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We consider a weakly nonlinear system of the form (I +ϕ(x)A)x = p, where ϕ(x) is a real function
of the unknown vector x, and (I + ϕ(x)A) is an M-matrix. We propose to solve it by means of a
sequence of linear systems defined by the iteration procedure (I +ϕ(xr)A)xr+1 = p, r = 0, 1, . . .. The
global convergence is proved by considering a related fixed-point problem.

1. Introduction

In recent years [1, 2], we approached the numerical resolution of the following nonstandard
integrodifferential problems arising in the study of the kinetic theory of dusty plasmas:

ν(t)y(t) =
∫∞

0
k(s)y(s)ds

(
D(t)y′(t)

)′ + p(t), t > 0, y′(0) = 0, y(∞) = 0, (1.1)

whose discretization, by means of a difference scheme and a quadrature rule [2], leads to
a particular kind of nonlinear system of equations. Solving it by means of a fixed-point
(FP) iteration process, we noted that such a procedure seems to globally converge, that is,
it converges independently of the choice of the starting point. Our aim, here, is to explain the
reason of this “nice” behavior. Throughout the paper, the notation M ≥ 0, with M ∈ RN×K,
means that each element of M is nonnegative, whereas M > 0 means M ≥ 0 and M/= 0. The
nonlinear system under investigation is

(
I + ϕ(x)A

)
x = p, (1.2)
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where I is the N-dimensional identity matrix, x ∈ RN is an unknown vector, and we make
the following assumptions which will be sufficient for the global convergence of the iterative
process we propose (see Theorem 3.3):

(i) p ∈ RN with p > 0;

(ii) A ∈ RN×N has nonnegative main diagonal and nonpositive off-diagonal entries
(Z-matrix);

(iii) A is rowwise weakly diagonal dominant;

(iv) ϕ : RN → R is a differentiable function such that ϕ(x) ≥ 0, for all x ≥ 0 and it is
homogeneous of degree γ ≤ 1, that is, for all α > 0 ϕ(αx) = αγϕ(x);

(v) grad(ϕ(x)) > 0 for all x ≥ 0, where grad(ϕ(x)) denotes the (row vector) gradient
of ϕ(x).

Systems of type (1.2) fall into the class of weakly nonlinear systems (see, e.g., [3, 4])
and they also arise from the discretization, by finite-difference methods, of mathematical
models less cumbersome than (1.1), as, for instance, the differential problems of the form:

y(t) + b
(
y
)
a(t)y′(t) = p(t), t ≥ 0, y(0) = 0. (1.3)

A central rule in our results is played by the matrix (I + ϕ(x)A) appearing in (1.2)
which, as it can be immediately seen from the assumption (ii)(iv), is anM-matrix for all x ≥ 0
(see, e.g., [5, page 137, prop. M35]).

The organization of the paper is the following. In Section 2, we investigate a particular
class of one variable functions f such that the FP iterations tr+1 = f(tr) converge
independently of the choice of the starting value t0. By exploiting this result jointly with the
properties of the matrix I + ϕ(x)A, we are lead to state that, under the assumptions (i)–(v),
the FP iteration procedure (I + ϕ(xr)A)xr+1 = p globally converges to a solution of (1.2).
This constitutes our main result which is contained in Section 3. Finally, some numerical
experiments showing the sharpness of the required conditions and the performance of the
iteration scheme are reported in Section 4.

2. The One Variable Case

In order to prove our main theorem, we need the following result on a particular class of
numerical sequences.

Theorem 2.1. Let f be a one variable scalar function such that

(a) f : t ∈ X ⊆ [0,+∞) → (0,Mf), withMf > 0, X closed and f(X) ⊂ X;

(b) f continuous;

(c) tf(t) strictly increasing.

Then, starting from any t0 ∈ X, the sequence obtained by the functional iteration process

tr+1 = f(tr), r = 0, 1, 2, . . . , (2.1)

converges to t∗, a fixed point of f .

In this section, we are going to prove this theorem.
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Denote by g the function g(t) = t − f(t), then we have

g(tr) = tr − f(tr) = tr − tr+1. (2.2)

Of course, if there exists a point tr such that g(tr) = 0, then tr = tr+n for all n = 0, 1, . . . and the
statement is trivial. Similarly, if the sequence g(tr) is ultimately nonnegative (nonpositive),
we have that the sequence tr is ultimately decreasing (increasing) and it trivially converges
by hypothesis (a). Therefore, from now on, we assume that the sequence g(tr) satisfies

∀r ≥ 0, ∃m > r : g(tr)g(tm) < 0. (2.3)

The following lemma holds.

Lemma 2.2. If g(tr) < 0 (resp. > 0) and g(tr+m) > 0 (resp. < 0), m = 1, . . . , n, then

tr < tr+m+2 (resp. tr > tr+m+2), m = −1, 0, 1, . . . , n. (2.4)

Proof. Let us prove (2.4) by induction on n ≥ 1. Assume n = 1, that is, we are assuming that

g(tr) < 0, g(tr+1) > 0, (2.5)

and we want to prove

tr < tr+m+2, m = −1, 0, 1. (2.6)

From the first of (2.5) and (2.2), we immediately get (2.6)with m = −1, that is, we have

tr < tr+1, (2.7)

and so, from the hypothesis (c), we deduce

trf(tr) < tr+1f(tr+1), (2.8)

which, recalling that f(tr) = tr+1, implies

trtr+1 < tr+1tr+2, (2.9)

and, therefore, (2.6) holds with m = 0, that is,

tr < tr+2. (2.10)

By using (c) once again, (2.10) gives trf(tr) < tr+2f(tr+2) or equivalently

trtr+1 < tr+2tr+3. (2.11)
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But the second of (2.5) implies tr+2 < tr+1, so that from (2.11), we obtain

trtr+2 < trtr+1 < tr+2tr+3, (2.12)

which assures that (2.6) holds for m = 1 too.
Now, we assume that the lemma holds for m = n, that is, suppose that

g(tr) < 0, g(tr+m) > 0, m = 1, . . . , n, (2.13)

implies

tr < tr+m+2, m = −1, 0, 1, . . . , n. (2.14)

In order to prove the lemma form = n + 1, assume

g(tr) < 0, g(tr+m) > 0, m = 1, . . . , n + 1. (2.15)

Of course (2.14) holds, and the second of (2.15) implies

tr+1 > tr+2 > · · · > tr+n+2. (2.16)

But from (2.14)withm = n and (c), we have

trtr+1 < tr+n+2tr+n+3, (2.17)

which in view of (2.16) leads to

trtr+n+2 < tr+n+2tr+n+3. (2.18)

Hence, tr < tr+n+3, that is, (2.14) holds for m = n + 1 too, and the desired result is proved.

Now, let us partition the sequence {tr}r into two subsequences {tri}i and {tsj}j defined
by

g(tri) < 0, g
(
tsj

)
> 0, i, j = 1, 2, . . . (2.19)

In order to state Theorem 2.1, we are going to prove that these subsequences converge
to the same limit. First of all, the following result holds.

Lemma 2.3. The sequences {tri}i and {tsj}j are strictly increasing and decreasing respectively.

Proof. Let us prove that the sequence {tri} is strictly increasing, the proof about {tsj} is
analogous, and it is omitted. Consider ri such that g(tri) < 0. Then, two cases may occur:
(I) g(tri+1) < 0 or (II) g(tri+1) > 0.
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(I) In this case, it is clear that tri+1 belongs to the same subsequence {tri}i and we
immediately have

tri < tri+1 = tri+1 . (2.20)

(II) From (2.3), there exists n ≥ 2 such that tri+1 = tri+n, that is, we have

g(tri) < 0, g(tri+m) > 0 for m = 1, . . . , n − 1, g(tri+n) < 0. (2.21)

Then, Lemma 2.2 with r = ri assures that

tri < tri+m+2, m = −1, 0, 1, . . . , n − 1, (2.22)

which, for m = n − 2 ≥ 0, gives

tri < tri+n = tri+1 . (2.23)

The desired result comes out from (2.20) and (2.23).

Lemma 2.4. The sequences {tri}i and {tsj}j provide two separate sets, that is,

tri ≤ tsj , ∀i, j ∈ N. (2.24)

Proof. Suppose, for example, ri < sj and precisely let sj = ri + k. If k = 1, we get (2.24)
directly from the assumption 0 > g(tri) = tri − tri+1. If k ≥ 2, observe that the numerical
sequence {g(tri), g(tri+1), . . . , g(tri+k)} presents at least one change of sign, in view of (2.19).
Let us examine the case of an unique change of sign, by supposing that there exists an integer
l, with 0 ≤ l ≤ k − 1, such that

g(tri+m) < 0 for m = 0, 1, . . . , l, g(tri+l+m) > 0 for m = 1, . . . , k − l, (2.25)

the other cases being analogous.
By Lemma 2.3, we get

tri ≤ tri+1 ≤ · · · ≤ tri+l, tri+k ≤ tri+k−1 ≤ · · · ≤ tri+l+1, (2.26)

and by applying Lemma 2.2 with r = ri + l, we deduce

tri+l < tri+l+m+2, m = −1, 0, 1, . . . , k − l. (2.27)

Hence, by taking m = k − l − 2 ≥ −1, we conclude

tri < tri+1 < · · · < tri+l < tri+k < tri+k−1 < · · · < tri+l+1. (2.28)



6 Discrete Dynamics in Nature and Society

By the previous lemmas, we get the next result which completes the proof of the
convergence of the FP iteration process.

Theorem 2.5. For any choice of t0 ∈ X, the sequence {tr}r defined in (2.1) converges.

Proof. It is sufficient to prove that the subsequences {tri} and {tsj} defined in (2.19) converge
to the same limit, satisfying

lim
i
tri = lim

j
tsj = lim

r
tr . (2.29)

By the previous lemmas, we partitioned the sequence {tr} into two subsequences, {tri} and
{tsj}, which are separate, strictly monotone, and bounded sequences. Hence, they converge
and

0 ≤ sup
i

tri = lim
i
tri =: l1 ≤ l2 := lim

j
tsj = inf

j
tsj ≤ Mf. (2.30)

Assume ab absurdo that

l1 < l2. (2.31)

Let us consider the subsequence {tρi} of {tri} and the subsequence {tσj} of {tsj}, such that

g
(
tρi−1

)
> 0, g

(
tρi
)
< 0, g

(
tσj−1

)
< 0, g

(
tσj

)
> 0. (2.32)

In other words, tρi and tσj are those elements of {tri} and {tsj}, respectively, whose previous
elements, in the main sequence {tr}, belong to the other subsequence {tsj} and {tri}
respectively, that is, we have that

∃k ∈ N such that tρi−1 = tσk , ∃h ∈ N such that tσj−1 = tρh . (2.33)

Of course, as {tρi} is a subsequence of the convergent sequence {tri}, there results

lim
i

tρi = l1, (2.34)

and the same is true for {tσj}, that is,

lim
j

tσj = l2, (2.35)
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where l1 and l2 are given in (2.30). On the other hand, recalling that tρi = f(tρi−1), from (b)
and (2.33), we have

l1 = lim
i

tρi = lim
i
f
(
tρi−1

)
= lim

k
f(tσk) = f(l2),

l2 = lim
j

tσj = lim
j
f
(
tσj−1

)
= lim

h
f
(
tρh

)
= f(l1).

(2.36)

But by the hypothesis (c), the assumption (2.31) implies l1f(l1) < l2f(l2), that is, in view of
(2.36), we have l1l2 < l2l1, which is absurd. Thus, the result l1 = l2 = limr tr is achieved.

3. The Solution of the Nonlinear System

In this section, we come back to the nonlinear system (1.2). First of all, we recall that, under
the hypotheses (ii)–(iv), for any x ≥ 0, the matrix (I + ϕ(x)A)) appearing in (1.2) is an M-
matrix and it satisfies (see, e.g., [5, prop. N38])

(
I + ϕ(x)A

)−1
> 0, ∀x ≥ 0. (3.1)

Now, we define the function F as

F : q ∈ [0,+∞) −→ ϕ
((

I + qA
)−1

p
)
, (3.2)

and we are going to prove that it satisfies the properties stated in the following theorem,
where γ is the homogeneity degree of ϕ appearing in (iv) and the classical notation e =
(1, . . . , 1)T ∈ RN is used.

Theorem 3.1. Assume that (i)–(v) hold. Then, F is a continuous, differentiable function, and for any
q ≥ 0, it satisfies

F
(
q
) ∈ (0,MF) with MF =

∥∥p∥∥γ

∞ϕ(e), (3.3)

F ′(q) = −grad
(
ϕ
((

I + qA
)−1

p
))(

I + qA
)−1

A
(
I + qA

)−1
p, (3.4)

s
(
q
)
:= qγF

(
q
)

strictly increasing. (3.5)

Proof. As the inverse of (I+qA) is defined for all q ≥ 0, then F is clearly a continuous function.
Moreover, it can be easily seen that

d

dq

(
I + qA

)−1 = −(I + qA
)−1

A
(
I + qA

)−1
, (3.6)

hence, (3.4) is immediately true. In view of Theorem A.1 in [6], we observe that (ii) and (iii)
assures

‖(I + qA
)−1‖∞ ≤ 1, ∀q ≥ 0. (3.7)
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Therefore, for any q ≥ 0, the vector x(q) := (I + qA)−1p satisfies ‖x(q)‖∞ ≤ ‖p‖∞ and because
of (v), we get F(q) = ϕ(x(q)) ≤ ϕ(‖p‖∞e). Consequently, assertion (3.3) holds taking into
account (iv). Finally, again in view of (iv), we have

s
(
q
)
:= qγF

(
q
)
= qγϕ

(
x
(
q
))

= ϕ
(
qx

(
q
))

=⇒ s′
(
q
)
= grad

(
ϕ
(
qx

(
q
)))(

x
(
q
)
+ qx′(q)),

(3.8)

where, recalling (3.6), it results

x
(
q
)
+ qx′(q) =

[(
I + qA

)−1 − (
I + qA

)−1
qA

(
I + qA

)−1]
p =

(
I + qA

)−2
p. (3.9)

Thus, by (v) and (3.1), we deduce (3.5) from

s′
(
q
)
= grad

(
ϕ
(
qx

(
q
)))(

I + qA
)−2

p > 0. (3.10)

Using this theorem, we can easily claim that the function F in (3.2) has the same
characteristics as the function f introduced in the previous section.

Corollary 3.2. Assume that (i)–(v) hold. Then, the function F verifies all the hypotheses (a)–(c).

Proof. Assertions (a) and (b) directly follow from Theorem 3.1. Moreover, in view of (3.5),
(c) is immediately obtained by qF(q) = s(q)q1−γ , recalling that γ < 1 implies q1−γ strictly
increasing.

Now, we are ready to state our main result about the convergence of the sequence {xr}
defined as

xr+1 =
(
I + ϕ(xr)A

)−1
p, r = 0, 1, . . . , x0 ≥ 0. (3.11)

Theorem 3.3. Assume that the hypotheses (i)–(v) hold. Then, the sequence {xr} converges to a
solution x∗ of (1.2).

Proof. Let us start from an arbitrary x0 ≥ 0 and put

qr = ϕ(xr), r = 0, 1, . . . (3.12)

From (3.11), we have that (3.12) can also be written as qr+1 = F(qr), r = 0, 1, . . . Therefore,
Corollary 3.2 assures that the sequence {qr} is convergent. Denoted by q∗ its limit, we set
x∗ := (I + q∗A)−1p, and we obtain the statement by observing that

lim
r
xr+1 = lim

r

(
I + ϕ(xr)A

)−1
p = lim

r

(
I + qrA

)−1
p =

(
I + q∗A

)−1
p = x∗. (3.13)

Remark 3.4. Of course, in view of (3.7), any solution of (1.2) satisfies ‖x∗‖∞ ≤ ‖p‖∞, but
nothing seems to imply its uniqueness. Anyway, we conjecture it, because in a large variety of
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experimental tests (including also high-dimensional systems), we never foundmore than one
solution. Of course, a sufficient condition for the uniqueness is ‖grad(ϕ(x))‖1‖A‖∞‖p‖∞ < 1,
for any x ≥ 0, which assures |F ′(q)| < 1, for any q ≥ 0, by virtue of (3.4) and (3.7).
Nevertheless, as it can be observed in the next section, it seems that the solution is unique
even if such a condition is largely not satisfied.

4. Numerical Experiments

In order to verify our theoretical results and to check the performances of the FP iteration
scheme on problem (1.2), we carried out a large variety of numerical experiments. Here, the
most significant are reported. From the previous section, it appears clear that the iterative
scheme (3.11), which furnishes a vector at each iteration, requires the same computational
effort as (3.12), which instead provides scalar values. Hence, for the sake of simplicity, all the
numerical tests reported here, are referred to (3.12), that is, we test the iterative procedure:

qr+1 = ϕ
((

I + qrA
)− 1

p
)
= F

(
qr
)
. (4.1)

In particular, in all the section, we assume that the convergence is reached whenever |qr+1 −
qr | < tol and we put tol = 10−6.

Let us consider the following two problems:

N = 3, ϕ(x) = ‖x‖2, A =

⎛
⎜⎜⎝

1 −1 0

−.5 1 −.5
−.5 −1 2

⎞
⎟⎟⎠, p =

⎛
⎜⎜⎝

5

1

10

⎞
⎟⎟⎠, γ = 1; (4.2)

N = 3, ϕ(x) =
√
x1 exp

(
x1

.1x1 + 100x2 + x3

)
, x = (x1, x2, x3)T ,

A =

⎛
⎜⎜⎝

10 −10 0

−10 15 −.5
0 −1 2

⎞
⎟⎟⎠, p =

⎛
⎜⎜⎝

.5

100

2

⎞
⎟⎟⎠, γ =

1
2

(4.3)

which, as it can be easily checked, satisfy the hypotheses of Theorem 3.3. In Tables 1 and 2,
we report the number of iterations we performed in order to compute the fixed point q∗ of
problems (4.2) and (4.3), respectively, for different choices of the starting value q0. Moreover,
we also report the number of iterations performed by the Matlab routine fzero. This is given
by the sum of the number of iterations to find an interval containing the zero (first addendum
in Table 1) and the number of zero-finding iterations (second addendum in Table 1).

From these two tests, we observe that, according to Theorem 3.3, the FP iteration
method converges for any q0 in both the cases. Of course, when we know the interval where
a zero lies, fzero does converge and it requires much less iterations, but in many cases this
information is unavailable and, see Table 2, fzero fails to provide a value. In fact, at the third
line of Table 2, the symbol AB stays for “aborted” and means that the MATLAB routine
does not succeed in finding an interval containing a sign change. The last line of Table 2



10 Discrete Dynamics in Nature and Society

Table 1

FP iterations. 15 14 14 15

q0 .2 .4 1 100
fzero iterations. 21 + 4 19 + 4 16 + 4 12 + 6

Table 2

FP iterations. 19 19 19 17 20

q0 .05 .1 1 2 100
fzero iterations. AB AB AB 11 AB
FP + fzero iterations. 1 + 13 1 + 15 1 + 12 3 + 4 2 + 13

shows that the best results can be obtained by a combined solution strategy, which starts
with a certain number of FP iterations (first addendum) and takes the final steps using fzero
iterations (second addendum). At the fifth column, we take the right balance between FP
and fzero iterations, while in the remaining columns, we displayed the minimum number of
FP iterations which are necessary to get a value from fzero. Thus, we can fruitfully exploit
the global convergence of our FP iteration method in order to create more efficient combined
strategy with fzero. Of course, this could be done also by means of other well-knownmethods
like Newton’s one.

In order to verify whether the convergence of the FP procedure could be ascribed to the
Banach contraction theorem, we plotted the absolute value of the derivative of the function F
in (4.1) (not reported) and we noted that the starting value in bold, that is, q0 = .2, q0 = .4 in
Table 1 and q0 = .05, q0 = .1 in Table 2, belongs to intervals where |F ′(q)| > 1. Hence we can
assert that, at least in these cases, the convergence of the FP method is not “helped” by the
contraction principle.

As we already wrote in Remark 3.4, from these numerical experiments and many
others, starting from very different values of q0, the method seems to converge to the same
fixed point. For example, in problems (4.2) and (4.3), we obtain q∗ ≈ 4.7954 and q∗ ≈ 2.6085,
respectively, for a very large number of initial guesses (much larger than the ones reported in
Tables 1 and 2). This numerical evidence let us conjecture that the assumptions in Theorem 3.3
are also sufficient to assure the uniqueness of the solution of problem (1.2).

In Figures 1 and 2, we plotted the first 100 elements of the error sequence {|qr − q∗|},
where qr is computed by applying the FP iterations to the following two problems:

N = 3, ϕ(x) = x1sin2
(

20x1

.1x1 + x2 + x3

)
, q∗ = 1.1210,

A =

⎛
⎜⎜⎝

10 −10 0

−10 15 −.5
0 −1 2

⎞
⎟⎟⎠, p =

⎛
⎜⎜⎝

.5

100

2

⎞
⎟⎟⎠, γ = 1;

(4.4)

N = 1, ϕ(x) = x3/2, q∗ = 0.0898, A = 100, p = 2, γ =
3
2
. (4.5)

It can be easily seen that both the problems do not satisfy the hypotheses of Theorem 3.3. To
be more precise, (4.4) does not fulfill (v), whereas (4.5) does not verify (iv), having γ > 1. The



Discrete Dynamics in Nature and Society 11

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

r

|q r
−q

∗ |

Figure 1: The error sequence {|qr − q∗|}r=1,...,100 for problem (4.4).

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

r

|q r
−q

∗ |

Figure 2: The error sequence {|qr − q∗|}r=1,...,100 for problem (4.5).

figures clearly show that the method fails to converge, suggesting us that the assumptions of
our main theorem are not too restrictive.

Moreover, we point out that, in our experience, some problems arising in the
the kinetic theory of dusty plasmas, are more cumbersome than (1.1), and therefore,
the application of Newton or other available iterative procedures is not always simple,
convenient, or possible. A comparison between FP and other iteration processes on problem
of type (1.1) will be the subject of future investigations. Finally, in order to test the
performance of our method for larger systems arising from the applications, we discretized
a problem of type (1.1) with stepsize h on a sufficiently large interval (0, T), with T = Nh. In
this way, we get a nonlinear system of type (1.2), which has dimension N. By applying FP
iteration method to such a system for different values of N, with 102 < N < 105, we observe
that the number of iterations does not vary withN and so with h, but only with the choice of
the starting point q0. Moreover, we underline that in this case the linear systems arising from
the FP iterations are tridiagonal and then very easy to be solved.
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