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Using generalized variational principle and Riccati technique, new oscillation criteria are
established for forced second-order differential equationwithmixed nonlinearities, which improve
and generalize some recent papers in the literature.

1. Introduction

In this paper, we consider the second-order forced differential equation with mixed nonlin-
earities:

(
r(t)
∣∣y′(t)

∣∣α−1y′(t)
)′

+ p(t)
∣∣y(t)∣∣α−1y(t) +

m∑
j=1

qj(t)
∣∣y(t)∣∣βj−1y(t) = e(t), t ≥ t0, (1.1)

where r, p, qj (1 ≤ j ≤ m), e ∈ C([t0,∞),R) with r(t) > 0 and 0 < α < β1 < β2 < · · · < βm are
real numbers, p, qj (1 ≤ j ≤ m), and e might change signs.

In this paper, we are concerned with the nonhomogeneous equation (1.1). By a
solution of (1.1), wemean that a function y ∈ C1[Ty,∞)(Ty ≥ t0, where Ty ≥ t0 depends on the
particular solution) which has the property p(t)|y′(t)|α−1y′(t) ∈ C1[Ty,∞) and satisfies (1.1).
A nontrivial solution of (1.1) is called oscillatory if it has arbitrarily large zeros; otherwise,
it is said to be nonoscillatory. Equation (1.1) is said to be oscillatory if all its solutions are
oscillatory.
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When m = 0, we have the following second-order half-linear differential equation
without or with forcing term:

(
r(t)
∣∣y′(t)

∣∣α−1y′(t)
)′

+ q(t)
∣∣y(t)∣∣α−1y(t) = 0, t ≥ t0, (1.2)

(
r(t)
∣∣y′(t)

∣∣α−1y′(t)
)′

+ q(t)
∣∣y(t)∣∣α−1y(t) = e(t), t ≥ t0. (1.3)

There are a lot of papers involved oscillation (see [1–6]) for these equations since the
foundation work of Elbert [2]. In paper [1], using Leighton’s variational principle (see [3])
for (1.3), the following result was obtained by Li and Cheng.

Theorem 1.1. Suppose that for any T ≥ t0, there exist T ≤ s1 < t1 ≤ s2 < t2 such that e(t) ≤ 0 for
t ∈ [s1, t1] and e(t) ≥ 0 for t ∈ [s2, t2]. Let D(si, ti) = {u ∈ C1[si, ti] : u(t)/≡ 0, u(si) = u(ti) = 0}
for i = 1, 2. If there exist H ∈ D(si, ti) and a positive, nondecreasing function ρ ∈ C1([t0,∞),R)
such that

∫ ti

si

H2(t)ρ(t)q(t)dt >
(

1
α + 1

)α+1 ∫ ti

si

r(t)ρ(t)

|H(t)|α−1
(
2
∣∣H ′(t)

∣∣ + |H(t)|ρ
′

ρ

)α+1

dt (1.4)

for i = 1, 2. Then, (1.3) is oscillatory.

Unfortunately, Theorem 1.1 cannot be applied to the case where α > 1, since for ρ(t) ≡
1, the term |H(t)|α−1 will appear as a denominator in (1.4) so that the requirement H(si) =
H(ti) = 0 will cause trouble. This certainly calls for investigation of oscillation criteria that
can handle with such cases.

When α = 1, (1.2) and (1.3) are reduced to the linear differential equation:

(
r(t)y′(t)

)′ + q(t)y(t) = 0, t ≥ t0, (1.5)
(
r(t)y′(t)

)′ + q(t)y(t) = e(t), t ≥ t0. (1.6)

In paper [7], Wong proved the following result for (1.6).

Theorem 1.2. Suppose that for any T ≥ t0, there exist T ≤ s1 < t1 ≤ s2 < t2 such that e(t) ≤ 0 for
t ∈ [s1, t1] and e(t) ≥ 0 for t ∈ [s2, t2]. Let D(si, ti) = {u ∈ C1[si, ti] : u(t)/= 0, u(si) = u(ti) = 0}
for i = 1, 2. If there exists u ∈ D(si, ti) such that

Qi(u) :=
∫ ti

si

[
q(t)u2(t) − r(t)

(
u′(t)

)2]
dt > 0, i = 1, 2, (1.7)

then (1.6) is oscillatory.

On the other hand, among the oscillation criteria, Komkov [8] gave a generalized
Leighton’s variational principle, which also can be applied to oscillation for (1.5).
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Theorem 1.3. Suppose that there exist a C1 function u(t) defined on [s1, t1] and a function G(u)
such that G(u(t)) is not constant on [s1, t1], G(u(s1)) = G(u(t1)) = 0, g(u) = G′(u) is continuous,

∫ t1

s1

[
q(t)G(u(t)) − r(t)

(
u′(t)

)2]
dt > 0, (1.8)

and (g(u(t)))2 ≤ 4G(u(t)) for t ∈ [s1, t1]. Then, every solution of (1.5) must vanish on [s1, t1].

We note that whenG(u) ≡ u2, the left-hand side of (1.8) is the energy functional related
to (1.5).

When p(t) ≡ 0, m = 1, (1.1) turns into the quasilinear differential equation:

(
r(t)
∣∣y′(t)

∣∣α−1y′(t)
)′

+ q(t)
∣∣y(t)∣∣β−1y(t) = e(t), t ≥ t0, (1.9)

where p, q, e ∈ C([t0,∞),R) with p(t) > 0 and 0 < α ≤ β being constants. In paper [9], using
the generalized variational principle, Shao proved the following result for (1.9).

Theorem 1.4. Assume that for any T ≥ t0, there exist T ≤ s1 < t1 ≤ s2 < t2 such that

e(t)

{
≤ 0, t ∈ [s1, t1],
≥ 0, t ∈ [s2, t2].

(1.10)

Let u ∈ C1[si, ti] and nonnegative functions G1, G2 satisfying Gi(u(si)) = Gi(u(ti)) = 0, gi(u) =
G′

i(u) are continuous and (gi(u(t)))
α+1 ≤ (α + 1)α+1Gα

i (u(t)) for t ∈ [si, ti], i = 1, 2. If there exists a
positive function φ ∈ C1([t0,∞),R) such that

Q
φ

i (u) :=
∫ ti

si

φ(t)

⎡
⎣Qe(t)Gi(u(t)) − r(t)

(∣∣u′(t)
∣∣ + G

1/(α+1)
i (u(t))

∣∣φ′(t)
∣∣

(α + 1)φ(t)

)α+1⎤
⎦dt > 0 (1.11)

for i = 1, 2. Then (1.9) is oscillatory, where

Qe(t) = α−α/ββ
(
β − α

)(α−β)/β[
q(t)
]α/β|e(t)|(β−α)/β, (1.12)

with the convention that 00 = 1.

Recently, using Riccati transformation, the following oscillation criteria were given for
(1.1) by Zheng et al. [10].

Theorem 1.5. Assume that for any T ≥ t0, there exist T ≤ s1 < t1 ≤ s2 < t2 such that qj(t) ≥ 0(1 ≤
j ≤ m) for t ∈ [s1, t1] ∪ [s2, t2] and

e(t)

{
≤ 0, t ∈ [s1, t1],
≥ 0, t ∈ [s2, t2].

(1.13)
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Let D(si, ti) = {u ∈ C1[si, ti] : uα+1(t) > 0, t ∈ (si, ti), u(si) = u(ti) = 0} for i = 1, 2. If there exist
H ∈ D(si, ti) and a positive function φ ∈ C1([t0,∞),R) such that

∫ ti

si

φ(t)

⎡
⎣
⎛
⎝p(t) +

m∑
j=1

Qj(t)

⎞
⎠Hα+1(t) − r(t)

(∣∣H ′(t)
∣∣ +
∣∣H(t)φ′(t)

∣∣
(α + 1)φ(t)

)α+1
⎤
⎦dt > 0 (1.14)

for i = 1, 2. Then (1.1) is oscillatory, where

Qj(t) = α−α/βj βj
[
m
(
βj − α

)](α−βj )/βj [qj(t)
]α/βj |e(t)|(βj−α)/βj , 1 ≤ j ≤ m, (1.15)

with the convention that 00 = 1.

The purpose of this paper is to obtain new oscillation criteria for (1.1) based on
generalized variational principles. Roughly, if the existence of a “positive” solution of
a functional relation implies the “positivity” of an associated functional over a set of
“admissible” functions, then we say that a variational oscillation principle is valid. For
instance, in Theorem 1.1, H ∈ D(si, ti) is admissible, and the functional is

∫ ti

si

{(
1

α + 1

)α+1 p(t)ρ(t)

|H(t)|α−1
(
2
∣∣H ′(t)

∣∣ + |H(t)|ρ
′(t)
ρ(t)

)α+1

−H2(t)ρ(t)q(t)

}
dt. (1.16)

Our emphasis will be directed towards oscillation criteria that are closely related to the
generalized energy functional (the generalization of (α + 1)-degree energy functional) for
half-linear equations (see [4, 11–13] for more details on these functionals), which improve
the results mentioned above. Examples will also be given to illustrate the effectiveness of our
main results.

2. Main Results

Firstly, we give an inequality, which is a transformation of Young’s inequality.

Lemma 2.1 (see [14]). Suppose that X and Y are nonnegative, then

γXYγ−1 −Xγ ≤ (γ − 1
)
Yγ , γ > 1, (2.1)

where equality holds if and only if X = Y .

Now, we will give our main results.

Theorem 2.2. Assume that for any T ≥ t0, there exist T ≤ s1 < t1 ≤ s2 < t2 such that

e(t)

{
≤ 0, t ∈ [s1, t1],
≥ 0, t ∈ [s2, t2].

(2.2)
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Let u ∈ C1[si, ti] and nonnegative functions G1, G2 satisfying Gi(u(si)) = Gi(u(ti)) = 0, gi(u) =
G′

i(u) are continuous and (gi(u(t)))
α+1 ≤ (α + 1)α+1Gα

i (u(t)) for t ∈ [si, ti], i = 1, 2. If there exists a
positive function φ ∈ C1([t0,∞),R) such that

Q
φ

i (u) :=
∫ ti

si

φ(t)

⎡
⎣Gi(u(t))

⎛
⎝p(t) +

m∑
j=1

Qj(t)

⎞
⎠ (2.3)

−r(t)
(∣∣u′(t)

∣∣ + G
1/(α+1)
i (u(t))

∣∣φ′(t)
∣∣

(α + 1)φ(t)

)α+1⎤
⎦dt > 0

(2.4)

for i = 1, 2, whereQj(t) is defined as (1.15) with the convention that 00 = 1. Then, (1.1) is oscillatory.

Proof. Suppose to the contrary that there is a nontrivial nonoscillatory solution y = y(t). We
assume that y(t)/= 0 on [T0,∞) for some T0 ≥ t0. Set

w(t) = φ(t)
r(t)
∣∣y′(t)

∣∣α−1y′(t)
∣∣y(t)∣∣α−1y(t)

, t ≥ T0. (2.5)

Then differentiating (2.5) and making use of (1.1), it follows that for all t ≥ T0,

w′(t) =
φ′(t)
φ(t)

w(t) − φ(t)p(t) +
φ(t)e(t)

∣∣y(t)∣∣α−1y(t)
− α

|w(t)|(α+1)/α
(
r(t)φ(t)

)1/α − φ(t)
m∑
j=1

qj(t)
∣∣y∣∣βj−α. (2.6)

By the assumptions, we can choose si, ti ≥ T0 for i = 1, 2 so that e(t) ≤ 0 on the interval
I1 = [s1, t1], with s1 < t1 and y(t) ≥ 0, or e(t) ≥ 0 on the interval I2 = [s2, t2], with s2 < t2
and y(t) ≤ 0. For given t ∈ I1 or t ∈ I2, set Fj(x) = qj(t)xβj−α − e(t)/mxα, 1 ≤ j ≤ m, we have
F ′
j(x

∗
j ) = 0, F ′′

j (x
∗
j ) > 0, where x∗

j = [−αe(t)/m(βj − α)qj(t)]
1/βj . So, Fj(x) obtains it minimum

on x∗
j and

Fj(x) ≥ Fj

(
x∗
j

)
= Qj(t). (2.7)

So on the interval I1 or I2, (2.6) and (2.2) imply that w(t) satisfies

φ(t)

⎛
⎝p(t) +

m∑
j=1

Qj(t)

⎞
⎠ ≤ −w′(t) +

φ′(t)
φ(t)

w(t) − α
|w(t)|(α+1)/α
(
r(t)φ(t)

)1/α . (2.8)
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Multiplying Gi(u(t)) through (2.8) and integrating (2.8) from si to ti, using the fact that
Gi(u(s1)) = Gi(u(t1)) = 0, we obtain

∫ ti

si

φ(t)

⎛
⎝p(t) +

m∑
j=1

Qj(t)

⎞
⎠Gi(u(t))dt

≤
∫ ti

si

Gi(u(t))

{
−w′(t) +

φ′(t)
φ(t)

w(t) − α
|w(t)|(α+1)/α
(
r(t)φ(t)

)1/α
}
dt

= −Gi(u(t))w(t)|tisi +
∫ ti

si

gi(u(t))u′(t)w(t)dt

+
∫ ti

si

Gi(u(t))

{
φ′(t)
φ(t)

w(t) − α
|w(t)|(α+1)/α
(
r(t)φ(t)

)1/α
}
dt

=
∫ ti

si

[
gi(u(t))u′(t) +Gi(u(t))

φ′(t)
φ(t)

]
w(t)dt

− α

∫ ti

si

Gi(u(t))
|w(t)|(α+1)/α
(
r(t)φ(t)

)1/α dt

≤
∫ ti

si

[∣∣gi(u(t))
∣∣∣∣u′(t)

∣∣ +Gi(u(t))

∣∣φ′(t)
∣∣

φ(t)

]
|w(t)|dt

− α

∫ ti

si

Gi(u(t))
|w(t)|(α+1)/α
(
r(t)φ(t)

)1/α dt

≤ (α + 1)
∫ ti

si

[
G

α/(α+1)
i (u(t))

∣∣u′(t)
∣∣ +Gi(u(t))

∣∣φ′(t)
∣∣

(α + 1)φ(t)

]
|w(t)|dt

− α

∫ ti

si

Gi(u(t))
|w(t)|(α+1)/α
(
r(t)φ(t)

)1/α dt.

(2.9)

Let

X =

[
α

(
r(t)φ(t)

)1/α
]α/(α+1)

G
α/(α+1)
i |w(t)|, γ = 1 +

1
α
,

Y =
(
αφ(t)r(t)

)α/(α+1)
[∣∣u′(t)

∣∣ + G
1/(α+1)
i

∣∣φ′(t)
∣∣

(α + 1)φ(t)

]α
,

(2.10)

by Lemma 2.1 and (2.9), we have
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∫ ti

si

φ(t)

⎛
⎝p(t) +

m∑
j=1

Qj(t)

⎞
⎠Gi(u(t))dt ≤

∫ ti

si

φ(t)r(t)

[∣∣u′(t)
∣∣ + G

1/(α+1)
i (u(t))

∣∣φ′(t)
∣∣

(α + 1)φ(t)

]α+1
dt,

(2.11)

which contradicts with (2.3). This completes the proof of Theorem 2.2.

Corollary 2.3. If φ(t) ≡ 1 in Theorem 2.2, and (2.3) is replaced by

Qi(u) :=
∫ ti

si

⎡
⎣
⎛
⎝p(t) +

m∑
j=1

Qj(t)

⎞
⎠Gi(u(t)) − r(t)

∣∣u′(t)
∣∣α+1
⎤
⎦dt > 0, (2.12)

for i = 1, 2. Then, (1.1) is oscillatory.

If we choose G1(u) = G2(u) = uα+1 in Corollary 2.3, then we have the following
corollary.

Corollary 2.4. Suppose that for any T ≥ t0, there exist T ≤ s1 < t1 ≤ s2 < t2 such that (2.2) is true.
Let D(si, ti) = {u ∈ C1[si, ti] : u(t)/≡ 0, u(si) = u(ti) = 0} for i = 1, 2. If there exist u ∈ D(si, ti)
such that

Q̃i(u) :=
∫ ti

si

⎡
⎣
⎛
⎝p(t) +

m∑
j=1

Qj(t)

⎞
⎠|u(t)|α+1 − r(t)

∣∣u′(t)
∣∣α+1
⎤
⎦dt > 0, (2.13)

for i = 1, 2. Then, (1.3) is oscillatory.

Remark 2.5. Corollary 2.4 is closely related to the (α + 1)-degree functional (1.8), so
Theorem 2.2, Corollaries 2.3, and 2.4 are generalizations of Theorem 1.2, and improvement
of Theorem 1.1 since the positive constant α in Theorem 2.2 and Corollary 2.3 can be selected
as any number lying in (0,∞). We note further that in most cases, oscillation criteria are
obtained using the same auxiliary function on [s1, t1] and [s2, t2], we note that such functions
can be selected differently.

Remark 2.6. If G(u) ≡ uα+1, then Theorem 2.2 reduces to Theorem 1.5, and if p(t) ≡ 0, j = 1,
Theorem 2.2 reduces to Theorem 1.4. So Theorem 2.2 and Corollary 2.3 are generalizations of
the papers by Zheng et al. [10] and Shao [9].

Remark 2.7. The hypothesis (2.2) in Theorem 2.2 and Corollary 2.3 can be replaced by the
following condition:

e(t)

{
≥ 0, t ∈ [s1, t1],
≤ 0, t ∈ [s2, t2].

(2.14)

The conclusion is still true for these cases.
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Example 2.8. Consider the following forced mixed nonlinearities differential equation:

(
γt−λ/3y′(t)

)′
+ p(t)y(t) + q(t)

∣∣y(t)∣∣2y(t) = −sin3t, t ≥ 2π, (2.15)

where γ, λ > 0 are constants, q(t) = t−λ exp(3 sin t), p(t) = t−λ/3 exp(sin t), for t ∈ [2nπ, (2n +
1)π), and q(t) = t−λ exp(−3 sin t), p(t) = t−λ/3 exp(− sin t), for t ∈ [(2n + 1)π, (2n + 2)π),
n > 0 is an integer, Shao [9] obtain oscillation for (2.15) when K(t) ≡ 0. Using Theorem 2.2,
we can easily verify that Q1(t) = (3/2) 3

√
2t−λ/3 exp(sin t)sin2t for t ∈ [2nπ, (2n + 1)π), and

Q1(t) = (3/2) 3
√
2t−λ/3 exp(− sin t)sin2t for t ∈ [(2n + 1)π, (2n + 2)π). For any T ≥ 1, we choose

n sufficiently large so that nπ = 2kπ ≥ T and s1 = 2kπ and t1 = (2k + 1)π , we select
u(t) = sin t ≥ 0, G1(u) = u2 exp(−u) (we note that (G′

1(u))
2 ≤ 4G1(u) for u ≥ 0), φ(t) = tλ/3,

then we have

∫ t1

s1

φ(t)
(
p(t) +Q1(t)

)
G1(u(t))dt =

∫π

0
sin2t dt +

3
2

3
√
2
∫π

0
sin4t dt =

π

2
+
9
8

3
√
2,

∫ t1

s1

φ(t)p(t)

[∣∣u′(t)
∣∣ + G

1/(α+1)
1 (u(t))

∣∣φ′(t)
∣∣

(α + 1)φ(t)

]α+1
dt

= γ

∫ (2k+1)π

2kπ

[
|cos t| + λ|sin t| exp(3 sin t/2)

2t

]2
dt

< γ

∫ (2k+1)π

2kπ

(
1 +

λe3/2

2

)2

dt = γ

(
1 +

λe3/2

2

)2

π.

(2.16)

So we have Q
φ

1 (u) > 0 provided, 0 < γ < (4π + 9 3
√
2)/2(2 + λe3/2)2π . Similarly, for s2 =

(2k + 1)π and t2 = (2k + 2)π , we select u(t) = sin t ≤ 0, G2(u) = u2 exp(u) (we note that
(G′

2(u))
2 ≤ 4G2(u) for u ≤ 0), we can show that the integral inequality Q

φ

2 (u) > 0 for 0 < γ <

(4π + 9 3
√
2)/2(2 + λe3/2)2π . So (2.15) is oscillatory for 0 < γ < (4π + 9 3

√
2)/2(2 + λe3/2)2π by

Theorem 2.2.

Example 2.9. Consider the following forced mixed nonlinearities differential equation:

(
t−λ
∣∣y′(t)

∣∣α−1y′(t)
)′

+ p(t)
∣∣y(t)∣∣α−1y(t) + q(t)y3(t) = −sin1/3t, (2.17)

for t ≥ 2π , where p(t) = Kt−λ exp(sin t), q(t) = t−9λ/5 exp(9 sin t/5), for t ∈ [2nπ, (2n + 1)π),
and p(t) = Kt−λ exp(− sin t), q(t) = t−9λ/5 exp(−9 sin t/5), for t ∈ [(2n + 1)π, (2n + 2)π), n > 0
is an integer, K, λ > 0 are constants and α = 5/3 > 1, β = 3. Obviously, Theorem 1.1 cannot
be applied to this case. However, we conclude that (2.17) is oscillatory for K > (3/4)(1 +
3λe/8)8/3π −9/55/944/9. Since the zeros of the forcing term −sin1/3t are nπ , let u(t) = sin t and
φ(t) = tλ. Using Theorem 2.2, we can easily verify thatQ(t) = (9/55/944/9)t−λ exp(sin t)sin4/27t
for t ∈ [2nπ, (2n+1)π), andQ(t) = (9/55/944/9)t−λ exp(− sin t) sin4/27t for t ∈ [(2n+1)π, (2n+
2)π). For any T ≥ 1, choose n sufficiently large so that nπ = 2kπ ≥ T and s1 = 2kπ and
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t1 = (2k + 1)π . For t ∈ [s1, t1], we select G1(u) = u8/3 exp(−u) (we note that (G′
1(u))

8/3 ≤
(8/3)8/3(G1(u))

5/3 for u ≥ 0). It is easy to verify the following estimations:

∫ t1

s1

φ(t)
(
p(t) +Q(t)

)
G1(u(t))dt

=
∫ (2k+1)π

2kπ
sin8/3t

(
K +

9
55/944/9

sin4/27t

)
dt

>

(
K +

9
55/944/9

)∫ (2k+1)π

2kπ
sin3t dt =

4
3

(
K +

9
55/944/9

)
,

∫ t1

s1

φ(t)r(t)

[∣∣u′(t)
∣∣ + G

1/(α+1)
1 (u(t))

∣∣φ′(t)
∣∣

(α + 1)φ(t)

]α+1
dt

=
∫ (2k+1)π

2kπ

[
|cos t| + 3λe−3 sin t/8|sin t|

8t

]8/3
dt

<

∫ (2k+1)π

2kπ

(
1 +

3λe
8

)8/3

dt =
(
1 +

3λe
8

)8/3

π.

(2.18)

So we haveQφ

1 (u) > 0. Similarly, for s2 = (2k+1)π and t2 = (2k+2)π , we select u(t) = sin t < 0,
G2(u) = u8/3 exp(u) (we note that (G′

2(u))
8/3 ≤ (8/3)8/3(G2(u))

5/3 for u ≤ 0), we can show
that the integral inequality Q

φ

2 (u) > 0. So (2.17) is oscillatory for K > (3/4)(1 + 3λe/8)8/3π −
9/55/944/9 by Theorem 2.2.
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