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A predator prey system with Holling III functional response and constant prey refuge is
considered. By using the Dulac criterion, we discuss the global stability of the positive equilibrium
of the system. By transforming the system to a Liénard system, the conditions for the existence of
exactly one limit cycle for the system are given. Some numerical simulations are presented.

1. Introduction

Recently, the qualitative analysis of predator prey systems with Holling II or III types
functional response and prey refuge has been done by several papers, see [1–5]. Their main
objective is to discuss under what conditions the positive equilibrium of the corresponding
system is stable or unstable and the existence of exactly one limit cycles. In general, the prey
refuge has two types, one is the so-called constant proportion prey refuge: (1 − m)x, where
m ∈ (0, 1), the other type is called constant prey refuge: (x −m).

In [2], the authors considered the following system with a constant proportion prey
refuge:

dx

dt
= ax − bx2 − α(1 −m)2x2y

β2 + (1 −m)2x2
,

dy

dt
= −cy +

kα(1 −m)2x2y

β2 + (1 −m)2x2
,

(1.1)
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where x and y denote the prey and predator density, respectively, at time t, the parameters
a, b, α, β, c, k are positive constants, and their biological meanings can be seen in [2]. The main
result is that when 0 < m < (1 + 2bcβ/(a(kα − 2c)))

√
c/(kα − c) system (1.1) admits only one

limit cycle which is globally asymptotically stable.
In paper [4], the authors only gave the local stability analysis to the following system

with a constant prey refuge:

dx

dt
= ax − bx2 − α(x −m)2y

β2 + (x −m)2
,

dy

dt
= −cy +

kα(x −m)2y

β2 + (x −m)2
.

(1.2)

In this paper, we will research under what conditions that the positive equilibrium is globally
asymptotically stable and the existence of exactly one stable limit cycle of system (1.2). For
ecological reason, we only consider system (1.2) in Ω0 = {(x, y) | x > m, y > 0} or Ω0.

It easy to obtain the following lemma.

Lemma 1.1. Any solution (x(t), y(t)) of system (1.2) with initial condition x(0) > m, y(0) > 0 is
positive and bounded for all t ≥ 0.

2. Basic Results

Let x = x−m, y = αy, dt = (β2+x2)dt, then system (1.2) changes (still denote x, y, t as x, y, t)

dx

dt
= (x +m)(a − b(x +m))

(
β2 + x2

)
− x2y,

dy

dt
= −cβ2y + (kα − c)x2y.

(2.1)

Then Ω0 transforms to Ω = {(x, y) | x > 0, y > 0} and system (2.1) is bounded.
Clearly, if (H1) 0 < m < a/b holds, system (2.1) has positive boundary equilibrium

E0((a/b)−m, 0); if (H2) kα > c, 0 < m < (a− bx∗)/b, system (2.1) has a positive equilibrium
E∗(x∗, y∗), where

x∗ = β
√

c

kα − c , y∗ =
kα

c
(x∗ +m)(a − b(x∗ +m)). (2.2)

It is easy to obtain the following lemma.

Lemma 2.1. Let (H1) hold. Further assume that (H3) kα ≤ c and (H4)kα > c, m > max{0, (a −
bx∗)/b}. Then E0 is locally asymptotically stable, if any of (H3) and (H4) holds. When kα > c, 0 <
m < (a − bx∗)/b, E0 is unstable, furthermore, E0 is a saddle point.

About the properties of the positive equilibrium, we have the following theorem.
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Theorem 2.2. Assume kα > c. Then

(I) E∗ is locally asymptotically stable for 0 < m < (a − bx∗)/b if a(2c − kα) ≤ 2bcx∗ holds.

(II) E∗ is locally asymptotically stable form1 < m < (a − bx∗)/b and E∗ is locally unstable for
0 < m < m1 if a(2c − kα) > 2bcx∗ holds, where

m1 =
bx3

∗ + β
2(a − bx∗) −

√
Δ/4

2bβ2
, (2.3)

(III) system (2.1) undergoes Hopf bifurcation atm = m1 if a(2c − kα) > 2bcx∗ holds.

Proof. The Jacobian matrix of system (2.1) at E∗ is

J(E∗) =

⎛

⎝ − P
x∗

−x2
∗

2(kα − c)x∗y∗ 0

⎞

⎠, (2.4)

where P = 2bx4
∗ + (2bm − a)x3

∗ + β
2(a − 2bm)x∗ + 2mβ2(a − bm). Then tr(J(E∗)) = −P/x∗ =

R(m)/x∗, where R(m) = 2bβ2m2 +2(bβ2x∗ −bx3
∗ −aβ2)m−aβ2x∗ +ax3

∗ −2bx4
∗ , the discriminant

of R(m) = 0 is Δ = 4(b2x6
∗ + 2b2x4

∗β
2 + b2β4x2

∗ + 4a2β4) > 0. Hence, the equation R(m) = 0 has
two roots m1 and m2, where m1 = (bx3

∗ + β
2 (a − bx∗) −

√
Δ/4) /2bβ2, m2 = (bx3

∗ + β
2 (a −

bx∗) +
√
Δ/4)/2bβ2.

Note that

(
bx3

∗ + β
2(a − bx∗)

)2 − Δ
4

= 2bx∗β2
(
ax2

∗ − aβ2 − 2bx3
∗
)

= 2bx∗β2
(
aβ2

2c − kα
kα − c − 2bx3

∗

)

= 2bx∗β4
a(2c − kα) − 2bcx∗

kα − c ,

(2.5)

and a(2c − kα) > (≤)2bcx∗ impliesm1 > (≤)0. Consider

m2 >
a − bx∗

2b
+
β2
√
a2 + b2x2∗ − 2abx∗ + 2abx∗

2bβ2
>
a − bx∗

b
. (2.6)

Then

(I) If a(2c − kα) ≤ 2bcx∗ holds, then m1 ≤ 0, R(m) < 0 holds for m1 < m < m2.
Considering (H2) and m2 > (a − bx∗)/b, for 0 < m < (a − bx∗)/b, tr(J(E∗)) < 0,
which implies E∗ is locally asymptotically stable.

(II) If a(2c − kα) > 2bcx∗ holds, then m1 > 0, for m1 < m < m2, R(m) < 0, since
m1 − (a − bx∗)/b = (bx3

∗ − β2(a − bx∗) −
√
Δ/4)/2bβ2, by (bx3

∗ − β2(a − bx∗))
2 −

(Δ/4) = −2abβ2x∗(x2
∗ + β

2) < 0, we obtain m1 < (a − bx∗)/b. Together with (H2),
for m1 < m < (a − bx∗)/b, tr(J(E∗)) < 0, which means E∗ is locally asymptotically
stable. On the other hand, for 0 < m < m1, tr(J(E∗)) > 0, E∗ is locally unstable.
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(III) We have

det(J(E∗)) > 0, tr(J(E∗)|m1) =
R(m1)
x∗

= 0,
∂tr(J(E∗))

∂m

∣
∣
∣
∣
m1

/= 0, (2.7)

these satisfy Liu’s Hopf bifurcation criterion (see [6], page 255); hence, the Hopf
bifurcation occurs atm = m1. This ends the proof.

3. Global Stability of the Positive Equilibrium

Denote m3 := (9a − 2
√
3βb −

√
81a2 + 12b2 β2)/18b < 0, m4 := (9a − 2

√
3βb +

√
81a2 + 12b2β2)/18b > 0.

Theorem 3.1. If E∗(x∗, y∗) is locally stable. Further assume that max{0, (a − 4bβ)/2b} < m < m4,
then the positive equilibrium E∗(x∗, y∗) of system (2.1) is globally asymptotically stable.

Proof. Take the Dulac function B(x, y) = x−2y−1, for system (2.1)we have

T =
∂(BP)
∂x

+
∂(BQ)
∂y

= −φ(x)
x3y

, (3.1)

where

φ(x) = 2bx4 + (2bm − a)x3 + β2(a − 2bm)x + 2mβ2(a − bm). (3.2)

If a = 2bm, φ(x) = 2b(x4 +m2β2) > 0 for x > 0.
On the other hand, there exist

φ′(x) = 8bx3 + 3(2bm − a)x2 + β2(a − 2bm),

φ′′(x) = 24bx2 + 6(2bm − a)x.
(3.3)

The equation φ′′(x) = 0 has two roots x1 = 0, x2 = (a − 2bm)/4b.

Case 1. If a − 2bm > 0, then for 0 < x < x2, φ′′(x) < 0; for x > x2, φ′′(x) > 0. Hence, x = x2
is the least value of the function φ′(x). If β > x2, φ

′(x2) = (a − 2bm)(β − x2)(β + x2) > 0, it
has φ′(x) > 0 for all x > 0, then φ(x) is increasing for x > 0, notice that φ(0) > 0. Therefore,
φ(x) > 0 for x > 0. Since, T < 0 for x > 0, system (2.1) does not exist limit cycle.

Case 2. If bm < a < 2bm, then x2 < 0, for x > 0, φ′′(x) > 0, hence, for x > 0, φ′(x) is increasing.
Evidently, φ′(0) < 0, φ′(β/

√
3) > 0, then there exists 0 < x0 < β/

√
3 such that φ′(x0) = 0,

where φ′(x0) = 8bx3
0 + 3(2bm − a)x2

0 + β
2(a − 2bm), hence, when 0 < x < x0, φ

′(x) < 0, when
x > x0, φ

′(x) > 0. We know that φ(x) takes the least value at x = x0, that is, φ(x) > φ(x0).
According to φ′(x0) = 0, for x > 0 we obtain φ(x) > φ(x0) = (2bm − a)(x3

0 − 3β2x0 + (8mβ2(a −
bm))/(2bm − a)), where 0 < x0 < β/

√
3.
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To prove φ(x) > 0 for x > 0, it suffices to prove φ̃(x) = x3−3β2x+(8mβ2(a−bm))/(2bm−
a) > 0 for 0 < x < β/

√
3. Clearly, φ̃(x) takes the least value at x = β, and φ̃(x) is strictly

decreasing at the interval (0, β). Hence, for 0 < x < β/
√
3, φ̃(x) > φ̃(β/

√
3) holds. Since

φ̃β/
√
3 > 0 ⇔ (m(a − bm))/(2bm − a) > β/3

√
3 ⇔ −3√3bm2 + (3

√
3a − 2βb)m + βa > 0 ⇔

m3 < m < m4. Therefore, for 0 < x0 < β/
√
3, φ̃(x) > 0 holds if m3 < m < m4 holds, then for

x > 0, φ(x) > 0 holds.
In sum, if one of the following three conditions holds (1) m = a/2b; (2) 0 < m <

a/2b, x2 < β ⇒ max{0, (a − 4bβ)/2b} < m < a/2b; (3) a/2b < m < a/b, m3 < m < m4 ⇒
a/2b < m < m4, the function T does not change the sign for x > 0, then system (2.1) does not
exist limit cycle. It is easy to see that the conditions (1), (2), and (3) are equal to max{0, (a −
4bβ)/2b} < m < m4. The proof is completed.

4. Existence and Uniqueness of Limit Cycle

Theorem 4.1. If a(2c − kα) > 2bcx∗ holds, for 0 < m < m1 system (2.1) admits at least one limit
cycle in Ω.

Proof. We construct a Bendixson loop ̂OABCD which includes E∗ of system (2.1). Let OA be
a length of the line L1 : y = 0, AB be a length of line L2 : b(x +m) − a = 0. Define

ẋ = x2(a0 − y
)
,

ẏ =
(
−cβ2 + (kα − c)x2

)
y,

(4.1)

where a0 = maxx∗≤x≤(a/b)−m{((x + m)(a − b(x + m))(β2 + x2))/x2}. The orbit of system
(4.1) with initial value ((a/b) − m,a0) intersects with the line x = x∗ and the intersection
point C(x∗, y1), we obtain the orbit arc B̂C. Let CD be a length of line L3 : y = y1, DO

be a length of line L4 : x = 0. Because OA is a length of orbit line of system (2.1) and
(dL2/dt)|(2.1) = −b((a/b) −m)2y < 0(y > 0), (dL3/dt)|(2.1) = y1(−cβ2 + (kα − c)x2) < 0 (0 <
x < x∗), (dL4/dt)|(2.1) = mβ2(a − bm) > 0, the orbits of system (2.1) tend to the interior of
the Bendixson loop from the outer of AB, CD, and B̂C, by comparing system (2.1) to system
(4.1): dx/dt|(2.1) < dx/dt|(4.1) < 0 and dy/dt|(2.1) = dy/dt|(4.1) > 0. Then the orbits of system
(2.1) tend to the interior of the Bendixson loop from the outer of B̂C. On the other hand, under
the condition of Theorem 4.1, E∗(x∗, y∗) is unstable, by Poincaré-Bendixson Theorem, system
(2.1) admits at least one limit cycle in the region ̂OABCD ∈ Ω. This ends the proof.

Lemma 4.2 (see [7]). Let f(x), g(x) be continuously differentiable functions on the open interval
(r1, r2), and ϕ(y) be continuously differentiable functions on R in

dx

dt
= ϕ
(
y
) −
∫x

x0

f(u)du,

dy

dt
= −g(x),

(4.2)
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such that

(1) dϕ(y)/dy > 0,

(2) having a unique x0 ∈ (r1, r2), such that (x − x0)g(x − x0) > 0 for x /=x0 and g(x0) = 0,

(3) f(x0)d/dx(f(x)/g(x)) < 0 for x /=x0,

then system (4.1) has at most one limit cycle.

Theorem 4.3. If a(2c − kα) > 2bcx∗ holds, for 0 < m < min{m1, a/2b − (8
√
3 x3

∗)/(9(x
2
∗ − β2))}

system (2.1) exists exactly one limit cycle which is globally asymptotically stable in Ω.

Proof. Let u = x, v = lny, τ = −x2t, still denote u, v, τ , as x, y, t, then system (2.1) becomes

dx

dt
= ey − (x +m)(a − b(x +m))

(
β2 + x2)

x2
,

dy

dt
= − (kα − c)x2 − cβ2

x2
,

(4.3)

the positive equilibrium E∗(x∗, y∗) changes Ẽ∗(x∗, lny∗).
Let x = x − x∗, y = y − lny∗, then Ẽ∗ transform to the origin O(0, 0), still denote x, y,

as x, y yield

dx

dt
= y∗ey − y∗ −

(x + x∗ +m)(a − b(x + x∗ +m))
(
β2 + (x + x∗)2

)

(x + x∗)2
+ y∗

:= ϕ
(
y
) − F(x), (x > −x∗),

dy

dt
= − (kα − c)(x + x∗)2 − cβ2

(x + x∗)2
:= −g(x),

(4.4)

where F(x) = ((x + x∗ +m)(a − b(x + x∗ +m))(β2 + (x + x∗)
2))/(x + x∗)

2 − y∗.
Clearly, F(0) = 0. It is easy to see that the conditions (1) and (2) of Lemma 4.2 for

x0 = 0 are satisfied. Consider

f(x) = F ′(x) =
2b(x + x∗)4 + (2bm − a)(x + x∗)3 + β2(a − 2bm)(x + x∗) + 2mβ2(a − bm)

(x + x∗)3
.

(4.5)

Note that by the assumption of Theorem 4.3, E∗ is unstable equilibrium and

tr(J(E∗)) = − 1
x∗

[
2bx4

∗ + (2bm − a)x3
∗ + β

2(a − 2bm)x∗ + 2mβ2(a − bm)
]
> 0, (4.6)
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then f(0) = −x−2
∗ tr(J(E∗)) < 0. Consider

d

dx

(
f(x)
g(x)

)
=

2ψ(x)

(x + x∗)2
(
(kα − c)(x + x∗)2 − cβ2

)2 , (4.7)

where

ψ(x) = b(kα − c)(x + x∗)6 − 3bcβ2(x + x∗)4 + β2(2c − kα)(a − 2bm)(x + x∗)3

− 3mβ2(kα − c)(a − bm)(x + x∗)2 +mcβ4(a − bm)

= (kα − c)ψ̃(x),

(4.8)

where

ψ̃(x) = b(x + x∗)6 − 3bx2
∗(x + x∗)4 +

β2(2c − kα)(a − 2bm)
kα − c (x + x∗)3

− 3mβ2(a − bm)(x + x∗)2 +mβ2x2
∗(a − bm).

(4.9)

Then, we have

ψ̃ ′(x) = 6b(x + x∗)5 − 12bx2
∗(x + x∗)3 +

3β2(2c − kα)(a − 2bm)
kα − c (x + x∗)2

− 6mβ2(a − bm)(x + x∗) = (x + x∗)φ̃(x),

(4.10)

where

φ̃(x) = 6b(x + x∗)4 − 12bx2
∗(x + x∗)2

+
3β2(2c − kα)(a − 2bm)

kα − c (x + x∗) − 6mβ2(a − bm).
(4.11)

By a simple computation, we obtain

φ̃′(x) = 24b(x + x∗)3 − 24bx2
∗(x + x∗) +

3β2(2c − kα)(a − 2bm)
kα − c ,

φ̃′′(x) = 24b
(
3(x + x∗)2 − x2

∗
)
.

(4.12)

It is easy to verify that φ̃′′(−x∗) < 0 and φ̃′′(x) = 0 has two roots x1 and x2 defined by,
respectively,

x1 =

(

−1 −
√
3
3

)

x∗, x2 =

(

−1 +
√
3
3

)

x∗. (4.13)
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Obviously, x1 < −x∗ < x2. Therefore, φ̃′′(x) < 0 for −x∗ � x < x2 and φ̃′′(x) > 0 for
x > x2 which indicates that x2 is the minimum point of the function φ̃′(x) when x � −x∗.
Substituting x2 into φ̃′(x), we obtain

min
x�−x∗

φ̃′(x) = φ̃′(x2)

= − 16
√
3bx3

∗
3

+
3β2(2c − kα)(a − 2bm)

kα − c

= − 16
√
3bx3

∗
3

+ 3
(
x2
∗ − β2

)
(a − 2bm).

(4.14)

It is easy to see that if 0 < m < (a/2b) − (8
√
3 x3

∗)/(9(x
2
∗ − β2)), then φ̃′(x2) > 0, which implies

φ̃′(x) > 0 for all x � −x∗. That is, the function φ̃(x) is a strictly increasing function for x � −x∗.
Note that φ̃(−x∗) = −6mβ2(a − bm) < 0 for 0 < m < a/b and limx→+∞φ̃(x) = +∞. It

follows from (4.6) that

φ̃(0) = −3
(
2bx4

∗ + (2bm − a)x3
∗ + (a − 2bm)β2x∗ + 2mβ2(a − bm)

)
> 0. (4.15)

Hence, there exists a point −x∗ < x̂ < 0, such that φ̃(x̂) = 0, that is,

b(x̂ + x∗)
4 − 2bx2

∗(x̂ + x∗)
2 +

β2(2c − kα)(a − 2bm)
2(kα − c) (x̂ + x∗) −mβ2(a − bm) = 0. (4.16)

This, together with the monotonicity of φ̃(x) when x � −x∗, we may conclude that ψ̃ ′(x) =
(x + x∗)φ̃(x) < 0 for x ∈ (−x∗, x̂) and ψ̃ ′(x) > 0 for x ∈ (x̂,∞). Therefore, x̂ is the minimum
point of the function ψ̃(x) for −x∗ < x <∞.

Together with (4.16), we obtain

min
x�−x∗

ψ̃(x) = ψ̃(x̂) = −bx2
∗(x̂ + x∗)

4 +
β2(2c − kα)(a − 2bm)

2(kα − c) (x̂ + x∗)
3

− 2mβ2(a − 2bm)(x̂ + x∗)
2 +mβ2(a − bm)x2

∗

= − bx2
∗(x̂ + x∗)

4 +
1
2

(
x2
∗ − β2

)
(a − 2bm)(x̂ + x∗)

3

− 2mβ2(a − 2bm)(x̂ + x∗)
2 +mβ2(a − bm)x2

∗
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Figure 1: The bifurcated periodic solution is stable.

= − 2bx4
∗(x̂ + x∗)

2 +
1
2

(
x2
∗ − β2

)
(a − 2bm)(x̂ + x∗)

(
2x2

∗ + 2x̂x∗ + x̂2
)

− 2mβ2(a − 2bm)(x̂ + x∗)
2

= − 2bx4
∗(x̂ + x∗)

2 +
(
x2
∗ − β2

)
(a − 2bm)x∗(x̂ + x∗)

2

− 2mβ2(a − 2bm)(x̂ + x∗)
2 +

1
2

(
x2
∗ − β2

)
(a − 2bm)(x̂ + x∗)x̂2

= − (x̂ + x∗)
2
(
2bx4

∗ + (2bm − a)x3
∗ + β

2(a − 2bm)x∗

+2mβ2(a − 2bm)
)
+
1
2

(
x2
∗ − β2

)
(a − 2bm)(x̂ + x∗)x̂2.

(4.17)

It follows from (4.6), we have minx�−x∗ ψ̃(x) > 0. This indicates ψ̃(x) > 0 for all x > −x∗.
Then all the conditions of Lemma 4.2 are satisfied, considering Theorem 4.1, we obtain

the conclusion of this theorem. The proof is completed.

5. Numerical Simulations

Take α = 0.5, k = 0.2, β = 0.5, a = 1, b = 0.1, and c = 0.09. Then a(2c − kα) − 2bcx∗ = 0.053, and
m1 ≈ 1.986121812. One can see a Hopf bifurcation occurring at m = 1.955 and the bifurcated
periodic solution is stable in Figure 1.

When takingm = 4.5, then x∗ = 1.5, y∗ ≈ 2.666666667, a(2c − kα)− 2bcx∗ = 0.053, m1 ≈
1.986121812,(a − bx∗)/b = 8.5, (a − 4bβ)/2b = 4, a/2b = 5. Theorem 3.1 is satisfied; the
equilibrium E∗ of system (2.1) is globally asymptotically stable. See Figure 2.
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Figure 2: The positive equilibrium E∗ of system (2.1) is globally asymptotically stable.
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Figure 3: The dynamical behaviors of system (2.1) when α = 0.5, k = 0.2, β = 0.5, a = 1, b = 0.1, c = 0.09,
m = 1. (a) The existence of unique limit cycle. (b) The global stability of the limit cycle.

Take m = 1, we obtain E∗(1.5, 2.083333333), a(2c − kα) − 2bcx∗ = 0.053, m1 ≈
1.986121812, (a/2b) − (8

√
3x3

∗/9(x
2
∗ − β2)) ≈ 2.401923788. The conditions in Theorem 4.1 are

satisfied; hence, system (2.1) exists exactly one limit cycle which is globally asymptotically
stable. One can see Figure 3.
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