−σn)
)

; ∀n ∈ N, (3.6)

sign ˜λn(Xn−1) = − sign
((

˜fn(Xn−1) − x0p
)

˜fn−σ̃n(Xn−1−σ̃n)
)

; ∀n ∈ N, (3.7)

∥

∥

∥λn(Xn−1), ˜λn(Xn−1)
∥

∥

∥ ≤

∣

∣

∣fn(Xn−1) + ˜fn(Xn−1) − xcp
∣

∣

∣

∥

∥

∥

(

fn−σn(Xn−1−σn), ˜fn−σ̃n(Xn−1−σ̃n)
)∥

∥

∥

; ∀n ∈ N, (3.8)

for some existing nonnegative integer sequences {σn}n∈N0
, {σ̃n}n∈N0

chosen such that
‖(fn−σn(Xn−1−σn), ˜fn−σ̃n(Xn−1−σ̃n))‖/= 0 for all n ∈ N0 subject to lim infn→∞‖(fn−σn(Xn−1−σn),
˜fn−σ̃n(Xn−1−σ̃n))‖ ≥ 0 since equality to zero holds for all nonnegative sequences {σn}n∈N0

, {σ̃n}n∈N0

if and only if X
cp

= 0.
Then, the corresponding equilibrium point of the perturbed uncontrolled associate vector

system X
0p

is unstable, while that of the perturbed controlled system X
cp

is asymptotically stable.
The properties hold for the corresponding perturbed and perturbed controlled difference equations of
equilibrium points x0p and xcp, respectively.

Proof. Conditions for the following chain of inequalities to hold are given:

∣

∣hn(Xn−1) − xcp∣
∣ =
∣

∣

∣fn(Xn−1) + ˜fn(Xn−1) + gn(Xn−1) + g̃n(Xn−1) − x0p −Δx0p
∣

∣

∣

≤ βcpn

∥

∥

∥Xn−1 −X
c
∥

∥

∥ ≤ αpn

∥

∥

∥Xn−1 −X
0p∥
∥

∥

≤
∣

∣

∣fn(Xn−1) + ˜fn(Xn−1) − x0p
∣

∣

∣; ∀n ∈ N

(3.9)

within S. The following chained inequalities guarantee that (3.9) holds in S:

αpn

∥

∥

∥X −X
0p∥
∥

∥ −
∣

∣

∣λn(Xn−1)fn−σn(Xn−1−σn) + ˜λn(Xn−1) ˜fn−σ̃n(Xn−1−σ̃n) −Δx0p
∣

∣

∣

≤
∣

∣

∣fn(Xn−1)+ ˜fn(Xn−1)−x0p + λn(Xn−1)fn−σn(Xn−1−σn)+˜λn(Xn−1) ˜fn−σ̃n(Xn−1−σ̃n)−Δx0p
∣

∣

∣

=
∣

∣

∣fn(Xn−1)+ ˜fn(Xn−1)−x0p−Δx0p
∣

∣

∣−
∣

∣

∣λn(Xn−1)fn−σn(Xn−1−σn) + ˜λn(Xn−1) ˜fn−σ̃n(Xn−1−σ̃n)
∣

∣

∣

≤ βcpn

∥

∥

∥X −X
0p −ΔX

0p∥
∥

∥ ≤ αpn

∥

∥

∥X −X
0p∥
∥

∥; ∀n ∈ N,

0 ≤
∣

∣

∣fn(Xn−1) + ˜fn(Xn−1) − x0p −Δx0p
∣

∣

∣ − βcpn

∥

∥

∥ X −X
0p −ΔX

0p∥
∥

∥

≤
∣

∣

∣λn(Xn−1)fn−σn(Xn−1−σn) + ˜λn(Xn−1) ˜fn−σ̃n(Xn−1−σ̃n)
∣

∣

∣; ∀n ∈ N.

(3.10)
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Then, the nominal and incremental controller gains are chosen to satisfy (3.6)–(3.8)
for existing nonnegative real sequences {σn}n ∈ N0

, {σ̃n}n ∈ N0
such that ‖(fn−σn(Xn−1−σn),

˜fn−σ̃n(Xn−1−σ̃n))‖/= 0 for all n ∈ N0 subject to lim inf n→ ∞‖(fn−σn(Xn−1−σn), ˜fn−σ̃n(Xn−1−σ̃n))‖ ≥
0 since equality to zero holds if and only if X

cp
= 0. The reminder of the proof now follows

since from (3.9) one gets simultaneously within a nonempty invariant set S ⊆ A0p ∩Acp:

∣

∣hn(Xn−1) − xcp∣
∣ ≤ βcpn

∥

∥

∥Xn−1 −X
cp
∥

∥

∥; ∀Xi ∈ S, ∀i ∈ N0, (3.11)

αpn

∥

∥

∥Xn−1 −X
0p∥
∥

∥ ≤
∣

∣

∣fn(Xn−1) + ˜fn(Xn−1) − x0p
∣

∣

∣; ∀Xi ∈ S, ∀i ∈ N0. (3.12)

Then, one gets from (3.12):

∣

∣hn(X) − xcp∣
∣ =
∣

∣

∣hn(Vhn−1(X)) −X
cp
∣

∣

∣ =
∣

∣

∣hn

(

Gh
n−1(X)

)

− xcp
∣

∣

∣

≤ βcpn

∥

∥

∥X −X
cp
∥

∥

∥ ≤
n
∏

i=1

[

max
i≥j(∈N)≥i−m−1

(

βcpj

)

]

×
∥

∥

∥X −X
cp
∥

∥

∥ ≤ β
cn
∥

∥

∥X −X
cp
∥

∥

∥; ∀X ∈ cl S, ∀n ∈ N,

(3.13)

with the real sequence {βcn}n∈N0
of elements satisfying β

cn ∈ [0, 1), for all n ∈ N so that one
deduces by taking 	∞-norms for the m-tuples Gh

(·)(X) (see Remark 2.3) that:

∥

∥

∥Gh
n−1(X) −X

cp
∥

∥

∥

∞
= max

n≥j(∈N)≥n−m−1

∣

∣

∣hj

(

Gh
j−1(X)

)

− xcp
∣

∣

∣ ≤ β
cn
∥

∥

∥X −X
cp
∥

∥

∥

∞
; ∀n ∈ N. (3.14)

Since β
cn ∈ (0, 1) for all n ∈ N, then limn→ ∞(Gh

n−1(X) − X
cp
) = 0 for all X ∈ S. Since

{Gh
n(X)}n∈N is a sequence of contraction self-mappings from Rm | S to S, and Rm is a

complete metric space endowed with the given norm-induced metric, then the equilibrium
point X

cp
on the vector function equation associated to the controlled difference equation

is locally asymptotically stable with respect to S, and it is also the unique fixed point in
cl S, [8]. Then, the equilibrium point X

cp
on the controlled difference equation is locally

asymptotically stable with respect to S, and the equilibrium point xcp of the corresponding
difference equation is also locally stable. On the other hand, it follows from (3.12) that

αpn−1
∥

∥

∥X −X
0p∥
∥

∥

∞
= αpn

∥

∥

∥

∥

G
f+ ˜f
n−1 (X) −X

0p
∥

∥

∥

∥

∞
≤
∣

∣

∣fn(X) + ˜fn(X) − x0p
∣

∣

∣

=
∣

∣

∣fn
(

Vfn+ ˜fn(X)
)

+ ˜fn
(

Vfn+ ˜fn(X)
)

− x0p
∣

∣

∣

≤
∥

∥

∥

∥

G
f+ ˜f
n (X) −X

0p
∥

∥

∥

∥

∞
; ∀X ∈ cl S, ∀n ∈ N.

(3.15)

Since { αpn}n∈N is unbounded with αpn :=
∏n

i=1αpi, then {Gf+ ˜f
n (X)}n ∈ N is a sequence of

expanding self-mappings from Rm | S to S so that the equilibrium point X
0p

of the vector
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function equation associated to the perturbed uncontrolled difference equation is locally
unstable with respect to S. Then, the corresponding equilibrium point of the difference
equation x0p is unstable.

The next result is concernedwith the local asymptotic stabilization around equilibrium
points within a certain invariant set of the unstable uncontrolled perturbed difference
equation through a single controller provided that the perturbation dynamics satisfies some
small-type constraints.

Theorem 3.3. Assume the following:

(1) m = m0p = mc withX
0p ∈ clS∩A0p, andX

c ∈ clS∩Ac being unique equilibrium points
in cl S ∩A0p, respectively in cl S ∩Ac, where S ⊆ A0p ∩Ac is invariant under all Vfn+ ˜fn

,
and Vhn ≡ Vfn+ ˜fn+gn

(since g̃n ≡ 0) for any controller in the class C consisting of a nominal
controller, that is, Vfn+ ˜fn

(S) ⊆ S and Vhn(S) ⊆ S with the incremental controller being
identically zero for all n ∈ N, provided that the sets are nonempty. Assume also that the
sets A0p and Ac defined in (3.2) are redefined as

A0p :=
{

X ∈ Rm :
∣

∣

∣fn(X) + ˜fn(X) − x0p
∣

∣

∣ ≥ αpn

(

1 − α̃pn

)

∥

∥

∥X −X
0p∥
∥

∥; ∀n ∈ N
}

,

Ac :=
{

X ∈ Rm :
∣

∣

∣fn(X) + ˜fn(X) + gn(X) − xc
∣

∣

∣ ≤ βcn

(

1 + ˜βcn
)∥

∥

∥X −X
c
∥

∥

∥; ∀n ∈ N
}

,

(3.16)

for nonnegative real sequences {αpn(1 − α̃pn)}n∈N and {βcn(1 + ˜βcn)}n∈N being defined for

some nonnegative real sequences {α̃pn}n∈N and {˜βcn}n∈N, subject to α̃pn ≤ 1 and ˜βcn <
β−1n − 1, where {αpn}n∈N is unbounded of elements redefined as αpn :=

∏n
i=1[αpi(1 − α̃pi)],

and {βcn}n∈N of elements being redefined as β
c

n :=
∏n

i=1[β
c
i (1 + ˜βci )] being such that

lim supn→∞ β
c

n < 1;

(2) the perturbed sequence { ˜fn (Xn−1)}n∈N satisfies the constraints:

∣

∣

∣

˜fn (Xn−1) − an

∣

∣

∣ ≤ βcn ˜β
c
n

∥

∥

∥Xn−1 −X
c
∥

∥

∥;
∣

∣

∣

˜fn(Xn−1) − bn
∣

∣

∣ ≤ αpnα̃pn

∥

∥

∥Xn−1 −X
0p∥
∥

∥, (3.17)

for all n ∈ Nwithin S for some real sequences {an}n∈N and {bn}n∈N and for some nonnega-
tive real sequences {α̃pn}n∈N0

and {˜βcn}n∈N0
, subject to α̃pn ≤ 1 and ˜βcn < β−1n − 1;

(3) the stabilizing incremental controller is identically zero, while the nominal controller is
gn(Xn−1) = λn(Xn−1)fn−σn(Xn−1−σn) subject to

sign λn(Xn−1) = − sign
((

fn(Xn−1) − x0p
)

fn−σn(Xn−1−σn)
)

; ∀n ∈ N,

|λn(Xn−1)| ≤
∣

∣fn(Xn−1) − xc + an

∣

∣

∣

∣fn−σn(Xn−1−σn)
∣

∣

; ∀n ∈ N,

(3.18)

within S if fn−σn(Xn−1−σn)/= 0 and λn(Xn−1) = 0 if fn−σn(Xn−1−σn) = 0 for all n ∈ N, for
some existing non-negative integer sequence {σn}n∈N0

.
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Then, the corresponding equilibrium point of the perturbed uncontrolled associate vector sys-

tem X
0p

is unstable, while that of the controlled system X
c
under the nominal controller is asymptoti-

cally stable. The stability properties also hold for the corresponding perturbed and perturbed controlled
difference equations of equilibrium points x0p and xc, respectively.

Proof. Now the errors of the uncontrolled perturbed and the controlled nominal equilibrium

points under consideration areΔx0p := xc −x0p andΔX
0p

: = X
c −X0p

. Note that g̃n(Xn−1) ≡ 0
so that (3.7) is omitted, while (3.6) and (3.8) are replaced by (3.18). Also, the inequalities
(3.11)-(3.12) are replaced by

∣

∣

∣fn(Xn−1) + ˜fn(Xn−1) + λn(Xn−1)fn−σn(Xn−1−σn) − xc
∣

∣

∣

≤ ∣∣fn(Xn−1) + λn(Xn−1)fn−σn(Xn−1−σn) − xc + an

∣

∣+
∣

∣

∣

˜fn(Xn−1) − an

∣

∣

∣

≤ βcn

(

1 + ˜βcn
)∥

∥

∥Xn−1 −X
c
∥

∥

∥; ∀Xn ∈ S, ∀n ∈ N0,

(3.19)

αpn

(

1 − α̃pn

)

∥

∥

∥Xn−1 −X
0p∥
∥

∥ ≤
∣

∣

∣fn(Xn−1) − x0p + bn
∣

∣

∣ −
∣

∣

∣

˜fn(Xn−1) − bn
∣

∣

∣

≤
∣

∣

∣fn(Xn−1) + ˜fn(Xn−1) − x0p
∣

∣

∣; ∀Xn ∈ S, ∀n ∈ N0,

(3.20)

for all n ∈ N0, provided that

∣

∣fn(Xn−1) + λn(Xn−1)fn−σn(Xn−1−σn) − xc + an

∣

∣ ≤ βcn

∥

∥

∥Xn−1 −X
c
∥

∥

∥; ∀Xn ∈ S, ∀n ∈ N0,

αpn

∥

∥

∥Xn−1 −X
0p∥
∥

∥ ≤
∣

∣

∣fn(Xn−1) − x0p + bn
∣

∣

∣; ∀Xn ∈ S, ∀n ∈ N0,

(3.21)

for some existing nonnegative sequences {αpn(1 − α̃pn)}n∈N and {βcn(1 + ˜βcn)}n∈N. Thus, X
0p

is unstable, while X
c
is locally asymptotically stable with respect to S. Those properties also

hold by construction ofX
0p
andX

c
for the corresponding perturbed and perturbed controlled

difference equations of equilibrium points x0p and xc, respectively.

Remark 3.4. Note that in the proof of the results of this section, estimates can replace to the
true equilibrium points if they are, potentially distinct, but sufficiently close to each other by
using the results of Section 2 provided that the needed assumptions of the various function
smoothness hold. Furthermore, the equilibrium points under analysis in the various given
results could be replaced with the estimates of errors related to the nominal equilibrium if
such errors are sufficiently small in terms of smallness of error norms. For instance, take the
estimation error of the equilibrium points of the feedback associate vector equation via the
nominal controller compared to its uncontrolled perturbed counterpart:

Δ := ̂X
c

−X0 +
(

Im −Mc
(

X0
))−1

V
˜f+g

(

X0
)

, (3.22)
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for all X ∈ S calculated from Theorem 2.8. Thus, the last term of (3.19) with ˜βcn = 0 for all
n ∈ N0 possesses the lower-bounds given below:

βcn

∥

∥

∥X − X
c
∥

∥

∥ = βcn

∥

∥

∥

∥

X − ̂X
c

−Δ
∥

∥

∥

∥

≥ βcn

∥

∥

∥

∥

X − ̂X
c
∥

∥

∥

∥

− βcn‖Δ‖ ≥ βcn(1 − εcn)
∥

∥

∥

∥

X − ̂X
c
∥

∥

∥

∥

, (3.23)

provided that the equilibrium point estimation error is of sufficiently small size fulfilling

‖Δ‖ ≤ εcn‖X − ̂X
c

‖ for some sequence {εcn}n∈N0
satisfying 0 ≤ εcn ≤ 1 for all n ∈ N0.

Thus, the last term of (3.19) could be replaced by (3.23), and the theorem and its proof
could be reformulated based on estimates when having a sufficiently small estimation error
between the equilibrium point of the uncontrolled difference equation and that of the current
controlled difference equation, that is, that subject to parametrical perturbation with or
without unmodeled dynamics.

4. Example

Consider the following difference equation:

xn+1 = hn(xn) = fn(xn) + ˜fn(xn) + gn(xn) =
(

δn + ˜δn
)

xne
−xn + gn(xn), (4.1)

where δn ≥ 1 for all n ∈ N, fn(xn) = δnxne
−xn is the uncontrolled nominal dynamics,

˜fn(xn) = ˜δnxne
−xn is the unmodeled uncontrolled dynamics, and gn(xn) is a controller with

the objective of stabilizing (1.1) for a certain size of the unmodeled dynamics added to
the nominal uncontrolled one. Equation (4.1) extends with the incorporation of uncertain
dynamics and nominal and incremental controls the example given in [12] for the case of
fully modelled dynamics. Note that an equilibrium point of the uncontrolled nominal and
perturbed difference equations is x = 0. If δn → δ > 1 as n → ∞, then x = ln δ is also an
equilibrium point of such an equation.

The particular xn+1 = hn(xn) = fn(xn) is the nominal uncontrolled part of (4.1). If δn ≥ 1
for all n ∈ N, S ≡ R—(the set of negative real numbers) and A0 := {x ∈ R : |fn(x)| ≥ δn|x|},
then S ⊂ A0 is invariant.

The equilibrium point x = 0 of the uncontrolled nominal difference equations is
unstable with respect to S; x0 = 0 ⇒ xn = 0; for all n ∈ N, and if x0 > 0 and finite,
then{xn}n∈N is nonnegative and uniformly bounded. To see this property, proceed with a
contradiction argument as follows. Assume that {xn}n∈N is unbounded, then if {xn}n∈N is
unbounded, then there exists a subsequence {xn}n∈̂N of it which diverges, that is, xn → +∞
as n(∈ ̂N) → ∞ with ̂N ⊂ N is numerable of infinite cardinal. As a result, there is a
monotone increasing real sequence {Mn}n∈̂N such that Mn+1 ≥ xn > Mn so that Mn+1 ≤
xn+1 ≤ δnxne

−Mn ≤ δnMn+1e
−Mn for all n ∈ ̂N so that 1 ≤ lim infn(∈̂N) →∞ δne

−Mn = 0,
which is clearly a contradiction to {xn}n∈N being unbounded by assuming that {δn}n∈̂N is
not exponentially unbounded. Then, {xn}n∈N is bounded if x0 ≥ 0 and δn ≥ 1 for all n ∈ N.
The above contradiction argument does not require specifically δn ≥ 1, but only δn > 0 for all
n ∈ N. Thus, {xn}n∈N is bounded if x0 ≥ 0 and δn ≥ 0 for all n ∈ N, and then the equilibrium
point x = 0 of the uncontrolled nominal difference equations is locally stable with respect to
the complement S of S in R which is also an invariant set from Theorem 3.3. As a result, the
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zero equilibrium point is unstable with respect to S if δn ≥ 1 for all n ∈ N and globally stable
with respect to S if δn > 0 for all n ∈ N. A combined result is x = 0 is a semistable equilibrium
point if δn ≥ 1.

One now considers the synthesis of a stabilizing controller gn(xn) = λnδnxne
−xn

for the nominal dynamics and at the same time for a certain tolerance to certain amount
of unmodeled dynamics according to the controller of Theorem 3.3. A more sophisticated
controller according to Theorem 3.2 could also be synthesized. Note that an equilibrium point
of the whole controlled difference equation xn+1 = hn(xn) is still x = 0 as for the uncontrolled
nominal and perturbed ones. Equation (4.1) becomes

xn+1 = hn(xn) =
(

(1 + λn)δn + ˜δn
)

xne
−xn ; n ∈ N0. (4.2)

It is required from Theorem 3.3, (3.18)with δn = αpn, σn = 0, that λn < 0 if x0 > 0 and λn > 0 if
xn < 0 and for some real sequence {an}n∈N0

, and a gain sequence satisfying:

|λn| =
∣

∣

∣

∣

δnxn + ane
xn

δnxn

∣

∣

∣

∣

=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∣

∣

∣

∣

1 +
ane

xn

δnxn

∣

∣

∣

∣

if x0 ≥ 0 with an < 0, |an| ≥ |δnxne
−xn |;

∣

∣

∣

∣

1 − an

δn|xn|e|xn|

∣

∣

∣

∣

if xn < 0 with |an| ≥ δn|xn|e|xn|;

∀n ∈ N0.

(4.3)

Thus,

(a) if x0 ≥ 0, then |1 + ane
xn/δnxn| = |ane

xn/δnxn| − 1 so that one gets from (4.2):

xn+1 = |an| + ˜δnxne
−xn < xne

−xn < xn since xn > 0; ∀n ∈ N0, (4.4)

provided that the controller gain sequence and unmodeled dynamics contribution
sequence satisfy:

λn = −
(

1 − |an|exn

δnxn

)

, |an| ≥
∣

∣δnxne
−xn
∣

∣; ∀n ∈ N0, (4.5)

˜δn ∈
[

̂δ1n, ̂δ2n
)

≡
[

−
∣

∣

∣

∣

ane
xn

xn

∣

∣

∣

∣

, 1 − ane
xn

xn

)

⊆ [−δn, 1 − δn); ∀n ∈ N0, (4.6)

where ˜fn(xn) = ˜δnxne
−xn for all n ∈ N0 is subject to the constraints (4.6) so as to

define the sets (3.16) in Theorem 3.3 according to such a disturbance. Note that
the constraint (4.5) implies that the unmodeled dynamics contribution is “small
enough” to satisfy (3.17) in Theorem 3.3;

(b) if x0 < 0 then for any n ∈ N0 such that xn < 0, and |1+ane
xn/δnxn| = |ane

xn/δnxn|−1
so that one gets from (4.2) that

xn+1 = −
(

an + ˜δn|xn|e|xn|
)

< −|xn| ≤ −βn|xn|; ∀n ∈ N0, (4.7)
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for any sequence {βn}n∈N0
with any βn < 1 for all n ∈ N0 provided that the controller

gain sequence and unmodeled dynamics contribution sequence satisfy

λn =
∣

∣

∣

∣

1 − an

δn|xn|e|xn|

∣

∣

∣

∣

, |xn| ≥ an > 0; ∀n ∈ N0, (4.8)

˜δn ≤
(

an

| xn| − 1
)

e|−xn|; ∀n ∈ N0. (4.9)

Note that for both cases (a)-(b), |(1 + λn) δn + ˜δn| < 1 for all n ∈ N0, and {xn}n∈N is bounded
(for any |x0| finite) and monotone decreasing so that it converges asymptotically to the
equilibrium point. The stabilization of the zero equilibrium has been achieved irrespective
of the values of the elements of the sequence {δn}n∈N0

. Theorem 3.3 is fulfilled also for the
sets (3.16) with α̃pn = ˜βcn = 0, αpn = δn ≥ 1 and βcn < 1 for all n ∈ N0. The equilibrium point is
asymptotically stable related to both the invariant set S and its complement in R so that it is
also globally asymptotically Lyapunov stable. The discussion is summarized as follows.

Theorem 4.1. The equilibrium point x = 0 of the difference equation of Section 4 is globally
asymptotically stable around the equilibrium point x = 0 (so that it is asymptotically stable related to
both the invariant set S and its complement in R) under the feedback controller gn(xn) = λnδnxne

−xn

for all n ∈ N0 given by the gain sequence of elements satisfying (4.5) if x0 ≥ 0 (implying that xn ≥ 0
for all n ∈ N) and (4.8) if xn < 0 for the current n ∈ N0 for any structured unmodeled dynamics
˜fn(xn) = ˜δnxne

−xn , subject to (4.6) if x0 ≥ 0, and to (4.9) if x0 < 0 provided that xn < 0 for the
current n ∈ N0.
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