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In this paper, series solution of second-order integrodifferential equations with boundary condi-
tions of the Fredholm and Volterra types bymeans of the homotopy analysis method is considered.
The new approach provides the solution in the form of a rapidly convergent series with easily
computable components using symbolic computation software. The homotopy analysis method
provides us with a simple way to adjust and control the convergence region of the infinite series
solution by introducing an auxiliary parameter. The proposed technique is applied to a few test
examples to illustrate the accuracy, efficiency, and applicability of the method. The results reveal
that the method is very effective, straightforward, and simple.

1. Introduction

Integrodifferential equations (IDEs) are often involved in the mathematical formulation of
physical and engineering phenomena. IDEs can be encountered in various fields of science
such as physics, chemistry, biology, and engineering. These kinds of equations can also be
found in numerous applications, such as electromagnetic, plasma physics, elasticity, fluid
dynamics, oscillation theory, polymer rheology, chemical kinetics, biomechanics, and control
theory [1–5]. Since it is usually impossible to obtain the closed-form solutions to second-
order boundary value problems of IDEs met in practice, these problems must be attacked by
various approximate and numerical methods.

The purpose of this paper is to extend the application of the homotopy analysis
method (HAM) to provide symbolic approximate solution for the second-order boundary
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value problems of IDEs of the following Fredholm type:

u′′(x) +
∫b

a

K(x, s)f
(
u(s), u′(s)

)
ds + g

(
u(x), u′(x)

)
+ h(x) = 0, a ≤ s, x ≤ b, (1.1)

and the following Volterra type:

u′′(x) +
∫x

a

K(x, s)f
(
u(s), u′(s)

)
ds + g

(
u(x), u′(x)

)
+ h(x) = 0, a ≤ s, x ≤ b, (1.2)

subject to the boundary conditions

u(a) = κ1, u(b) = κ2, (1.3)

where a, b, κ1, κ2 are real finite constants, u is an unknown function to be determined, K
and h are continuous functions on [a, b]× [a, b] and [a, b], respectively, and f, g are nonlinear
continuous functions of u, u′. For details about the existence and uniqueness of solutions for
such problems, see [6–8]. However, we assume that (1.1) and (1.2) subject to the boundary
conditions (1.3) have a unique analytic solution on the given interval.

The numerical solvability of second-order IDEs with boundary conditions of the
Fredholm and Volterra types and other related equations has been pursued by several
authors. To mention a few, in [9], the authors have discussed the Legendre polynomials
method for solving Fredholm equation u′′(x)+

∫b
a K(x, s)u(s)ds+f(x)+p(x)u(x)+q(x)u′(x) =

0. Furthermore, the compact finite differencemethod is carried out in [10] for the Volterra IDE
u′′(x) +

∫x
a K(x, s)u(s)ds + g(x, u(x)) = 0 and the Fredholm IDE u′′(x) +

∫b
a K(x, s)u(s)ds +

g(x, u(x)) = 0. Recently, the monotone iterative sequences method for solving Volterra
equation u′′(x) +

∫x
0 K(x, s)f(u(s))ds + g(x) = 0 is proposed in [11].

The HAM, which is proposed by Liao [12–17], is effectively and easily used to
solve some classes of linear and nonlinear problems without linearization, perturbation, or
discretization. The HAM is based on the homotopy, a basic concept in topology. The auxiliary
parameter � is introduced to construct the so-called zero-order deformation equation. Thus,
unlike all previous analytic techniques, the HAM provides us with a family of solution
expressions in auxiliary parameter �. As a result, the convergence region and rate of solution
series are dependent upon the auxiliary parameter � and thus can be greatly enlarged by
means of choosing a proper value of �. This provides us with a convenient way to adjust and
control convergence region and rate of solution series given by the HAM.

In the recent years, extensive work has been done using HAM,which provides analyti-
cal approximations for linear and nonlinear equations. This method has been implemented in
several functional equations, such as nonlinear water waves [15], unsteady boundary-layer
flows [16], solitary waves with discontinuity [17], Klein-Gordon equation [18], projectile
motion with the quadratic resistance law [19], systems of fractional differential equations
[20], nonlinear fractional differential equations [21, 22], systems of fractional algebraic-
differential equations [23], fractional SIR model [24], singular Volterra integral equation [25],
charged particle motion for certain configurations of oscillating magnetic fields [26], Volterra
population growth model [27], systems of fractional IDEs [28], and high-order IDEs [29].

The outline of the paper is as follows. In the next section, the basic idea of the HAM
is introduced. In Section 3, we utilize the statement of the HAM for solving second-order
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IDEs with boundary conditions of the Fredholm and Volterra types. In Section 4, numerical
examples are given to illustrate the capability of HAM. This paper ends in Section 5 with
some concluding remarks.

2. Homotopy Analysis Method

The principles of the HAM and its applicability for various kinds of functional equations are
given in [12–28]. For convenience of the reader, we will present a review of the HAM [12–17]
then we will extend the HAM to construct a symbolic approximate solution to second-order
IDEs with boundary conditions of the Fredholm and Volterra types. To achieve our goal, we
consider the following nonlinear functional equation:

N[u(x)] = 0, x ≥ a, (2.1)

where N is a nonlinear operator and u(x) is an unknown function of independent variable x.
Let u0(x) denote an initial guess of the exact solution of (2.1), �/= 0 an auxiliary

parameter, H(x)/= 0 an auxiliary function, and Λ an auxiliary linear operator with the
property Λ [f(x)] = 0 when f(x) = 0. The auxiliary parameter �, the auxiliary function
H(x), and the auxiliary linear operator Λ play important roles within the HAM [12]. As we
will see later, choosing suitable values of the auxiliary parameter � will help us to adjust and
control the convergence region of the series solution.

Liao [12–17] constructs, using q ∈ [0, 1] as an embedding parameter, the so-called
zero-order deformation equation as

(
1 − q

)
Λ
[
φ
(
x; q

) − u0(x)
]
= q�H(x)N

[
φ
(
x; q

)]
, (2.2)

where φ(x; q) is the solution of (2.1)which depends on �,H(x), Λ, u0(x), and q. When q = 0,
the zero-order deformation equation (2.2) becomes

φ(x; 0) = u0(x), (2.3)

and when q = 1, since �/= 0 and H(x)/= 0, the zero-order deformation equation (2.2) reduces
to

N
[
φ(x; 1)

]
= 0. (2.4)

So, φ(x; 1) is exactly the solution of the nonlinear equation (2.1). Thus, according to
(2.3) and (2.4), as q increases from 0 to 1, the solution φ(x; q) varies continuously from the
initial approximation u0(x) to the exact solution u(x).

Define the so-called mth-order deformation derivatives

um(x) =
1
m!

∂mφ
(
x; q

)
∂qm

∣∣∣∣∣
q=0

, (2.5)
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expanding φ(x; q) in Taylor series with respect to the embedding parameter q, using (2.3) and
(2.5), we obtain

φ
(
x; q

)
= u0(x) +

∞∑
m=1

um(x)qm. (2.6)

Assume that the auxiliary parameter �, the auxiliary functionH(x), the initial approx-
imation u0(x), and the auxiliary linear operatorΛ are properly chosen so that the power series
(2.6) of φ(x; q) converges at q = 1. Then, we have under these assumptions the series solution
u(x) = u0(x) +

∑∞
m=1 um(x).

Define the vector �un = {u0(x), u1(x), u2(x), . . . , un(x)}. Differentiating equation (2.2)
m-times with respect to embedding parameter q, then setting q = 0 and dividing them bym!.
Using (2.5), we have the so-called mth-order deformation equation as

Λ
[
um(x) − χmum−1(x)

]
= �H(x)Rm(�um−1(x)), m = 1, 2, . . . , n, (2.7)

where

Rm(�um−1(x)) =
1

(m − 1)!
∂m−1N

(
φ
(
x; q

))
∂qm−1

∣∣∣∣∣
q=0

, (2.8)

χm =

{
0, m ≤ 1,
1, m > 1.

(2.9)

For any given nonlinear operator Λ, the term Rm(�um−1(x)) can be easily expressed
by (2.8). Thus, we can gain u0(x), u1(x), u2(x), . . . by means of solving the linear high-order
deformation equation (2.7) one after the other in order. Themth-order approximation of u(x)
is given by u(x) =

∑m−1
k=0 uk(x).

3. Solving Second-Order Boundary Value Problems of IDEs by HAM

Throughout this section, we will utilize the construction for the IDEs of the Fredholm type in
order not to increase the length of the paper without the loss of generality for the remaining
type. However, similar construction can be implemented for the Volterra type.

Accordingly, we extend the application of the HAM to solve the second-order IDEs of
the Fredholm type

N[u(x)] := u′′(x) +
∫b

a

K(x, s)f
(
u(s), u′(s)

)
ds + g

(
u(x), u′(x)

)
+ h(x) = 0, a ≤ s, x ≤ b,

(3.1)

subject to the boundary conditions (1.3).
First of all, we assume that (3.1) satisfies the initial condition u′(a) = κ, where the

unknown constant κ can be later determined by substituting the boundary condition u(b) =
κ2 into the obtained solution. After that, we chose the initial guess u0 such that the initial
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conditions u0(a) = κ1 and u′
0(a) = κ are satisfied. That is, the initial guess will be of the form

u0 = u0(x;κ). Finally, we take the auxiliary linear operator Λ = d2/dx2 which satisfies the
property Λ[c1 + c2t] = 0, where c1, c2 are constants of integrations.

The so-called zero-order deformation equation will be defined as

(
1 − q

) d2

dx2

[
φ
(
x; q, κ

) − u0(x;κ)
]
= q�H(x)N

[
φ
(
x; q, κ

)]
, (3.2)

where

N
[
φ
(
x; q, κ

)]
=

d2φ
(
x; q, κ

)
dx2

+
∫b

a

K(x, s)f
(
φ
(
s; q, κ

)
, φ′(s; q, κ))ds + g

(
φ
(
x; q, κ

)
, φ′(x; q, κ)) + h(x),

(3.3)

when q = 0, (3.2) reduces to φ(x; q, κ) = u0(x;κ). In this case, the so-called mth-order
deformation equation can be constructed as

d2

dx2

[
um(x;κ) − χmum−1(x;κ)

]
= �H(x)Rm(�um−1(x;κ)). (3.4)

Operating the operator J2, the inverse operator of d2/dx2 to both sides of (3.4), then, the
mth-order deformation equation will have the following form:

um(x;κ) = χmum−1(x;κ) + �

∫x

a

[(x − τ)H(τ)Rm(�um−1(τ ;κ))]dτ, (3.5)

where

Rm(�um−1(x;κ)) =
d2um−1(x;κ)

dx2

+
∫b

a

K(x, s)
1

(m − 1)!
∂m−1(f(φ(s; q, κ), φ′(s; q, κ)))

∂qm−1

∣∣∣∣∣
q→ 0

ds

+
1

(m − 1)!
∂m−1(g(φ(x; q, κ), φ′(x; q, κ)))

∂qm−1

∣∣∣∣∣
q→ 0

+ h(x)
(
1 − χm

)
,

(3.6)

and the mth-order approximation of u(x) can be given as

u(x) =
m−1∑
k=0

uk(x;κ). (3.7)
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If we substitute the boundary condition u(b) = κ2 into (3.7), then we obtain an equa-
tion of the variable κ. And so, the approximate solution for (3.1) and (1.3)will be completely
constructed. For simplicity, in this paper, we assume that the value of the auxiliary function
is kept at H(x) = 1.

4. Numerical Results and Discussion

HAM provides an analytical approximate solution in terms of an infinite power series.
However, there is a practical need to evaluate this solution and to obtain numerical values
from the infinite power series. The consequent series truncation and the practical procedure
are conducted to accomplish this task. In this section, we consider four examples to
demonstrate the performance and efficiency of the present technique. Through this paper all
the symbolic and numerical computations are performed by using Mathematica 7.0 software
package.

To show the accuracy of the present method for our problems, we report three types
of error. The first one is the residual error, Re, defined as

Re(x) :=

∣∣∣∣∣
d2

dx2
um
HAM(x)

+
∫b

a

K(x, s)f
(
um
HAM(s),

d

ds
um
HAM(s)

)
ds

+ g

(
um
HAM(x),

d

dx
um
HAM(x)

)
+ h(x)

∣∣∣∣,

(4.1)

for the Fredholm type and similarly for the Volterra type, while the exact, Ex, and relative, Rl,
errors are defined, respectively, by

Ex(x) :=
∣∣uExact(x) − um

HAM(x)
∣∣,

Rl(x) :=

∣∣uExact(x) − um
HAM(x)

∣∣
|uExact(x)| ,

(4.2)

where s, x ∈ [a, b], um
HAM is the mth-order approximation of u(x) obtained by the HAM, and

uExact is the exact solution.

Example 4.1. Consider the following linear Fredholm IDE:

u′′(x) −
∫1

−1
se−s cosxu(s)ds − 2u(x) − x = 0, −1 ≤ s, x ≤ 1, (4.3)

subject to the boundary conditions

u(−1) = −1, u(1) = 1. (4.4)
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The exact solution is u(x) = c1e
√
2x + c2e

−√2x + c3 cosx − 0.5x, where c1 = 0.4206 . . ., c2 =
−0.3545 . . ., and c3 = −0.2662 . . ..

According to (3.6) and (2.5), we have

Rm(�um−1(x;κ)) =
d2um−1(x;κ)

dx2

−
∫1

−1

(
se−s cosx

)
um−1(s;κ)ds − 2um−1(x;κ) − x

(
1 − χm

)
.

(4.5)

Assuming the initial approximation of (4.3) has the form u0(x) = κ(x + 1) − 1, which satisfies
the initial conditions u0(−1) = −1 and u′

0(−1) = κ. Consequently, the first few terms of the
HAM series solution for (4.3) according to these initial conditions are as follows:

u1(x) = �

[
0.31668 − 0.5311κ + 1.88088x − 1.12044κx + (1 − κ)x2

−(0.16667 + 0.33333κ)x3 + (0.73576 + 0.14313κ) cosx
]
,

(4.6)

u2(x) = u1(x)

− 0.033333 �
2

[
(60.81144 + 6.54379κ) − (21.76335 − 17.39749κ)x

− (20.49956 − 14.06698κ)x2 + (23.8088 − 1.20436κ)x3 + 5(1 − κ)x4

−(0.5 + κ)x5 − (81.0036 + 0.77298κ) cosx

]
.

(4.7)

To determine the value of κ, we must chose a value to the auxiliary parameter �. It
was proved that if we set � = −1, then we have the Adomian decomposition solution which
is a special case of the HAM solution [30, 31]. Therefore, −1 is available value for �. Now,
substitute � = −1 and the boundary condition at x = 1 into the 10th order approximation of
u(x) to get κ = 1.4818348333.

Figure 1 shows the 10th-order approximate solution of (4.3) and (4.4) obtained by
HAM at � = −1 together with the exact solution. It is clear from the figure that the
approximate solution is in high agreement with the exact solution.

Since the value of κ has been identified previously, the valid region for the values of �

can be obtained by the so-called �-curve which correspond to the horizontal line as shown in
Figure 2. Thus, the valid region of � is −1.5 < � < −0.8.

Figure 3 shows a comparison between the exact and residual errors obtained from the
10th-order approximation of u(x) for (4.3) and (4.4) at � = −1, while Figures 4 and 5 show
respectively how the exact and residual errors change with varying the values of �.
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u(x)

−1 −0.5

−0.5

−1

Figure 1: Solutions of (4.3) and (4.4). Dotted line: the 10th-order approximate HAM solution at � = −1 and
solid line: the exact solution.
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′′ (
0)

ħ
−1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4

Figure 2: The �-curves of u′(0) and u′′(0) which are corresponding to the 10th-order approximate HAM
solution of (4.3) and (4.4). Dotted line: u′(0) and solid line: u′′(0).

Example 4.2. Consider the following nonlinear Fredholm IDE:

u′′(x) −
∫1

0
(x − s)2eu(s)ds +

(
u′(x)

)2 +
(
3
2
x2 − 5

3
x +

7
12

)
= 0, 0 ≤ s, x ≤ 1, (4.8)

subject to the boundary conditions

u(0) = 0, u(1) = ln 2. (4.9)

The exact solution is u(x) = ln(x + 1).
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Figure 3: Errors of (4.3) and (4.4) at � = −1. Dotted line: the exact error and solid line: the residual error.
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Figure 4: Exact error of (4.3) and (4.4) at different values of �. Dash-dotted line: � = −1.1, dotted line:
� = −1, and solid line: � = −0.9.
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Figure 5: Residual error of (4.3) and (4.4) at different values of �. Dash-dotted line: � = −1.1, dotted line:
� = −1, and solid line: � = −0.9.
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According to (3.6) and (2.5), we have

Rm(�um−1(x;κ)) =
d2

dx2
um−1(x;κ) +

(
3
2
x2 − 5

3
x +

7
12

)(
1 − χm

)

−
∫1

0
(x − s)2

1
(m − 1)!

∂m−1(exp(φ(s; q, κ)))
∂qm−1

∣∣∣∣∣
q→ 0

ds

+
m−1∑
i=0

d

dx
ui(x;κ)

d

dx
um−1−i(x;κ).

(4.10)

Choose the initial guess approximation as u0(x) = kx, which satisfies the initial conditions
u0(0) = 0 and u′

0(0) = κ. Then, we have the following approximations terms of the HAM
series solution for (4.8):

u1(x) =
hx2

72κ3

(
72 − 72eκ + 72eκκ + 24xκ − 24eκxκ − 36eκκ2

+24eκxκ2 + 6x2κ2 − 6eκx2κ2 + 21κ3 − 20xκ3 + 9x2κ3 + 36κ5
)
,

(4.11)

u2(x) = u1(x) +
h2x2

2160κ8

(
47520 − 95040eκ + 47520e2κ + 97200κ − 66960eκκ − 30240e2κκ

+ 5760xκ − 11520eκxκ + 5760e2κxκ + 36000κ2 + 24480eκκ2

+ 19440e2κκ2 + 10800xκ2 − 6480eκxκ2 − 4320e2κxκ2 + 360x2κ2

+ 360e2κx2κ2 − 720eκx2κ2 + 7560κ3 − 12240eκκ3 − 12240e2κκ3

+ 4800xκ3 + 960eκxκ3 + 3600e2κxκ3 + 540x2κ3 − 180eκx2κ3

− 360e2κx2κ3 + 3780eκκ4 + 5580e2κκ4 + 1260xκ4 − 900eκxκ4

− 2400e2κxκ4 + 300x2κ4 − 120eκx2κ4 + 360e2κx2κ4 + 15120κ5

− 16770eκκ5 − 1620e2κκ5 + 600eκxκ5 + 900e2κxκ5 + 105x2κ5

− 75eκx2κ5 − 180e2κx2κ5 + 15600eκκ6 + 270e2κκ6 + 4320xκ6

− 4540eκxκ6 − 180e2κxκ6 + 30eκx2κ6 + 45e2κx2κ6 − 7710eκκ7

+ 4420eκxκ7 + 720x2κ7 − 745eκx2κ7 + 630κ8 + 2160eκκ8

− 600xκ8 − 1800eκxκ8 + 270x2κ8 + 540eκx2κ8 + 72x3κ8

− 72eκx3κ8 − 540eκκ9 + 420xκ9 + 360eκxκ9 − 300x2κ9

−90eκx2κ9 + 108x3κ9 + 1080κ10 + 720xκ11
)
.

(4.12)
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Figure 6: Solutions of (4.8) and (4.9). Dotted line: the 5th-order approximate HAM solution at � = −1 and
solid line: the exact solution.
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Figure 7: The �-curves of u′(1) and u′′(1) which are corresponding to the 5th-order approximate HAM
solution of (4.8) and (4.9). Dotted line: u′(1) and solid line: u′′(1).

As in the previous example, we determine an introductory value of the constant κ by
substituting � = −1 and the boundary condition at x = 1 into the obtained HAM solution.
So, the 5th-order approximation of u(x) gives κ = 0.9507338904. Figure 6 shows the 5th-order
approximate solution of (4.8) and (4.9) obtained by HAM at � = −1 together with the exact
solution, while Figure 7 shows the �-curve corresponding to the 5th-order approximate HAM
solution. It is clear from Figure 7 that the valid region of � is −0.7 < � < −0.4.

Our next goal is to show how the auxiliary parameter � affects the approximate
solutions. However, it is evident from Figure 6 that both curves corresponding to the 5th-
order approximate HAM solution and the exact solution are not coinciding in general at
� = −1. To improve the solution, let us compute other values of κ at different values of �.
Table 1 shows the values of the constant κ at different values of the auxiliary parameter �.

Representation the exact solution and the 5th-order approximate HAM solution of
(4.8) and (4.9) at different values of � mentioned in Table 1 shows that all these solutions
are approximately identical. However, Figure 8 shows the correspondence between the exact
solution and the 5th-order approximate HAM solution of (4.8) and (4.9) at � = −0.6. From
the last mentioned figure, we see that we can achieve a good approximation with the exact
solution by using a few terms in HAM.
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Table 1: The values of κ at different values of �.

� κ

−0.8 0.9973778496
−0.6 0.9987971735
−0.4 0.9834454136

0.2 0.4 0.6 0.8 1
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0.3

0.4

0.5

0.6

0.7

x

u
(x
)

Figure 8: Solutions of (4.8) and (4.9). Dotted line: the 5th-order approximate HAM solution at � = −0.6
and solid line: the exact solution.

Figure 9 shows a comparison between the exact errors of (4.8) and (4.9) at different
values of � corresponding to the 5th-order approximate HAM solution. It is to be noted that
the accuracy of certain node at � = −0.6 is more convincing than the other values of �.

Example 4.3. Consider the following linear Volterra IDE:

u′′(x) −
∫x

0
e−s sinxu′(s)ds + u(x) −

(
1
2
e−x sin 2x − sinx

)
= 0, 0 ≤ s, x ≤ π

2
, (4.13)

subject to the boundary conditions

u(0) = −1, u
(π
2

)
= 1. (4.14)

The exact solution is u(x) = sinx − cosx.
According to (3.6) and (2.5), we have

Rm(�um−1(x;κ)) =
d2

dx2
um−1(x;κ) −

∫x

0
sinxe−s

(
d

ds
um−1(s;κ)

)
ds + um−1(x;κ)

−
(
1
2
e−x sin 2x − sinx

)(
1 − χm

)
.

(4.15)
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Figure 9: Exact error of (4.8) and (4.9) at different values of �. Dash-dotted line: � = −0.4, dotted line:
� = −0.6, and solid line: � = −0.8.

Choose the initial guess approximation as u0(x) = κx−1, which satisfies the initial conditions
u0(0) = −1 and u′

0(0) = κ. Using the iteration formula (3.5), we can directly obtain the
following approximations terms of the HAM series solution for (4.13):

u1(x) =
1

150
�

(
12 − 75κ + 120x − 75κx − 75x2 + 25κx3 + 75κe−x cosx

−12e−x cos 2x − 150 sinx + 150κ sinx + 9e−x sin 2x
)
,

(4.16)

u2 (x) = u1 (x)+
1

1200
�
2
(
2159856
4225

+ 300e−x − 5376x
65

− 552x2 + 160x3 − 50x4 − 2349κ
2

− 15e−2xκ − 300e−xκ + 1080xκ − 300x2κ + 100x3κ + 10x5κ

+
3
50

e−2x(−375κ + 8ex(25κ − 177)) cos 2x +
465
169

e−2x cos 3x − 750 sinx

−3e−2x sinx+600e−x sinx+840κ sinx−1800e−xκ sinx−600e−xxκ sinx

− 3e−2x cosx
(
3 − 20ex

(
−12 − 10x + 25κ + 20xκ + 5x2κ

)
+ 5κ sinx

)

+
4068
25

e−x sin 2x − 84e−xκ sin 2x − 405
169

e−2x sin 3x
)
.

(4.17)

The rest of components of the iteration formula (3.5) can be obtained in a similar way.
To find the value of κ, substitute � = −1 and the boundary condition at x = π/2 into

the 5th-order approximation of u(x) to get κ = 1.0000000668. After that, substituting the value
of κ in the 5th-order approximation of u(x) and plotting the �-curve, we can obtain the valid
region of � which is −1.3 < � < −0.7 as shown in Figure 10.

The graph of the 5th-order approximate HAM solution of (4.13) and (4.14) at � = −1
together with the exact solution are depicted in Figure 11. It is evident from the figure that the
5th-order approximate HAM solution agrees with the exact solution in the interval [0, π/2].
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Figure 10: The �-curves of u′(0) and u′′(0) which are corresponding to the 5th-order approximate HAM
solution of (4.13) and (4.14). Dotted line: u′(0) and solid line: u′′(0).
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Figure 11: Solutions of (4.13) and (4.14). Dotted line: the 5th-order approximate HAM solution at � = −1
and solid line: the exact solution.

In Table 2, the exact, relative, and residual errors have been calculated for various x
in [0, π/2] to measure the extent of agreement between the 5th-order approximate HAM
solution at � = −1 and the exact solution. From the table, it can be seen that the HAMprovides
us with the accurate approximate solution of (4.13) and (4.14).

Example 4.4. Consider the following nonlinear Volterra IDE:

u′′(x) +
∫x

0
(u(s))2ds +

(
x

2
− sinhx − 1

4
sinh 2x

)
= 0, 0 ≤ s, x ≤ 1, (4.18)

subject to the boundary conditions

u(0) = 0, u(1) = sinh(1). (4.19)

The exact solution is u(x) = sinhx.
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Table 2: Exact, relative, and residual errors of (4.13) and (4.14) at � = −1 and κ = 1.0000000668.

x Exact error Relative error Residual Error
0.1 4.973784 × 10−10 5.556241 × 10−10 1.112207 × 10−9

0.2 2.426173 × 10−11 3.104917 × 10−11 5.782878 × 10−9

0.3 3.202272 × 10−12 4.853278 × 10−12 5.440901 × 10−7

0.4 1.244961 × 10−11 2.341725 × 10−11 2.572090 × 10−6

0.5 1.030532 × 10−10 2.588255 × 10−10 8.420042 × 10−6

0.6 5.499366 × 10−10 2.109517 × 10−9 2.202234 × 10−5

0.7 2.259143 × 10−9 1.872873 × 10−8 4.964877 × 10−5

0.8 7.674839 × 10−9 3.716740 × 10−7 1.008886 × 10−4

0.9 2.263322 × 10−8 1.399558 × 10−7 1.900279 × 10−4

1.0 5.985469 × 10−8 1.987414 × 10−7 3.378840 × 10−4

...
...

...
...

π/2 4.370067 × 10−6 0.370067 × 10−6 4.598268 × 10−3

According to (3.6) and (2.5), we have

Rm(�um−1(x;κ)) =
d2

dx2
um−1(x;κ) +

(
x

2
− sinhx − 1

4
sinh 2x

)(
1 − χm

)

+
∫x

0

⎛
⎝m−1∑

j=0

uj(s;κ)um−1−j(s;κ)

⎞
⎠ds.

(4.20)

Assume that the initial approximation of (4.18) has the form u0(x) = κx, which satisfies the
initial conditions u0(0) = 0 and u′

0(0) = κ. Using the iteration formula (3.5), we can directly
obtain the following approximations terms of the HAM series solution for (4.18) subject to
these initial conditions:

u1(x) =
1
120

�

(
x
(
135 + 10x2 + 2x4κ2

)
− 15(8 + coshx) sinhx

)
, (4.21)

u2(x) = u1(x) +
1

3360
�
2
(
3780x + 280x3 − 13545xκ + 126x5κ +

8
3
x7κ

+ 56x5κ2 +
2
9
x9κ3 − 6720xκ coshx − 105

2
xκ cosh 2x − 3360 sinhx

+20160κ sinhx − 210 sinh 2x +
315
4

κ sinh 2x
)
.

(4.22)

Similarly to the previous discussion, one can substitute � = −1 and the boundary condition at
x = 1 into the 5th-order approximation of u(x) to get κ = 1.0000000063. Figure 12 shows the
agreement between the 5th-order approximate HAM solution of (4.18) and (4.19) at � = −1
and the exact solution.
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Figure 12: Solutions of (4.18) and (4.19). Dotted line: the 5th-order approximate HAM solution at � = −1
and solid line: the exact solution.
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Figure 13: The �-curves of u′(1) and u′′(1) which are corresponding to the 5th-order approximate HAM
solution of (4.18) and (4.19). Dotted line: u′(1) and solid line: u′′(1).

Since the value of κ has been identified previously, the valid region for the values of �

can be obtained by the so-called �-curve which correspond to the horizontal line as shown in
Figure 13. Thus, it is clear from the figure that the valid region of � is −1.2 < � < −0.7.

The detailed data of u(x) for (4.18) and (4.19) that includes the exact nodal values, the
5th-order approximate HAM solution nodal values, and the exact error are given in Table 3.
It is clear that the accuracy obtained using HAM is in advanced by using only five terms
approximations.

5. Conclusion

The main concern of this work has been to propose an efficient algorithm for the solution of
second-order IDEs with boundary conditions of the Fredholm and Volterra types. The goal
has been achieved by extending the HAM to solve this class of boundary value problems.
We can conclude that the HAM is a powerful and efficient technique in finding approximate
solutions for linear and nonlinear boundary value problems of second-order IDEs of different
types. The proposed algorithm produced a rapidly convergent series by choosing suitable
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Table 3: Numerical results of (4.18) and (4.19) at � = −1 and κ = 1.0000000063.

x Exact solution HAM solution Exact error
0.1 0.1001667500 0.1001667500 5.760464 × 10−14

0.2 0.2013360025 0.2013360025 2.119789 × 10−13

0.3 0.3045202934 0.3045202934 5.767938 × 10−13

0.4 0.4107523258 0.4107523258 8.997664 × 10−14

0.5 0.5210953055 0.5210953055 2.401551 × 10−13

0.6 0.6366535821 0.6366535821 1.919631 × 10−12

0.7 0.7585837018 0.7585837018 3.099931 × 10−11

0.8 0.8881059822 0.8881059820 2.174120 × 10−10

0.9 1.0265167257 1.0265167244 1.282535 × 10−9

1.0 1.1752011936 1.1752011876 6.091291 × 10−9

values of the auxiliary parameter �. After computing several approximants and using the
boundary conditions at the boundary points, we can easily determine the approximate
solution.

There are two important points to make here. First, HAM provides us with a simple
way to adjust and control the convergence region of the series solution by introducing the
auxiliary parameter �. Second, the results obtained by HAM are very effective and conve-
nient in linear and nonlinear cases with less computational work. This confirms our belief
that the efficiency of our technique gives it much wider applicability for general classes of
linear and nonlinear problems.
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