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An epidemic model with incomplete treatment and vaccination for the newborns and susceptibles
is constructed. We establish that the global dynamics are completely determined by the basic
reproduction number Ry. If Ry < 1, then the disease-free equilibrium is globally asymptotically
stable. If Ry > 1, the endemic equilibrium is globally asymptotically stable. Some numerical
simulations are also given to explain our conclusions.

1. Introduction

Epidemiological models describing a directly transmitted viral or bacterial agent in a
closed population and consisting of susceptibles (S), infectives (I), and recovers (R) were
considered by Kermack and Mckendrick (1927). For some diseases, such as influenza and
tuberculosis, on adequate contact with an infectious individual, a susceptible becomes
exposed for a while, that is, infected but not yet infectious. Thus it is realistic to introduce
a latent compartment (usually denoted by E), leading to an SEIR model [1]. Such type of
models has been widely discussed in recent decades [2-8].

Vaccination is important for the elimination of infectious disease. Usually, the
vaccination process are different schedules for different disease and vaccines. For some
disease, such as hepatitis B virus infection [9], doses should be taken by vaccinees several
times and there must be some fixed time intervals between two doses. Considering the time
for vaccines to obtain immunity and possibility to be infected before vaccination, Liu et al.
[10] studied the vaccination effects via two SVIR models according to continuous vaccination
strategy and pulse vaccination strategy (PVS), respectively. Li et al. [11] considered that the
vaccine is available for both the susceptibles and the newborns, and the immunity of the
vaccinated individuals is temporary and that the efficiency of vaccine is not complete.
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In [12-15], it is assumed that the treated individuals have partial immunity and can
be infected through contacts with infectious individuals. Yang et al. [15] incorporated the
incomplete treatment into TB epidemic model with treatment, it is assumed that the being
treated individuals are kept at an isolated environment, therefore, individuals in treatment
compartment are not able to infect others or be infected. Since individual’s symptoms of TB
may disappear after being treated, but a few of tubercle bacillus may still be left in the body
of the treated individual [16, 17], then the treated individual may still be a TB carrier and
become latent or may enter the infectious compartment for treatment failure [18].

Motivated by these works, in this paper, we consider an SVEIT epidemiological
model with varying infectivity. The model assumes that the vaccine is available for both the
susceptibles and the newborns and the immunity of the vaccinated individuals is temporary,
and that the efficiency of vaccine is not complete. And we also incorporate the incomplete
treatment into the epidemic model.

The organization of this paper is as follows. In the next section, the epidemic model
with incomplete treatment and vaccination for the newborns and susceptibles is formulated.
In Section 3, the basic reproduction number and the existence of equilibria are investigated.
The global stability of the disease-free and endemic equilibria are proved in Section 4, and
some numerical simulations are given in Section 5. In the last section, we give some brief
discussions.

2. The Model Formulation

In this section, we introduce an epidemic model with incomplete treatment and vaccination.
The total population is partitioned into five compartments: the susceptible compartment (S),
the vaccinated compartment (V), the latent compartment (E), the infectious compartment
(I), and the treatment compartment (T). The population flow among those compartments is
shown in the following diagram (Figure 1).

The schematic diagram leads to the following system of ordinary differential
equations:

S'=quA-(u+p)S-pSI+eV,
Vi=(1-q)uA+pS—-PoVI-(u+e)V,
E'=BI(S+0V) — (u+y)E + (1- k)T, @.1)
I'=yE - (p+ai+¢)I + k6T,
T =¢l-(u+a+06)T.

Here, pA is the birth rate of the population; y is the natural death rate of the population;
q (0 < g < 1) is the fraction of the unvaccinated newborns, 1 — g is the fraction of the
vaccinated newborns; p is the vaccinating rate coefficient for the susceptible individuals; €
is the rate coefficient of losing the immunity from the vaccination. f and off (0 < 0 < 1) are
the transmission coefficient of the infection for the susceptible and vaccinated individuals
from the infectious individuals, where 0 < o < 1 shows that the efficiency of the vaccine
is not complete (100%); y is the rate coefficient of transfer from the latent compartment
to the infectious one; ¢ is the percapita treatment rate for the infectious individuals; & is
the rate coefficient at which a treated individual leaves compartment T; a; and a, are the
disease-induced death rate coefficients for individuals in compartments I and T, respectively;
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Figure 1: The transfer diagram for the model (2.1).

k (0 £ k £ 1) is the fraction of the drug-resistant individuals in the treated individuals.
k reflects the failure of treatment, where k = 0 means that all the treated individuals will
become latent, while k = 1 means that the treatment fails and all the treated individuals will
still be infectious.

It is important to show positivity and boundedness for the system (2.1) as they
represent populations. Firstly, we present the positivity of the solutions. System (2.1) can
be put into the matrix form

X' = G(X), (2.2)

where X = (S,V,E,I,T)" € R* and G(X) is given by

G1(X) guA - (u+p)S—pSI+eV
G (X) (1-q)uA+pS—-pPoVI—-(u+e)V
GX)=| Gs(X) | =] pr(s+oV)- (u+y)E+ 1 -K)6T |. (2.3)
G4(X) YE - (u+ai+¢)I + k6T
G5(X) éI— (//l+tX2+6)T
It is easy to check that
Gi(X)lxoxec. 20, i=1,2,3,45. (2.4)

Due to Lemma 2 in [19], any solution of (2.1) is such that X(t) € R for all ¢ > 0.
Summing equations in (2.1) yields

(S+V+E+I+T) =pu[A-(S+V+E+I1+T)] -l - a;T

(2.5)
SU[A-(S+V+E+1+T)],
then it follows that lim;_, ,o, sup[S(t) + V(t) + E(t) + I(t) + T(t)] < A, so the set
Q={(S,V,E, I, T)eRi:S+V+E+I+TgA} (2.6)

is positively invariant for (2.1). Therefore, we will consider the global stability of (2.1) on the
set Q.
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3. The Basic Reproduction Number and Existence of Equilibria

The model has a disease-free equilibrium Py (S, Vo, 0,0,0), where

A A 1-
g, Aleraw) _Alp+(-a)u] (3.1)
p+tu+e ptu+e

In the following, the basic reproduction number of system (2.1) will be obtained by the next
generation matrix method formulated in [20].
Letx=(E,IT,S, V)T, then system (2.1) can be written as

dx
— = () - V), (3.2)
where
BI(S +0V) (4 +y)E - (1-k)6T
0 (u+a +¢)I—yE-k6T
F(x) = 0 , U(x) = (+ar+6)T - ¢l . (3.3)
0 BSI+ (u+p)S—quA—eV
0 PoVI+ (u+e)V—(1-q)uA-pS

The Jacobian matrices of F(x) and U(x) at the disease-free equilibrium P, are, respectively,

r 0 Vixs 0 0
pry = (g7 g), DU = ( 0pS00 pep e ), (3.4)
0pocVo 0 —p p+e

where

0 B(So+0oVp) O U+y 0 -(1-k)6
F=1{0 0 0], V= -y p+a+¢ -kb . (3.5)
0 0 0 0 ¢ U+ar+06

The model reproduction number, denoted by Ry is thus given by

Py (p+az +6)(So +0Vo)

_ . 3.6
(H+y)(p+ar+&)(p+ax+6) -6¢[(1-k)y+ (u+7)k] 30

Ry =p(FV)
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The endemic equilibrium P*(S*, V*,E*, I*,T*) of system (2.1) is determined by equa-

tions

guA - (u+p)S—-pSI+eV =0,
(1-q)uA+pS—-poVI-(u+e)V =0,
BI(S+0oV)—-(u+y)E+(1-k)6T =0,
YE- (u+a1+&)I+k6T =0,
¢l —(u+a+6)T =0.

The first two equations in (3.7) lead to

g HAla(u+e+pol) +e(l-q)] v HALA-a)(p+p+pI) +pq]

C(prp+PI)(p+e+pol) - pe’ C(p+p+pI)(u+e+pol) —pe’

From the last equation in (3.7), we have

¢

T htm+6
Substituting (3.9) into the fourth equation in (3.7) gives

(y+a1+§)(‘u+tx2+6)—k6§I

E =
(M+a+6)y

For I #0, substituting (3.9), (3.10) into the third equation in (3.7) gives

1) [(erari+8)(u+ax+6) k65 - (1 -k)&ey

S+oV =
p (M+ar+06)y

Substituting (3.8) into (3.11) yields

[q(u+e+pol) +e(1-q)] +o[(1-q)(p+p+pI) +pq]
(p+pu+pI)(u+e+pol) —pe
() [+ &) (p+ a2+ 6) —k6E] - (1-k)6dy
Py(p+az +6)pA
_pol+(e+qu) +ofp+ (1-q)u]
(p+p+pI)(u+e+pol) —pe
(u+y)[(p+ai+&)(p+ar+6) —k&¢] - (1 - k)6¢y
Py(u+az+06)uA

H(I) =

=0.

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)
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Direct calculation shows

H'(I) __(Pol)’ +2pol(e+qp) +o[p + (1-q)u] + 00

! <0, (3.13)
p [(p+p+PI) (s +e+ pol) - pe]

where
go=(p+u)p+(1-qulo® +olp(e+qu) +e(p+ (1-q)p)] + (n+e)(e+qu), (3.14)

then function H (I) is decreasing for I > 0. Since (p+pu+pI)(u+e+pol)—pe > pI(fol+e+op+p),
and it follows from o < 1 that ol + (¢ + qu) + o[p + (1 — q)pu] < pol + € + op + p, then

1 (urn)[(p+a+8) (u+ar+6) —k6¢] - (1-k)6ey
pI Py (p+az +6)pA '

H(I) < (3.15)

Thus,

(e+qu)+olp+ A-qp]  (u+y)[(p+a+§)(u+a+6) —k6e] - (1-k)bgy
pp+p+e) Py(p+a+6)uA
_(uay) [+ +8§) (p+ a2+ 6) - k6¢] — (1 - k)6dy
Py(p+az +6)uA
1 (u+y)[(u+ar+&)(u+ar+6) - ko6& - (1-k)béy
HA <57~ By (u+ar+6)uA
_(pra+0)[yp— (pty)(pra+ 8] +65(y + pk)
PAYU(p + az + 6)
_ —(pram+0)[p(pta+§) +y(m +§)] +64(y + pk)
PAYH(p+ az +0)
_ (pra+8)[p(pta) +ym] +§(u+y) (4 + ) +pd(1 - k)
PAYu(p+ a2+ 6) ‘

H(0) =

(Ro-1),

<0.
(3.16)

Therefore, by the monotonicity of function H(I), for (3.12) there exists a unique positive root
in the interval (0, A) when Ry > 1; there is no positive root in the interval (0, A) when Ry < 1.
We summarize this result in Theorem 3.1.
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Theorem 3.1. For system (2.1), there is always the disease-free equilibrium Py(So, Vo, 0,0,0). When
Ro > 1, besides the disease-free equilibrium Py, system (2.1) also has a unique endemic equilibrium
P*(S*,V*,E*, I*,T*), where

_ HA[q(p+e+pol”) +e(1-q)]

(p+pu+pI*)(u+e+pol*) —pe’
HA[(1=q) (p +p+BI*) +pq]

V= ,
(p+p+PIr)(p +e+ pol*) —pe (3.17)
o prmro)(pra+6) ke,
(n+az+0)y '
* g *
d _,u+zx2+51 ’

and I* is the unique positive root of equation H(I) = 0.

4. Global Stability of Equilibria

Theorem 4.1. For system (2.1), the disease-free equilibrium Py is globally stable if Ry < 1; the
endemic equilibrium P* is globally stable if Ry > 1.

4.1. The Proof Global Stability of the Disease-Free Equilibrium

For the disease-free equilibrium Py(Sy, Vp,0,0,0), Sp and Vj satisfy equations

guA - (u+p)S—-pSI+eV =0,

(1-q)uA+pS—PoVI-(u+e)V =0, (41)

then (2.1) can be rewritten as follows:

' 1 1 V. W\ _
S-S[qu(S 50>+£<5 50) ﬂI]’

—vla- 1.1 V_W)\_
viev|a-aua(y-v) (s -s) 1) (42)
E' =pI[(So+0Vy) +(S=So) +0o(V-Vo)] - (u+y)E+ (1-k)éT,
I'=yE - (u+ai +¢)I + k6T,
T =¢I-(p+ay+6)T.

Define the Lyapunov function

)+E+ﬂ+YI+5K#+ﬂk+YU-kH

S
Vi=(5-S-SolIn— ) +( V-V -VyIn —
1 ( 0= 90 50) ( 0= Vo Y Y+ a2+ 6)

\%
Vo
(4.3)
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The derivative of V; is given by

o fwa(l-2)e(-2) o

+(V - VO)[(l q)‘uA<V ‘}>+p<‘sf ¥°> ﬂI]

+BI[(So+0Vp) + (S=Sp) +0(V-Vo)] - (u+y)E+ (1 -k)6T

+#+Y[yE—(‘u+a1+§)I+k6T] (4.4)

+6[(‘u+y)k+y(l—k)] Ayt
Y(/i+0{2+5) [§I (‘u 2 6)T]

_ /1+}/‘)[(/,t+0£1+§)(nu+“2+6) 6§[(1 k)Y"'(#"'Y)k] —1)I+F(SI)

y(u+az+0)

where

F(S,I) = pugA(S - 50)<——i> (1-q)pA(V - VO)(\lf Vlo)

(4.5)
\%4 Vo S S0
+£(S_SO)<§ - S_0> +p(V—V0)<V - Vg)
Denote x = S/Sy, y = V/Vj; then
1 1
F(S,I) = uqA(x - 1)(; - 1) +(1-q)uA(y-1) (; - 1)
4.6
+£V0(x—1)<g—1>+p50(y—1)<£—1> = F(x,vy). o
x v ’
Applying (4.1) to function F(x, y) yields
— 1
F(x,y) = (2uqA +2u(1-q) A +eVo +pSo) - uSox - pqA— - uVoy
(4.7)

1 Yy x
—u(1-q)A= - VoL —pS, .
u(1-q) y ~EVoy ~pSoy

By [11], we have F(x,y) < 0 for x,yy > 0 and F(x,y) = 0 if and only if x = v = 1. Since (u +
V) (u+ar+&) (u+az+6) > 6¢[(1-k)y+(u+y)k] and Ry < 1, then V] < 0. It follows from LaSalle
invariance principle [21] that the disease-free equilibrium Py is globally asymptotically stable
when Ry < 1.
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4.2, The Proof Global Stability of the Endemic Equilibrium

For the endemic equilibrium P*(S*, V*,E*, I*,T*), S*, V*,E*, I*, and T* satisfy equations

guA - (u+p)S—-pPSI+eV =0,
(1-q)uA+pS—-poVI-(u+e)V =0,
BI(S+0V) — (u+7)E+(1-K)6T =0, (4.8)
YE- (u+a1+&)I+k6T =0,
¢ —(u+a+6)T =0,

which will be used many times in the following inference.
By applying (4.8) and denoting

S \% E 1 T
g — = —_ = — = — = 49
S* X, V* y’ E* z, u, w, ( )

we have

x = xqgf\<;—1> BI* (u (Z—1>]
o) )]

Z'=Z%[S*<%_1> V*(y——1>] +Z(1—k)6§(%—1>, (4.10)
G
w' = wi{: <5 —1)

Define the Lyapunov function

V,=8(x-1-Inx)+V*(y-1-Iny) +E*(z-1-Inz) +

6[(p+y)k+y(1-k)]
N
Y (i + a2 +6)

#T”I*(u— 1-Inu)

(4.11)
T (w-1-Inw).

The derivative of V; is given by

R e W] (G DL (€t O) P s
z Y u yY(p+az+6) w

V=5 xlx +V*y; y+EZ
= (x-1) [qu(% - 1) —BS T (u-1) +5V*<% - 1)]
+(y-1) [(1 —q)yAG - 1> +p5*<$ - 1) — BoV*I* (u - 1)]
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+pr-D[s (Z-1)+ov (L -1)] + -0 - KT (£ - 1)

z
6[(n+y)k+y(1-k)]
y (i + a2 +6)

e () esor (1) or=1(5-1)
= quA(x - 1)(% - 1) —BSTT (x 1) (u—1) + £V*(x - 1)(% -1)
+(L-q)pA(y - 1)(5 - 1> +P5*(y-1)<$ - 1) —poV'I(y-1)(u-1)
+ST(z=1)(Z 1) +foV'I'(z - 1)(% 1)+ (1-ReT"(z- D (Z 1)

. [(+y)k+y(1-k)]6T*
Y

+ (y+y)E*(u—1)<§ 1)+ ‘l%k6T*(u—1)<% -1)

(o)
:qﬂA(Z—x—%)+(1—q)‘uA<2—y—%)—ﬂS*I*(xu—x—u+l)+eV*<y—x—%+1>

+p5*<x—y—§+l> —ﬂo'V*I*(yu—y—u+1)+ﬁS*I*<xu—z—x—;+1>

+ﬂ0V*I*<yu—z—%+1>+(1—k)6T*<w—z—§+1>+(,u+y)E*<z—u—§+l>

s [(#+Y)k+Y(1_k)]6T*<u—w—1+1)
y w

= 2quA+2(1 - q)uA +eV* +pS*+ (1 - K)6T* + (u+7)E* + ”T”k(s:r*

+'uT+Yk6T*<w—u—%+l>

N (/4+Y)k+Y(1_k)6
Y
+z[-BS* T = PoV*I* = (1 - k)6T* + (u+y)E*]

* * ]- * 1
T* —uS'x = quA— —pV y‘(l_Q)ﬂAy

fu [ﬁS*I* +BoV'I* - (u+y)E* - ”T”kﬂ* + .

(n+y)k+y1-k) 5T*]

k+y(1-k
(H+7y) Y+Y( ) 7

+w[(1—k)6T*+#—+Yk6T*— ]_gv*z_ps*f_pg*pﬁ
Y x v z

k 1-k
w  (pry)k+y( ) sy
u Y w

_povrd® 2 _1- W _ Y s
POV~ (e )E L - (- RT = E ke T

- [quA +2(1 - q)pA +eV* +pS* + PI*(S* + oV*) +3(1 - K)6T* + 2”T+Yk6:r* — uS*x
1 * _ _ l_ *z_ *f_ * *ﬂ_ * *ﬁ_ * * * E
q‘qu uViy-(1 q)yAy eV < pS y BS*I . poV*I . pI*(S +0V)u

k 1-k
-k E (1 -k Y - g [+ )k +y(1-Fk)]
u z Y u

s X
w
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[2guA +2(1 - q)pA+eV* +pS* + pI*(S* + oV*)| — uS*x - qu%

* _ 1_ *z_ *i_ **ﬂ_ **ﬂ_ * * *E
uViy - (1 q)‘uAy st pSy BS*I ~ PoV*I - pI:(s +0V)u

_ s(3_ 2 _ W _UN HFVpepi(n W _ ¥
+(1 k)5T(3 - w)+ : k5T(2 - w)
- T _ (3 E_W_UN HE Y isre(n W _ M
= F(x,y,z,u) + (1-k)6T (3 = w>+ : k6T (2 - w)
4.12)
Following [11], pI*(S* + oV*) = (4 + y)E* and
F(x,y,z,u) = 2quA +2(1 - q)pA+eV* +pS* + (u+y)E*] - uS*x - q,uA% - uV*y
1 *y *x **xu **yu *Z
(1 q)yAy £Vx pSy BS*I . poV*I . (‘u+y)Eu
<0,
(4.13)

we have f(x, y,z,u) < 0for x,y,z,u > 0 and f(x, y,z,u) = 0ifand only if x = y = 1 and
z = u. Therefore, V; <0 for x,y,z,u,w >0and V, =0ifand onlyif x =y =1,z = u = w, and
the maximum invariant set of system (2.1) on the set {(x,y, z, u,w) : V, = 0} is the singleton
(1,1,1,1,1). Thus, for system (2.1), the endemic equilibrium P* is globally asymptotically
stable if Ry > 1 by LaSalle invariance principle [21].

5. Numerical Simulation

In this section, some numerical results of system (2.1) are presented for supporting the
analytic results obtained above. All of the parameter values are estimated. The model
parameters are taken as: A = 55.496, y = 0.0143, g = 0.6, p = 0.05, 0 = 0.2, p = 0.05, ¢ = 0.03,
y =0.00368, 6 = 1.5, a1 = 0.3, a = 0.05. First, we choose ¢ = 0.9, k = 0.3, numerical simulation
gives Ry = 0.8809 < 1, then the disease-free equilibrium Py is globally asymptotically stable
(Figure 2). Second, we choose ¢ = 0.8, k = 0.36, numerical simulation gives Ry = 1, then the
disease-free equilibrium P, is globally asymptotically stable (Figure 3). At last, we choose
¢ =0.6, k = 0.5, numerical simulation gives Ry = 1.2938 > 1, then the endemic equilibrium P*
is globally asymptotically stable (Figure 4).

6. Discussion

We have formulated an epidemic model with incomplete treatment and vaccination and
investigated their dynamical behaviors. By means of the next-generation matrix, we obtained
their basic reproduction number, Ry, which play a crucial role. By constructing Lyapunov
function, we proved the global stability of their equilibria: when the basic reproduction
number is less than or equal to one, all solutions converge to the disease-free equilibrium,
that is, the disease dies out eventually; when the basic reproduction number exceeds one,
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Figure 2: When Ry < 1, the disease-free equilibrium P is globally asymptotically stable.
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Figure 3: When R = 1, the disease-free equilibrium P is globally asymptotically stable.

the unique endemic equilibrium is globally stable, that is, the disease will persist in the
population and the number of infected individuals tends to a positive constant.

For system (2.1), k reflects the failure of treatment. Direct calculation shows that
ORy/0k > 0, then decreasing the treatment failure coefficient is helpful to reduce epidemic
infection. The realization of decreasing k mainly depends on decreasing the appearance of
drug resistance. On the other hand, 0Ry/0¢ < 0 implies that increasing ¢ has positive effect
on epidemic control, since increasing ¢ is to shorten the period of the infectious compartment
in the nonisolated environment, that is, to start treating as soon as possible. This measure is
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effective to control the spread of the epidemic. Figure 5 shows the relation among the basic

reproduction number Ry, the treatment failure coefficient k, and the per-capita treatment rate
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