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The dynamics of an impulsively controlled three-species food chain system with the Beddington-
DeAngelis functional response are investigated using the Floquet theory and a comparison
method. In the system, three species are prey, mid-predator, and top-predator. Under an integrated
control strategy in sense of biological and chemical controls, the condition for extinction of the prey
and the mid-predator is investigated. In addition, the condition for extinction of only the mid-
predator is examined. We provide numerical simulations to substantiate the theoretical results.

1. Introduction

Classical two-species continuous time systems such as a Lotka-Volterra system have been
used to investigate the interaction between ecological populations. However, in order to un-
derstand a complex ecological system, it is necessary to study multispecies systems. For this
reason, in this paper, we study three-species food chain system which appears when a top-
predator feeds on amid-predator, which in turn feeds a prey, specially assuming Beddington-
DeAngelis functional responses between species [1].

In recent decades, the effects of impulsive perturbations on population systems have
been widely studied and discussed by a number of researchers [2–19]. Thus, in order to
control an ecological environment, a discrete impulsive strategy has been suggested. Es-
pecially for the three-species food chain system, two impulsive control methods, biological
and chemical controls, have been taken into account. Here, a biological control means
impulsive and periodic releasing of top-predator to control lower-level populations and
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a chemical control means that as a result of spreading pesticide the population of all three-
species are impulsively lessened.

In this context, the impulsively controlled three-species food chain system with
Beddington-DeAngelis functional responses was proposed and studied by Wang et al. [11]
and their system can be described as the following impulsively perturbed system:

dx(t)
dt

= x(t)(a − bx(t)) − c1x(t)y(t)
α1 + x(t) + β1y(t)

,

dy(t)
dt

=
k1c1x(t)y(t)

α1 + x(t) + β1y(t)
− c2y(t)z(t)
α2 + y(t) + β2z(t)

− d1y(t)

dz(t)
dt

=
k2c2y(t)z(t)

α2 + y(t) + β2z(t)
− d2z(t),

, t /= (n + l − 1)T, t /=nT,

Δx(t) = −δ1x(t),
Δy(t) = −δ2y(t)
Δz(t) = −δ3z(t),

, t = (n + l − 1)T,

Δx(t) = 0,
Δy(t) = 0,
Δz(t) = p,

t = nT,

(
x(0+), y(0+), z(0+)

)
=
(
x0, y0, z0

)
,

(1.1)

where x(t), y(t), and z(t) are the densities of the lowest-level prey, mid-level predator,
and top-predator at time t, respectively. In this system, the prey grows according to a
logistic growth with an intrinsic growth rate a and a carrying capacity a/b incorporating
the Beddington-DeAngelis functional response. For parameters settings, ki (i = 1, 2) are the
conversion efficiencies, di (i = 1, 2) are the mortality rates of the mid-level predator and the
top-predator, ci (i = 1, 2) are the maximum numbers of preys that can be eaten by a predator
per unit of time, αi (i = 1, 2) are the saturation constants, and βi (i = 1, 2) scale the impact
of the predator interference. For an impulsive control strategy, top-predators are impulsively
released in the periodic fashion of the period T by artificial breeding of species, in a fixed
number (p > 0) at each time, and by introducing an impulsive catching or poisoning of
the prey populations, fixed proportions δ1, δ2, δ3 of the prey, mid-level predator, and top
predator are degraded in an impulsive and periodic fashion, with the same period, but at
different moments. Here, all parameters except l and δi (i = 1, 2, 3) are positive, 0 ≤ l < 1,
Δw(t) = w(t+) −w(t) for w ∈ {x, y, z}, and 0 ≤ δ1, δ2, δ3 < 1.

Although the authors in [11] had introduced the important system (1.1) in a sense
of impulsive controlling the food chain system, we find that there are many problems in
their theoretical results, where they had showed rich dynamical behaviors in the numerical
simulations including a quasiperiodic oscillation, narrow periodic widow, wide periodic
window, chaotic band, and period doubling bifurcation, symmetry-breaking pitchfork
bifurcation, period-halving bifurcation and crises [20–22].

The authors in [11] had argued that (1) the prey and mid-predator free periodic
solution (0, 0, z∗(t)) is always unstable without having any condition and (2) the mid-
predator free periodic solution for the system is (a/b, 0, z∗(t)). But, based on our theoretical
computation, the periodic solution (a/b, 0, z∗(t)) can be found onlywhen δ1 = 0. It means that
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under an impulsive control of the population system, the solution (a/b, 0, z∗(t)) is useless and
nonmeaningful. In Section 2, we will give a general form (x∗(t), 0, z∗(t)) of the mid-predator
free solution. In the case that the prey is impulsively strong poisoned or caught, there is a
possibility that the prey will be eradicated. To examine this possibility, we reinvestigate their
system (1.1). Finally, we find out that their theoretical results shown in [11] are wrong. In this
paper we thus may correct and rebuild their theoretical results, in particular, the conditions
for stabilities of the periodic solutions (0, 0, z∗(t)) and the new mid-predator free periodic
solution (x∗(t), 0, z∗(t)).

The main purpose of this paper is to reestablish the local and global stability for two
periodic solutions (0, 0, z∗(t)) and (x∗(t), 0, z∗(t)). In addition, we exhibit some numerical
examples. To do it, this paper is organized as follows. In Section 2, we first review notations
and theorems. Main theorems for two impulsive periodic solutions are given in Section 3.
The mathematical proofs for our main results will be provided in Section 4. Conclusions are
presented in Section 5.

2. Basic Strategy

In this section we will consider definitions, notations, and auxiliary results for impulsively
perturbed dynamical systems.

2.1. Preliminaries

Let us denote N by the set of all nonnegative integers, R+ = [0,∞),R∗
+ = (0,∞),R3

+ = {x =
(x(t), y(t), z(t)) ∈ R

3 : x(t), y(t), z(t) ≥ 0}, and f = (f1, f2, f3)
T the mapping defined by the

right-hand sides of the first three equations in (1.1).
Let V : R+ × R

3
+ → R+, then V is said to belong to class V0 if

(1) V is continuous on ((n − 1)T, (n + l − 1)T] × R
3
+ ∪ ((n + l − 1)T, nT] × R

3
+ for each

x ∈ R
3
+, n ∈ N, and two limits lim(t,y)→ ((n+l−1)T+,x)V (t,y) = V ((n + l − 1)T+, x) and

lim(t,y)→ (nT+,x)V (t,y) = V (nT+, x) exist;

(2) V is locally Lipschitzian in x.

Definition 2.1. For V ∈ V0, one defines the upper right Dini derivative of V with respect to the
impulsive differential system (1.1) at (t, x) ∈ ((n−1)T, (n+ l−1)T]×R

3
+ ∪ ((n+ l−1)T, nT]×R

3
+

by

D+V (t, x) = lim sup
h→ 0+

1
h

[
V
(
t + h, x + hf(t, x)

) − V (t, x)
]
. (2.1)

We suppose that g : R+ × R+ → R satisfies the following hypotheses: (H) g
is continuous on ((n − 1)T, (n + l − 1)T] × R

3
+ ∪ ((n + l − 1)T, nT] × R

3
+ and the limits

lim(t,y)→ ((n+l−1)T+,x)g(t, y) = g((n + l − 1)T+, x) and lim(t,y)→ (nT+,x)g(t, y) = g(nT+, x) exist and
are finite for x ∈ R+ and n ∈ N.
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Lemma 2.2 (see [23]). Suppose V ∈ V0 and

D+V (t, x) ≤ g(t, V (t, x)), t /= (n + l − 1)T, t /=nT,

V (t, x(t+)) ≤ ψ1
n(V (t, x)), t = (n + l − 1)T,

V (t, x(t+)) ≤ ψ2
n(V (t, x)), t = nT,

(2.2)

where g : R+ × R+ → R satisfies (H) and ψ1
n, ψ

2
n : R+ → R+ are nondecreasing for all n ∈ N. Let

r(t) be the maximal solution for the impulsive Cauchy problem

u′(t) = g(t, u(t)), t /= (n + l − 1)T, t /=nT,

u(t+) = ψ1
n(u(t)), t = (n + l − 1)T,

u(t+) = ψ2
n(u(t)), t = nT,

u(0+) = u0,

(2.3)

defined on [0,∞). Then V (0+, x0) ≤ u0 implies that V (t, x(t)) ≤ r(t), t ≥ 0, where x(t) is any solution
of (2.2).

A similar result can be obtained when all conditions of the inequalities in the
Lemma 2.2 are reversed. Using Lemma 2.2, it is easy to prove that the positive octant (R∗

+)
3 is

an invariant region for the system (1.1) (see Lemma 2.1 in [11]).

2.2. Periodic Solutions

In the case in which y = 0, that is, mid-predator is eradicated, the system (1.1) is decoupled
and led to two impulsive differential equations (2.4) and (2.6). Let us consider the properties
of these impulsive differential equations. The following equation or a subsystem of system
(1.1) is a periodically forced system:

x′(t) = x(t)(a − bx(t)), t /= (n + l − 1)T, t /=nT,

x(t+) = (1 − δ1)x(t), t = (n + l − 1)T,

x(t+) = x(t), t = nT,

x(0+) = x0.

(2.4)

Straightforward computation for getting a positive periodic solution x∗(t) of (2.4) yields the
analytic form of x∗(t):

x∗(t) =
aη1 exp(at − λ)

b
[
1 − η1 + η1 exp(at − λ)

] , (n + l − 1)T < t ≤ (n + l)T, (2.5)

where λ = a(n + l − 1)T and η1 = ((1 − δ1) exp(aT) − 1)/(exp(aT) − 1).
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In case that δ1 = 0, the system (2.4) is the general logistic equation. From the analytic
solution form (2.5) we get that η1 should be 1. It implies that x∗(t) = a/b.

Lemma 2.3 (see [4]). The following statements hold.

(1) If aT + ln(1−δ1) > 0, then limt→∞|x(t)−x∗(t)| = 0 for all solutions x(t) of (2.4) starting
with x0 > 0.

(2) If aT + ln(1 − δ1) ≤ 0, then x(t) → 0 as t → ∞ for all solutions x(t) of (2.4).

Next, we consider the impulsive differential equation as follows:

z′(t) = −d2z(t), t /=nT, t /= (n + l − 1)T,

z(t+) = (1 − δ3)z(t), t = (n + l − 1)T,

z(t+) = z(t) + p, t = nT,

z(0+) = z0.

(2.6)

The system (2.6) is a periodically forced linear system and its positive periodic solution z∗(t)
will be obtained:

z∗(t) =

⎧
⎪⎪⎨

⎪⎪⎩

p exp [−d2(t − (n − 1)T)]
1 − (1 − δ3) exp(−d2T) , (n − 1)T < t ≤ (n + l − 1)T,

p(1 − δ3) exp [−d2(t − (n − 1)T)]
1 − (1 − δ3) exp(−d2T) , (n + l − 1)T < t ≤ nT,

(2.7)

z∗(0+) = z∗(nT+) =
p

1 − (1 − δ3) exp(−d2T) ,

z∗((n + l − 1)T+) =
p(1 − δ3) exp(−d2lT)
1 − (1 − δ3) exp(−d2T) .

(2.8)

Moreover, we may get that

z(t) =

⎧
⎨

⎩

(1 − δ3)n−1zz + z∗(t), (n − 1)T < t ≤ (n + l − 1)T,

(1 − δ3)nzz + z∗(t), (n + l − 1)T < t ≤ nT,
(2.9)

is a solution of (2.6), where zz = (z(0+) − (p(1 − δ3)e−T/(1 − (1 − δ3) exp(−d2T)))) exp(−d2t).
From (2.7) and (2.9), we thus get the following result.

Lemma 2.4. For every solution z(t) and every positive periodic solution z∗(t) of (2.6), it follows that
z(t) tends to z∗(t) as t → ∞.

3. Main Results

In this section we study the local and global stability of the lowest-level prey and mid-
level predator free periodic solution (0, 0, z∗(t)) and of the mid-level predator free periodic
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solution (x∗(t), 0, z∗(t)). The authors in [11] had claimed that the solution (0, 0, z∗(t)) of the
impulsive controlled system (1.1) is always unstable. In the biological point of view, this
result is suspected in the sense that the prey and mid-predator will be eradicated under
enough impulsive control term, especially, δ1. In Section 3.1 we will reinvestigate the stability
of the periodic solution (0, 0, z∗(t)) and correct the misleading results shown in [11], and then
the stability of the mid-level predator free periodic solution (x∗(t), 0, z∗(t)) will be studied in
Section 3.2.

3.1. A Stability of a Periodic Solution with Prey and
Mid-Predator Eradication

We theoretically and numerically consider the stability of the periodic solution (0, 0, z∗(t))
with prey and mid-predator eradications.

Theorem 3.1. The periodic solution (0, 0, z∗(t)) is unstable if aT + ln(1 − δ1) > 0, and globally
asymptotically stable if aT + ln(1 − δ1) < 0.

The above Theorem 3.1 says that in case that δ1 is sufficiently close to 1 to make aT +
ln(1−δ1) negative, the pesticide has a negative effect on the growth of prey in a certain period
T . To set up a control strategy for impulsive systems, we have to consider the relationship
between two important factors, that is, the natural growth rate and (chemical) controlled rate
in a controlling period.

The proof of this theorem will be provided in Section 4, and we may numerically
consider the dynamical feature related to Theorem 3.1. To do it, we first fix the parameters:
b = 0.5, c1 = 2, c2 = 2, α1 = 0.1, α2 = 0.5, β1 = 1, β2 = 0.1, d1 = 0.1, d2 = 0.9, k1 = 0.7, k2 = 0.5, δ2 =
0.0001, δ3 = 0.03, l = 0.6, p = 2.9. If we choose the parameter a = 1, T = 1, δ1 = 0.7, then the
value aT +ln(1−δ1) ≈ −0.3 is negative. It implies that trajectories asymptotically approach the
periodic orbit (0, 0, z∗(t)) as shown in Figure 1. But, for different parameters setting having
a positive value aT + ln(1 − δ1) > 0, we may expect that a typical trajectory with an initial
condition near (0, 0, z∗(t)) is repelled from the periodic solution (0, 0, z∗(t)). For instance, we
choose the parameters a = 5, T = 8, δ1 = 0.2 and then aT + ln(1 − δ1) ≈ 39.77. A repelling
behavior of a trajectory with a starting point near (0, 0, z∗(t)) is shown in Figure 2. It shows
the instability of the prey and mid-predator free solution.

As shown in Figures 1 and 2, the dynamical behavior of the periodic solution
(0, 0, z∗(t)) is depending on the stability condition, the positiveness or negativeness of the
value aT + ln(1 − δ1). This stability condition is related to the total growth aT in a period T
and the term ln(1 − δ1) representing the loss of the prey due to the impulsive control δ1 on
the prey. It means that species will be eradicated or grow depending on the sum of a natural
growth and an artificial loss (impulsive control).

3.2. A Stability of a Periodic Solution with Mid-Predator Eradication

In this section the stability of the periodic solution (x∗(t), 0, z∗(t)) with mid-predator
eradication will be considered. In Theorem 3.2, we will mention the conditions for local
and global stability of the periodic orbit (x∗(t), 0, z∗(t)). Compared to Theorem 3.1, the
positiveness of the value aT + ln(1− δ1) should be added in the condition for being the stable
periodic orbit (x∗(t), 0, z∗(t)).
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Figure 1: The dynamical behavior of the system (1.1) with parameters a = 1, T = 1, δ1 = 0.7. (a)–(c) show
that a trajectory with a starting point (x0, y0, z0) = (10, 1, 0.4) approaches to the periodic orbit (0, 0, z∗(t)).
In (d)–(f) the behavior of trajectory with a different starting point (x0, y0, z0) = (100, 100, 100) is shown.
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Figure 2: The dynamical behavior of the system (1.1) with parameters a = 5, T = 8, δ1 = 0.2. (a)–(c) show
that a trajectory with a starting point (x0, y0, z0) = (0.01, 0.01, 0.01) near the solution (0, 0, z∗(t)) is repelled
from the periodic solution (0, 0, z∗(t)) and then approaches to another periodic solution.

Theorem 3.2. Suppose that aT + ln(1−δ1) > 0. Then the periodic solution (x∗(t), 0, z∗(t)) is locally
asymptotically stable if the condition

(a + bα1)
(
c2(A1 −A2 +A3 −A4) − d1d2β2T

)
+ k1c1β2d2A5

β2d2(a + bα1)
< ln
(

1
1 − δ2

)
(3.1)

holds. Moreover, the periodic solution (x∗(t), 0, z∗(t)) is globally asymptotically stable if the condition

k1c1A5

a + bα1
− d1T < ln

(
1

1 − δ2

)
(3.2)
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holds. Here, the values Ai are listed:

A1 = ln
[
α2
(
exp(d2T) − 1 + δ3

)
+ β2p exp((1 − l)d2T)

]
,

A2 = ln
[
α2
(
exp(d2T) − 1 + δ3

)
+ β2p exp(d2T)

]
,

A3 = ln
[
α2
(
exp(d2T) − 1 + δ3

)
+ (1 − δ3)β2p

]
,

A4 = ln
[
α2
(
exp(d2T) − 1 + δ3

)
+ (1 − δ3)β2p exp((1 − l)d2T)

]
,

A5 = ln

[
bα1δ1 exp(aT) +

(
(1 − δ1) exp(aT) − 1

)
(a + bα1) exp(aT)

(a + bα1)
(
exp(aT) − 1

) − aδ1 exp(aT)

]

.

(3.3)

The proof of this theorem is provided in Section 4. To illustrate an numerical example
related to Theorem 3.2, let b = 0.5, c1 = 2, c2 = 2, α1 = 0.1, α2 = 0.5, β1 = 1, β2 = 0.1, d1 =
0.1, d2 = 0.9, k1 = 0.7, k2 = 0.5, δ2 = 0.0001, δ3 = 0.03, l = 0.6, p = 3, a = 5, T = 8, and δ1 = 0.2.
These parameters satisfy the condition (3.1). It thus implies that trajectories asymptotically
approach the periodic orbit (x∗(t), 0, z∗(t)). In Figure 3, we numerically show that the periodic
orbit (x∗(t), 0, z∗(t)) is a sink.

4. Proofs of Theorems 3.1 and 3.2

4.1. Proof of Theorem 3.1

Proof. A local stability of the periodic solution (0, 0, z∗(t)) of the system (1.1) may be
determined by considering the behavior of small amplitude perturbations of the solution.
Let (x(t), y(t), z(t)) be any solution of the system (1.1). Define x(t) = u(t), y(t) = v(t) and
z(t) = w(t) + z∗(t). Then they may be written as

⎛

⎜⎜
⎝

u(t)

v(t)

w(t)

⎞

⎟⎟
⎠ = Φ(t)

⎛

⎜⎜
⎝

u(0)

v(0)

w(0)

⎞

⎟⎟
⎠, (4.1)

where Φ(t) satisfies

dΦ
dt

=

⎛

⎜⎜⎜⎜⎜⎜
⎝

a 0 0

0 −d1 − c2z
∗(t)

β2z∗(t) + α2
0

0
k2c2z

∗(t)
β2z∗(t) + α2

−d2

⎞

⎟⎟⎟⎟⎟⎟
⎠

Φ(t), (4.2)
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Figure 3: The dynamical behavior of the system (1.1). (a)–(c) show that a trajectory with a starting point
(x0, y0, z0) = (10, 1, 0.4) approaches the periodic orbit (x∗(t), 0, z∗(t)). In (d)–(f), the behavior of trajectory
with a different starting point (x0, y0, z0) = (100, 100, 100) is shown.
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and Φ(0) = I is the identity matrix. Therefore, the fundamental solution matrix is

Φ(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

exp(at) 0 0

0 exp

(∫ t

0

[
−d1 − c2z

∗(s)
β2z∗(s) + α2

]
ds

)

0

0 exp

(∫ t

0
k2c2z

∗(s)ds

)

exp(−d2t)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.3)

The resetting impulsive conditions of the system (1.1) become

⎛

⎜
⎜
⎝

u((n + l − 1)T+)

v((n + l − 1)T+)

u((n + l − 1)T+)

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

1 − δ1 0 0

0 1 − δ2 0

0 0 1 − δ3

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

u((n + l − 1)T)

v((n + l − 1)T)

w((n + l − 1)T)

⎞

⎟
⎟
⎠,

⎛

⎜⎜
⎝

u(nT+)

v(nT+)

w(nT+)

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

1 0 0

0 1 0

0 0 1

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

u(nT)

v(nT)

w(nT)

⎞

⎟⎟
⎠.

(4.4)

Note that the eigenvalues of

S =

⎛

⎜⎜
⎝

1 − δ1 0 0

0 1 − δ2 0

0 0 1 − δ3

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

1 0 0

0 1 0

0 0 1

⎞

⎟⎟
⎠Φ(T) (4.5)

are μ1 = (1 − δ1) exp(aT), μ2 = (1 − δ2) exp(−
∫T
0 d1 + (c2z∗(s)/(β2x∗(s) + α2))ds) and μ3 =

(1 − δ3) exp(−d2T). Clearly, μ2 < 1 and μ3 < 1. If aT + ln(1 − δ1) > 0, then μ1 > 1. Therefore, by
Floquet theory [24], the periodic solution (0, 0, z∗(t)) is unstable.

To prove a global stability of the periodic solution (0, 0, z∗(t)), first, we assume that
aT + ln(1 − δ1) < 0. Then μ1 = (1 − δ1) exp(aT) < 1. It means that the periodic solution
(0, 0, z∗(t)) is locally asymptotically stable.

Let (x(t), y(t), z(t)) be any solution of (1.1). Take a number ε1 with 0 < ε1 < d1α1/k1c1
and let ξ = (1 − δ1) exp((−d1 + (k1c1/α1)ε1)T). Note that 0 < ξ < 1. From the first equation in
(1.1), we get

x′(t) = x(t)(a − bx(t)) − c1x(t)y(t)
α1 + x(t) + β1y(t)

≤ x(t)(a − bx(t)), (4.6)

for t /= (n + l − 1)T and t /=nT . By Lemma 2.2, we obtain x(t) ≤ x̃(t) for t ≥ 0, where x̃(t) is
the solution of (2.4). Using Lemma 2.3, we also get that x̃(t) → 0 as t → ∞. It implies that
there exists a number T1 > 0 satisfying x(t) ≤ ε1 for t ≥ T1. Without loss of generality, we
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may assume that x(t) ≤ ε1 for all t > 0. From the second equation in (1.1), we obtain that for
t /= (n + l − 1)T and t /=nT ,

y′(t) = −d1y(t) +
k1c1x(t)y(t)

α1 + x(t) + β1y(t)
− c2y(t)z(t)
α2 + y(t) + β2z(t)

≤ −d1y(t) + k1c1
α1

x(t)y(t)

≤ y(t)
(
−d1 + k1c1

α1
ε1

)
.

(4.7)

Integrating both sides of the inequality (4.7) on ((n + l − 1)T, (n + l)T], we get

y((n + l)T) ≤ y((n + l − 1)T+) exp
((

−d1 + k1c1
α1

ε1

)
T

)

= y((n + l − 1)T)ξ.

(4.8)

It implies that y((n + l)T) ≤ y(lT)ξn. Therefore y((n + l)T) → 0 as n → ∞. We also obtain
that for t ∈ ((n + l − 1)T, (n + l)T],

y(t) ≤ y((n + l − 1)T+) exp
((

−d1 + k1c1
α1

ε1

)
(t − (n + l − 1)T)

)

≤ y((n + l − 1)T).

(4.9)

It thus implies that y(t) → 0 as t → ∞.
Now, take 0 < ε2 < (d2α2/k2c2) in order to prove that z(t) → z∗(t) as t → ∞. Since

limt→∞y(t) = 0, there is a T2 > 0 such that y(t) ≤ ε2 for t ≥ T2. For the sake of simplicity,
we assume that y(t) ≤ ε2 for all t ≥ 0. From the third equation in (1.1), we get that, for
t /= (n + l − 1)T and t /=nT ,

−d2z(t) ≤ z′(t) = −d2z(t) +
k2c2y(t)z(t)

α2 + y(t) + β2z(t)

≤
(
−d2 + k2c2

α2
ε2

)
z(t).

(4.10)

Thus, by Lemma 2.2, we induce that z̃1(t) ≤ z(t) ≤ z̃2(t), where z̃1(t) is the solution of (2.6)
and z̃2(t) is also the solution of (2.6)with d2 changed into d2 − (k2c2/α2)ε2. Using Lemma 2.4
and letting ε2 → 0, z̃1(t) and z̃2(t) tend to z∗(t) as t → ∞. We thus prove that |z(t)−z∗(t)| → 0
as t → ∞.
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4.2. Proof of Theorem 3.2

To determine the stability of the periodic solution (x∗(t), 0, z∗(t)), we will use the Floquet
theory. First, we construct the monodromy matrix and calculate its eigenvalues:

S =

⎛

⎜
⎜
⎝

1 − δ1 0 0

0 1 − δ2 0

0 0 1 − δ3

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

1 0 0

0 1 0

0 0 1

⎞

⎟
⎟
⎠Φ(T), (4.11)

where Φ(t) satisfies

dΦ
dt

=

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎝

a − 2bx∗(t) − c1x
∗(t)

α1 + x∗(t)
0

0 −d1 + k1c1x
∗(t)

α1 + x∗(t)
− c2z

∗(t)
α2 + β2z∗(t)

0

0
k2c2z

∗(t)
α2 + β2z∗(t)

−d2

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎠

Φ(t), (4.12)

and Φ(0) = I is the identity matrix. Then all eigenvalues of the matrix S are

μ1 = (1 − δ1) exp
(∫T

0
a − 2bx∗(t)dt

)

μ2 = (1 − δ2) exp
(∫T

0
−d1 + k1c1x

∗(t)
α1 + x∗(t)

− c2z
∗(t)

α2 + β2z∗(t)
dt

)

μ3 = (1 − δ3) exp(−d2T) < 1.

(4.13)

Note that

∫T

0
x∗(t)dt =

1
b
(ln(1 − δ1) + aT),

∫T

0

x∗(t)
α1 + x∗(t)

dt =
1

a + bα1
ln

(
bα1
(
1 − η1

)
+ η1(a + bα1) exp(aT)
aη1 + bα1

)

,

∫T

0

z∗(t)
α2 + β2z∗(t)

dt =
1

β2d2
ln

( (
η2 + β2p

)(
η2 + β2p(1 − δ3) exp(−d2lT)

)

(
η2 + β2p exp(−d2lT)

)(
η2 + β2p(1 − δ3) exp(−d2T)

)

)

,

(4.14)

where η1 = ((1 − δ1) exp(aT) − 1)/(exp(aT) − 1) and η2 = α2(1 − (1 − δ3) exp(−d2T)).
From (4.14) and aT + ln(1 − δ1) > 0, we get that μ1 < 1 and μ2 is equivalent to (3.1)

in the statement of Theorem 3.2. By the hypothesis of Theorem 3.2, we obtain μ2 < 1. Finally,
based on the Floquet theory [24], we get that (x∗(t), 0, z∗(t)) is locally asymptotically stable.

Suppose that aT + ln(1 − δ1) > 0 and (3.2) hold.
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Let (x(t), y(t), z(t)) be any solution of (1.1). The condition (3.2) implies

μ2 ≤ (1 − δ2) exp
(∫T

0
−d1 + k1c1x

∗(t)
α1 + x∗(t)

dt

)

< 1. (4.15)

Thus the periodic solution (x∗(t), 0, z∗(t)) is locally asymptotically stable. Further, we can
choose ε3 > 0 such that

0 < ζ ≡ (1 − δ2) exp
(∫T

0
−d1 + k1c1(x∗(t) + ε3)

α1 + x∗(t) + ε3
dt

)

< 1. (4.16)

As the proof of Theorem 3.1, by Lemma 2.2, we obtain x(t) ≤ x̃2(t) for t ≥ 0, where x̃2(t) is the
solution of (2.4). It follows from Lemma 2.3 that there exists a T3 > 0 such that x(t) ≤ x∗(t)+ε3
for t ≥ T3. Without loss of generality, we may assume that x(t) ≤ x∗(t) + ε3 for t ≥ 0. From the
second equation in (1.1), we get that for t /= (n + l − 1)T and t /=nT ,

y′(t) = −d1y(t) +
k1c1x(t)y(t)

α1 + x(t) + β1y(t)
− c2y(t)z(t)
α2 + y(t) + β2z(t)

≤ y(t)
(
−d1 + k1c1(x∗(t) + ε3)

α1 + x∗(t) + ε3

)
.

(4.17)

By integrating both sides of (4.17) on ((n + l − 1)T, (n + l)T], we obtain that

y((n + l)T) ≤ y((n + l − 1)T+) exp

(∫ (n+l)T

(n+l−1)T
−d1 + k1c1(x∗(t) + ε3)

α1 + x∗(t) + ε3
dt

)

= y((n + l − 1)T)ζ.

(4.18)

It implies that y((n + l)T) ≤ y(lT)ζn. Finally, we get that y((n + l)T) → 0 as n → ∞.
From the inequality

y′(t) ≤ k1c1
α1

(x∗(t) + ε3)y(t) ≤ k1c1
α1

(a
b
exp(aT) + ε3

)
y(t), (4.19)

we get

y(t) ≤ y((n + l − 1)T)(1 − δ2) exp
(
k1c1
α1

[a
b
exp(aT) + ε3

]
T

)
, (4.20)

for t ∈ ((n + l − 1)T, (n + l)T]. Consequently y(t) → 0 as t → ∞.
In order to show that |x(t)−x∗(t)| → 0 as t → ∞, we take ε4 such that 0 < ε4 < aα1/c1.

Since limt→∞y(t) = 0, there exists a T5 > 0 such that y(t) < ε4 for t > T5. For the sake of
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simplicity, we may suppose that y(t) < ε4 for all t ≥ 0. Therefore, for t /= (n+ l− 1)T and t /=nT ,
we obtain

x′(t) = x(t)(a − bx(t)) − c1x(t)y(t)
α1 + x(t) + β1y(t)

≥ x(t)
([

a − c1y(t)
α1

]
− bx(t)

)

≥ x(t)
([

a − c1ε4
α1

]
− bx(t)

)
.

(4.21)

Thus, from Lemma 2.2, we obtain that x̃1(t) ≤ x(t), where x̃1(t) is the solution of (2.4) with
a changed into a − c1ε4/α1. From Lemma 2.3 and taking sufficiently small ε4, it is seen that
x̃1(t) and x̃2(t) tend to x∗(t) as t → ∞. Thus, we get |x(t) − x∗(t)| → 0 as t → ∞.

Note that −d2z(t) ≤ z′(t) = −d2z(t) + k2c2y(t)z(t)/(α2 + y(t) + β2z(t)) ≤ −d2z(t) +
(k2c2/α2)ε4 for t /= (n+l−1)T and t /=nT . By using the same process as the proof of Theorem 3.1,
we can show that |z(t) − z∗(t)| → 0 as t → ∞.

5. Conclusions

We have considered the impulsively controlled three species food chain system with the Bed-
dington-DeAngelis functional response proposed by the authors in [11]. To control the food
chain system with three species, two control terms, biological and chemical controls, are
employed. Here, a biological control means an impulsive and periodic releasing of top-
predator with a fixed proportion and a chemical control means that, for instance, as a result
of pesticide spreading fixed proportions of prey, mid-predator, and top-predator, their pop-
ulation will be impulsively degraded. Under controlling environment, we first show the
conditions for extinction and growing of the prey and mid-predator using Floquet theory
and comparison method. In addition, a suffcient condition for local and global stability of the
mid-predator free solution is established, which means that if the mid-predator is regarded as
the pest we can control the pest population under some conditions. These results will correct
the misleading results shown in [11].
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