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A nonautonomous discrete predator-prey system incorporating a prey refuge and Holling type
II functional response is studied in this paper. A set of sufficient conditions which guarantee the
persistence and global stability of the system are obtained, respectively. Our results show that if
refuge is large enough then predator species will be driven to extinction due to the lack of enough
food. Two examples together with their numerical simulations show the feasibility of the main
results.

1. Introduction

As was pointed out by Berryman [1], the dynamic relationship between predator and prey
has long been and will continue to be one of the dominant themes in both ecology and
mathematical ecology due to its universal existence and importance. Furthermore, the study
of the consequences of the hiding behavior of the prey on the dynamics of predator-prey
interactions can be recognized as a major issue in both applied mathematics and theoretical
ecology [2]. In general, the effects of prey refuges on the population dynamics are very
complex in nature, but for modeling purposes, it can be considered as constituted by two
components [2]. The first one, which affects positively the growth of prey and negatively
that of predators, comprises the reduction of prey mortality due to the decrease in predation
success. The second one may be the tradeoffs and by-products of the hiding behavior of prey
which could be advantageous or detrimental for all the interacting populations [3].

Sih [4] obtained a set of general conditions which ensure that the refuge use has a
stabilizing effect on Lotka-Volterra-type predator-prey systems; he also examined the effect



2 Discrete Dynamics in Nature and Society

of the cost of refuge use in decreased prey feeding or reproductive rate. In [5], González-
Olivares and Ramos-Jiliberto investigated the dynamic behaviors of predator-prey system
incorporating Holling type II functional response and a constant refuge:

ẋ(t) = rx
(
1 − x

K

)
− β(1 −m)xy
(1 −m)x + a

,

ẏ(t) = −dy +
cβ(1 −m)xy
(1 −m)x + a

,

(1.1)

where x(t), y(t) denote the densities of prey and predator population at any time t,
respectively; c, d, k, r, β, a, and m are positive constants; here r is the intrinsic per capita
growth rate of prey; K is the prey environmental carrying capacity; β is the maximal per
capita consumption rate of predators; a is the amount of prey needed to achieve one-half of
β; c is the conversion factor denoting the number of newly born predators for each captured
prey; d is the death rate of the predator; xm is the number of prey that refuge can protect at
time t. Kar [6] also studies the dynamic behaviors of system (1.1). He obtained the conditions
for the existence and stability of the equilibria and persistent criteria for the system. He also
shows that the system admits a unique limit cycle when the positive equilibria is unstable.
In these papers, all their finds indicate that the refuge influencing the dynamic behavior of
predator-prey system greatly and increasing the amount of refuge could increase prey density
and lead to population outbreaks. Kar [7] also studied the influence of harvesting on a system
with prey refuge.

Some scholars argued that the nonautonomous case is more realistic, because many
biological or environmental parameters do subject to fluctuate with time; thus more
complex equations should be introduced. Already, many scholars [8–15] studied the dynamic
behaviors of nonautonomous predator-prey system incorporating prey refuge. Recently, Xu
and Jia [11] proposed and studied the nonautonomous predator-prey system incorporating
prey refuge and Holling type II functional response, that is,

ẋ(t) = (a(t) − b(t)x(t))x(t) − β(t)(1 −m(t))x(t)y(t)
1 + α(t)(1 −m(t))x(t)

,

ẏ(t) =
(−γ(t) − d(t)y(t)

)
y(t) +

c(t)β(t)(1 −m(t))x(t)y(t)
1 + α(t)(1 −m(t))x(t)

,

(1.2)

where x(t) and y(t) denote the density of prey and predator populations at time t,
respectively; x(t)m(t) denotes the number of prey that the refuge can protect at time t;
a(t), b(t), c(t), d(t), α(t), β(t), γ(t), and m(t) (0 ≤ m(t) < 1) are nonnegative continuous func-
tion that have the upper and lower bounds.

Though most dynamic behaviors of population models are based on the continuous
models governed by differential equations, the discrete time models are more appropriate
than the continuous ones when the size of the population is rarely small or the population has
nonoverlapping generations [12]. It has been found that the dynamic behaviors of the discrete
system is rather complex and contains more rich dynamics than the continuous ones [16].
Though the influence of prey refuge for continuous model has been extensively investigated,
seldom did scholars investigated the influence of prey refuge for discrete predator-prey
system. To the best of the authors’ knowledge, to this day, only Zhuang andWen [17] studied
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the local property stability of the fixed points of the discrete Leslie-Gower predator-prey
systems with and without Allee effect. In this paper, we study the corresponding discrete
prey-predator system of (1.2):

x(n + 1) = x(n) exp
[
a(n) − b(n)x(n) − β(n)(1 −m(n))y(n)

1 + α(n)(1 −m(n))x(n)

]
,

y(n + 1) = y(n) exp
[
−γ(n) − d(n)y(n) +

c(n)β(n)(1 −m(n))x(n)
1 + α(n)(1 −m(n))x(n)

]
.

(1.3)

Here, we assume that a(n), b(n), c(n), d(n), α(n), β(n), and m(n) (0 ≤ m(n) < 1), γ(n) are all
bounded nonnegative sequences. Noting that

x(n) = x(0) exp
n−1∑
k=0

[
a(k) − b(k)x(k) − β(k)(1 −m(k))y(k)

1 + α(k)(1 −m(k))x(k)

]
,

y(n) = y(0) exp
n−1∑
k=0

[
−γ(k) − d(k)y(k) +

c(k)β(k)(1 −m(k))x(k)
1 + α(k)(1 −m(k))x(k)

]
.

(1.4)

For the point of view of biology, in the sequel, we assume that x(0) > 0, y(0) > 0, then
from (1.4), we know that the solutions of system (1.3) are positive. From now on, for any
bounded sequence x(n),

xu = sup
n∈N

x(n), xl = inf
n∈N

x(n). (1.5)

2. Permanence

We will investigate the persistent property of the system in this section.

Lemma 2.1 (see [12]). Assume that {x(k)} > 0 and

x(k + 1) ≤ x(k) exp{a(k) − b(k)x(k)} (2.1)

for k ∈ N, where a(k) and b(k) are nonnegative sequences bounded above and below by positive
constants. Then

lim sup
k→∞

x(k) ≤ 1
bl

exp(au − 1). (2.2)

Lemma 2.2 (see [12]). Assume that {x(k)} satisfies

x(k + 1) ≥ x(k) exp{a(k) − b(k)x(k)}, k ≥ N0, (2.3)
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lim supk→∞ x(k) ≤ x∗, and x(N0) > 0, where a(k) and b(k) are nonnegative sequences bounded
above and below by positive constants and N0 ∈ N. Then

lim inf
k→∞

x(k) ≥ min
{ al

bu
exp{al − bux∗}, al

bu

}
. (2.4)

Theorem 2.3. Every positive solution (x(n), y(n)) of system (1.3) satisfies

lim sup
n→∞

x(n) ≤ M1, lim sup
n→∞

y(n) ≤ M2. (2.5)

HereM1 = (1/bl) exp(au − 1), M2 = (1/dl) exp(−γl + (cuβu/αl) − 1).

Proof. Let (x(n), y(n)) be any positive solution of system (1.3). From the first equation of
system (1.3) it follows that

x(n + 1) ≤ x(n) exp[a(n) − b(n)x(n)]. (2.6)

Applying Lemma 2.1 to (2.6) leads to

lim sup
n→∞

x(n) ≤ 1
bl

exp(au − 1) def= M1. (2.7)

From the second equation of system (1.3), similarly to the analysis of (2.6)-(2.7), we can obtain

lim sup
n→∞

y(n) ≤ 1
dl

exp
(
−γl +

cuβu

αl
− 1

)
def= M2. (2.8)

This ends the proof of Theorem 2.3.

Theorem 2.4. Assume that inequalities

al > βuM2, γu <
clβl(1 −mu)m1

1 + αu(1 −ml)M1
(H1)

hold. Let (x(n), y(n)) be any positive solution of system of (1.3), then

lim inf
n→∞

x(n) ≥ m1, lim inf
n→∞

y(n) ≥ m2. (2.9)

Here

m1 =
al − βuM2

bu
exp

[
al − buM1 − βuM2

]
, m2 =

−γu + B

du
exp

[−γu + B − duM2
]
,

B =
clβl(1 −mu)m1

1 + αu(1 −ml)M1
.

(2.10)
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Proof. According to the first inequality of (H1), one could choose ε > 0 small enough, such
that the inequality

al − βu(M2 + ε) > 0. (2.11)

holds. For the above ε > 0, according to Theorem 2.3, there exists an integer n∗ ∈ N such that
for all n ≥ n∗,

x(n) ≤ M1 + ε, y(n) ≤ M2 + ε. (2.12)

For n ≥ n∗, from (2.12) and the first equation of system (1.3), we have

x(n + 1) = x(n) exp
[
a(n) − b(n)x(n) − β(n)(1 −m(n))y(n)

1 + α(n)(1 −m(n))x(n)

]

≥ x(n) exp
[
a(n) − b(n)x(n) − β(n)(1 −m(n))(M2 + ε)

1 + α(n)(1 −m(n))x(n)

]

≥ x(n) exp
[
a(n) − b(n)x(n) − β(n)(1 −m(n))(M2 + ε)

]

≥ x(n) exp
[
al − bux(n) − βu(1 −m(n))(M2 + ε)

]

≥ x(n) exp
[
al − bux(n) − βu(M2 + ε)

]
.

(2.13)

As a direct corollary of Lemma 2.2, according to (2.7) and (2.13), one has

lim inf
n→∞

x(n) ≥ min{A1ε, A2ε}, (2.14)

where

A1ε =
al − βu(M2 + ε)

bu
,

A2ε = A1ε exp
[
al − bu(M1 + ε) − βu(M2 + ε)

]
.

(2.15)

Noting that

M1 =
exp(au − 1)

bl
≥ au

bl
≥ al

bu
, (2.16)

and so al − buM1 ≤ 0, consequently, for arbitrary ε,

al − bu(M1 + ε) − βu(M2 + ε) ≤ 0. (2.17)

The above inequality leads to

A1ε ≥ A2ε. (2.18)
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Thus,

lim inf
n→∞

x(n) ≥ A2ε. (2.19)

Letting ε → ∞, it follows that

lim inf
n→∞

x(n) ≥ A1 =
al − βuM2

bu
exp

[
al − buM1 − βuM2

] def= m1. (2.20)

According to (2.7), (2.8), and (2.20), for any ε > 0, there exists n1 ∈ N, such that for all n ≥ n1,

m1 − ε ≤ x(n) ≤ M1 + ε, y(n) ≤ M2 + ε. (2.21)

Similarly to the analysis of (2.13)–(2.20), by applying (2.21), from the second equation of
system (1.3), it follows that

lim inf
n→∞

y(n) ≥ −γu + B

du
exp

[−γu + B − duM2
] def= m2. (2.22)

Here B def= clβl(1 −mu)m1/(1 + αu(1 −ml)M1).
This completes the proof of Theorem 2.4.

3. Global Stability

In this section, by developing the analysis technique of [18], we obtain the conditions which
guarantee the global stability of the system (1.3).

Theorem 3.1. Assume that (H1) holds, assume further that

λ1 = max
{∣∣1 −M1p1

∣∣, ∣∣1 −m1p2
∣∣} + βu(1 −ml)M2

1 + αl(1 −mu)m1
< 1,

λ2 = max{|1 − duM2|, |1 − dlm2|} +
cuβu(1 −ml)M1

[1 + αl(1 −mu)m1]2
< 1.

(3.1)

Then for any two positive solutions (x(n), y(n)) and (x̃(n), ỹ(n)) of system (1.3), one has

lim
n→∞

(x(n) − x̃(n)) = 0, lim
n→∞

(
y(n) − ỹ(n)

)
= 0. (3.2)

Here, p1
def= bu − (βlαlm2(1 − mu)2/[1 + αuM1(1 − ml)]

2), p2
def= bl − (βuαuM2(1 − ml)

2/[1 +
αlm1(1 −mu)]2).

Proof. Let

x(n) = x̃(n) exp(u(n)), y(n) = ỹ(n) exp(v(n)). (3.3)
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then system (1.3) is equivalent to

u(n + 1) − u(n) =

⎡
⎢⎣b(n) − β(n)α(n)(1 −m(n))2y(n)(

1 + δ̃(n)
)
(1 + δ(n))

⎤
⎥⎦x̃(n)

(
1 − exp(u(n))

)

+
β(n)(1 −m(n))

1 + δ̃(n)
ỹ(n)

(
1 − exp(v(n))

)
,

v(n + 1) − v(n) = − c(n)β(n)(1 −m(n))(
1 + δ̃(n)

)
(1 + δ(n))

x̃(n)
(
1 − exp(u(n))

)

+ d(n)ỹ(n)
(
1 − exp(v(n))

)
.

(3.4)

Here δ̃(n) def= α(n)(1 − m(n))x̃(n), δ(n) def= α(n)(1 − m(n))x(n). By using the mean-value
theorem, it follows that

u(n + 1) = u(n)

⎡
⎢⎣1 −

⎛
⎜⎝b(n) − β(n)α(n)(1 −m(n))2y(n)(

1 + δ̃(n)
)
(1 + δ(n))

⎞
⎟⎠x̃(n) exp(θ1(n)u(n))

⎤
⎥⎦

− β(n)(1 −m(n))(
1 + δ̃(n)

) v(n)ỹ(n) exp(θ2(n)v(n)),

v(n + 1) = u(n)
c(n)β(n)(1 −m(n))x̃(n) exp(θ4(n)u(n))(

1 + δ̃(n)
)
(1 + δ(n))

+ v(n)
(
1 − d(n)ỹ(n) exp(θ3(n)v(n))

)
,

(3.5)

where θi(n) ∈ (0, 1) (i = 1, 2, 3, 4). To complete the proof, it suffices to show that

lim
n→∞

u(n) = lim
n→∞

v(n) = 0. (3.6)

In view of (3.1), we can choose ε > 0 small enough such that

λε1 = max
{∣∣1 − (M1 + ε)pε1

∣∣, ∣∣1 − (m1 − ε)pε2
∣∣} + βu(1 −ml)(M2 + ε)

1 + αl(1 −mu)(m1 − ε)
< 1,

λε2 = max{|1 − du(M2 + ε)|, |1 − dl(m2 − ε)|} + cuβu(1 −ml)(M1 + ε)

[1 + αl(1 −mu)(m1 − ε)]2
< 1.

(3.7)

Here, pε1
def= bu − (βlαl(m2 − ε)(1−mu)2/[1+αu(M1 + ε)(1−ml)]

2), pε2
def= bl − (βuαu(M2 + ε)(1−

ml)
2/[1 + αl(m1 − ε)(1 −mu)]2).
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For the above ε > 0, according to Theorems 2.3 and 2.4, there exists a k∗ ∈ N, such that

m1 − ε ≤ x(n), x̃(n) ≤ M1 + ε, m2 − ε ≤ y(n), ỹ(n) ≤ M2 + ε, (3.8)

for all n ≥ k∗.
Noticing that θi(n) ∈ (0, 1) (i = 1, 2, 3, 4) implies that x̃(n) exp(θ1(n)u(n)),

x̃(n) exp(θ4(n)u(n)) lie between x̃(n) and x(n), ỹ(n) exp(θ2(n)v(n)), ỹ(n) exp(θ3(n)v(n)) lie
between ỹ(n) and y(n). From (3.5), it follows that

|u(n + 1)| ≤ |u(n)|max
{∣∣1 − (M1 + ε)pε1

∣∣, ∣∣1 − (m1 − ε)pε2
∣∣}

+ |v(n)| βu(1 −ml)(M2 + ε)
1 + αl(1 −mu)(m1 − ε)

≤ λε1 max{|u(n)|, |v(n)|},
|v(n + 1)| ≤ |v(n)|max{|1 − du(M2 + ε)|, |1 − dl(m2 − ε)|}

+ |u(n)| cuβu(1 −ml)(M1 + ε)

[1 + αl(1 −mu)(m1 − ε)]2

≤ λε2 max{|u(n)|, |v(n)|}.

(3.9)

Let λ = max{λε1, λε2}, then λ < 1. In view of (3.9), we have

max{|u(n + 1)|, |v(n + 1)|} ≤ λmax{|u(n)|, |v(n)|} ≤ λn−k
∗
max{|u(k∗)|, |v(k∗)|}. (3.10)

Therefore (3.6) holds and the proof is complete.

4. Extinction of Predator Species and Stability of Prey Species

In this section, by developing the analysis technique of [16], we show that under some
suitable assumptions, the predator will be driven to extinction while prey will be globally
attractive to a certain solution of a logistic equation.

We consider a discrete logistic equation:

x(n + 1) = x(n) exp(a(n) − b(n)x(n)), n ∈ N. (4.1)

For the above equation, we have the following lemma.

Lemma 4.1 (see [17]). For any positive solution x∗(n) of (4.1), one has

m ≤ lim inf
n→∞

x∗(n) ≤ lim sup
n→∞

x∗(n) ≤ M1, (4.2)

wherem = (al/b
u) exp(al − buM1) and M1 is defined by Theorem 2.3.
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Theorem 4.2. Assume that the inequality

ml > 1 − γl
cuβuM1

(H2)

holds. Let (x(n), y(n)) be any positive solution of system (1.3), then y(n) → 0 as n → +∞.

Proof. (H2) is equivalent to the following inequality:

−γl + cuβu(1 −ml)M1 < 0. (4.3)

From (4.3)we can choose positive constant ε > 0 small enough such that inequality

−γl + cuβu(1 −ml)(M1 + ε) < 0 (4.4)

holds. Thus, there exists a δ > 0,

−γl + cuβu(1 −ml)(M1 + ε) < −δ < 0. (4.5)

Let (x(n), y(n)) be any positive solution of system (1.3). For any q ∈ N, according to the
equation of system (1.3), we obtain

ln
y
(
q + 1

)

y
(
q
) = − γ

(
q
) − d

(
q
)
y
(
q
)
+
c
(
q
)
β
(
q
)(
1 −m

(
q
))
x
(
q
)

1 + α
(
q
)(
1 −m

(
q
))
x
(
q
)

≤ − γ
(
q
)
+
c
(
q
)
β
(
q
)(
1 −m

(
q
))
x
(
q
)

1 + α
(
q
)(
1 −m

(
q
))
x
(
q
)

≤ − γl + cuβu
(
1 −m

(
q
))
(M1 + ε)

≤ − γl + cuβu(1 −ml)(M1 + ε)

< − δ < 0.

(4.6)

Summating both sides of the above inequations from 0 to n − 1, we obtain

ln
y(n)
y(0)

< −δn, (4.7)

then

y(n) < y(0) exp(−δn). (4.8)

Theorem 2.3 implies that x(n) are bounded eventually, which together with the above
inequality shows that y(n) → 0, exponentially, as n → +∞. This completes the proof of
Theorem 4.2.
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Theorem 4.3. Assume that al > βuM2 and (H2) holds, also

bu

bl
exp(au − 1) < 2. (H3)

Then for any positive solution (x(n), y(n)) of system (1.3) and any positive solution x∗(n) of system
(4.1), one has

lim
n→∞

(x(n) − x∗(n)) = 0, lim
n→∞

y(n) = 0. (4.9)

Proof. Since (H2) holds, it follows from Theorem 4.2 that

lim
n→∞

y(n) = 0. (4.10)

To prove limn→∞(x(n) − x∗(n)) = 0, let

x(n) = x∗(n) exp(u(n)), (4.11)

then from the first equation of system (1.3) and (4.11),

u(n + 1) = u(n) − b(n)x∗(n)
(
exp(u(n)) − 1

) − β(n)(1 −m(n))y(n)
1 + α(n)(1 −m(n))x(n)

. (4.12)

Using the mean-value Theorem, one has

exp(u(n) − 1) = exp(θ(n)u(n))u(n), θ(n) ∈ (0, 1). (4.13)

Then the first equation of system (1.3) is equivalent to

u(n + 1) = u(n)
(
1 − b(n)x∗(n) exp(θ(n)u(n))

) − β(n)(1 −m(n))y(n)
1 + α(n)(1 −m(n))x(n)

. (4.14)

To complete the proof, it suffices to show that

lim
n→∞

u(n) = 0. (4.15)

We first assume that

λ = max{|1 − buM1|, |1 − blm1|} < 1, (4.16)

then we can choose positive constant ε > 0 small enough such that

λε = max{|1 − bu(M1 + ε)|, |1 − bl(m1 − ε)|} < 1. (4.17)
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For the above ε, according to Theorems 2.3 and 2.4, Lemma 4.1, and (4.10), there exists an
integer n2 ∈ N such that

m1 − ε ≤ x(n) ≤ M1 + ε, m − ε ≤ x∗(n) ≤ M1 + ε, y(n) ≤ ε, n ≥ n2. (4.18)

Noting that m1 ≤ m, then

m1 − ε ≤ x(n), x∗(n) ≤ M1 + ε, y(n) ≤ ε, n ≥ n2. (4.19)

It follows from (4.19) that

β(n)(1 −m(n))
1 + α(n)(1 −m(n))x(n)

≤ βu(1 −ml)
1 + αl(1 −mu )(m1 − ε)

def= Mε, n ≥ n2. (4.20)

Noting that θ(n) ∈ (0, 1), it implies that x∗(n) exp(θ(n)u(n)) lies between x∗(n) and x(n).
From (4.14), (4.17)–(4.20), we get

|u(n + 1)| ≤ |u(n)|max{|1 − bu(M1 + ε)|, |1 − bl(m1 − ε)|} + βu(1 −ml)
1 + αl(1 −mu)(m1 − ε)

ε

= λε|u(n)| +Mεε, n ≥ n2.

(4.21)

This implies that

|u(n)| ≤ λn−n2
ε |u(n2)| + 1 − λn−n2

ε

1 − λε
Mεε, n ≥ n2. (4.22)

Since λε < 1 and ε is arbitrary small, we obtain limn→∞u(n) = 0; it means that (4.15) holds
when λ < 1.

Note that

1 − buM1 ≤ 1 − blm1 < 1. (4.23)

Thus, λ < 1 is equivalent to

1 − buM1 > −1, (4.24)

or

buM1 =
bu

bl
exp(au − 1) < 2. (4.25)

Now, we can conclude that (4.15) is satisfied as (H3) holds, and so limn→∞(x(n) −
x∗(n)) = 0. This completes the proof of Theorem 4.3.
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Figure 1: Dynamic behaviors of system (5.1) with the initial values (0.14, 0.3), (1.0, 0.24), (0.6, 0.5), and
(0.4, 0.8).

5. Examples and Numeric Simulations

In this section, we will give two examples to show the feasibility of our results.

Example 5.1. Consider the following system:

x(n + 1) = x(n) exp
[
0.7 − (0.9 + 0.1 cos(n))x(n) − 0.1(1 − 0.4)y(n)

1 + 0.7(1 − 0.4)x(n)

]
,

y(n + 1) = y(n) exp
[
−0.01 − 0.1y(n) +

0.7 × 0.1(1 − 0.4)x(n)
1 + 0.7(1 − 0.4)x(n)

]
.

(5.1)

One could easily see that al − βuM2 ≈ 0.2975 > 0, (clβl(1 − mu)m1/(1 + αu(1 − ml)M1)) −
γu ≈ 0.002 > 0, then, condition (H1) is satisfied. According to Theorem 2.3, system (1.3) is
permanent. Numerical simulation (see Figure 1) indicates the permanence of system (5.1).

Example 5.2. Consider the following system:

x(n + 1) = x(n) exp
[
0.7 − (0.9 + 0.1 cos(n))x(n) − 0.1(1 − 0.85)y(n)

1 + 0.7(1 − 0.85)x(n)

]
,

y(n + 1) = y(n) exp
[
−0.01 − 0.1y(n) +

0.7 × 0.1(1 − 0.85)x(n)
1 + 0.7(1 − 0.85)x(n)

]
.

(5.2)

We could easily see that 1 − (γl/cuβuM1) = 0.8457 < ml = 0.85, al − βuM2 ≈ 0.2975 > 0,
(bu/bl) exp(au − 1) ≈ 0.926 < 2. Clearly, conditions of Theorems 4.2 and 4.3 are satisfied. And
so, limn→∞(x(n) − x∗(n)) = 0 and limn→∞y(n) = 0, where x∗(n) is any positive solution of
system (4.1). Figure 2 shows the dynamic behaviors of system (5.2).
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Figure 2: Dynamic behaviors of system (5.2) with the initial values (0.1, 0.3), (0.27, 0.48), (0.6, 0.18), and
(0.8, 1.0).

6. Discussion

We proposed a nonautonomous discrete predator-prey system incorporating a prey refuge
and Holling type II functional responses. It is well known that prey species makes use
of refuges to decrease predation risk and refuge plays an important role on the dynamic
behaviors of predator-prey populations. For system (1.3), we showed that the predator and
prey will be coexistent in a globally stable state under some suitable conditions. However,
in Section 4, we found that if the refuge is enough large, the predator species will be driven
to extinction due to the fewer chances of predation. Obviously, increasing the amount of
refuge can increase prey densities and lead to population outbreaks; such kind of finding
is consistent with the continuous ones as shown by Kar [6]. In [11], Xu and Jia studied the
continuous system (1.2). Sufficient conditions which guarantee the persistence and global
stability of positive periodic solution of the system are obtained. Comparing the results of
[11] with ours, we found that the conditions which guarantee the persistence of continuous
system were similar to the discrete. However, for the conditions that guarantee the global
stability of system, the discrete system is more complicated than that of the continuous
system. Maybe the reason lies in that for the discrete population dynamics, the constructing
and computing of Lyapunov function are relatively complicated than the continuous ones.
Unlike the work of [11], we argued that it is an important topic to study the extinction of
the species; since more and more species are driven to extinction with the development of
modern society, this motivated us to study the extinction of the predator species.

At the end of the paper we would like to mention that one of the referees pointed
out that “the nonautonomous character of the model is introduced to simulate the time
dependent fluctuating properties of the environment. But it seems to me that a more realistic
description of this dependence should be done in terms of stochastic variables rather than
deterministic ones.” Indeed, recently, many excellent works concerned with the continuous
population model with stochastic variables had been done, see [19–21] and the references
cited therein. However, to the best of the authors’ knowledge, to this day, for discrete
population dynamics, no similar work has been done. We leave this problem to future
research.
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