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This paper investigates the behaviors at different developmental stages in Escherichia coli (E.
coli) lifecycle and developing a new biologically inspired optimization algorithm named bacterial
colony optimization (BCO). BCO is based on a lifecycle model that simulates some typical
behaviors of E. coli bacteria during their whole lifecycle, including chemotaxis, communication,
elimination, reproduction, and migration. A newly created chemotaxis strategy combined
with communication mechanism is developed to simplify the bacterial optimization, which is
spread over the whole optimization process. However, the other behaviors such as elimination,
reproduction, and migration are implemented only when the given conditions are satisfied. Two
types of interactive communication schemas: individuals exchange schema and group exchange
schema are designed to improve the optimization efficiency. In the simulation studies, a set of 12
benchmark functions belonging to three classes (unimodal, multimodal, and rotated problems)
are performed, and the performances of the proposed algorithms are compared with five recent
evolutionary algorithms to demonstrate the superiority of BCO.

1. Introduction

Swarm intelligence is the emergent collective intelligent behaviors from a large number of
autonomous individuals. It provides an alternativeway to design novel intelligent algorithms
to solve complex real-world problems. Different from conventional computing paradigms
[1–3], such algorithms have no constraints of central control, and the searching result of the
group will not be affected by individual failures. What is more, swarm intelligent algorithms
maintain a population of potential solutions to a problem instead of only one solution.

Nowadays, most of swarm intelligent optimization algorithms are inspired by the
behavior of animals with higher complexity. Particle swarm optimization (PSO) [4, 5]
was gleaned ideas from swarm behavior of bird flocking or fish schooling. Ant colony
optimization (ACO) was motivated from the foraging behavior of ants [6, 7]. Artificial fish
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swarm algorithm (AFSA) was originated in the swarming behavior of fish [8], and artificial
bee colony algorithm (ABCA) [9, 10]was stimulated by social specialization behavior of bees.
However, the states of the abovementioned animals are more complex, and their behaviors
are difficult to describe qualitatively.

As prokaryote, bacteria behave in a simple pattern which can be easily described.
Inspired by the foraging behavior of Escherichia coli (E. coli) in human intestines, Passion
proposed an optimization algorithm known as bacterial foraging optimization (BFO) recently
[11]. In the same year, anotherwell-known study based on bacterial behavior, bacteria chemo-
taxis (BC), was presented by Müller et al. [12]. Those two papers broadened the bacterial
optimization area with a new horizon. Since then, a growing number of researchers who paid
great attention to this field began to divert their concentrations on this new algorithm [13–
15] and extended the concept to algorithms such as fast bacterial swarming algorithm (FBSA)
[16], bacterial-GA foraging algorithm [17], and adaptive bacterial foraging algorithm (ABFO)
[18]. Except those new proposed algorithms, improvements of bacterial foraging optimiza-
tion (BFO) were considered by investigators. Some of the key models involve the discussion
of chemotaxis step length (BFO-LDC and BFO-NDC [19]) or adaptive chemotaxis step [20].
These researches on bacterial foraging optimization suggested that predicting and controlling
the dynamical behavior of microbial colonies might have profound implications in reality.

However, traditional bacterial behavior-based algorithms (BFO or BC) only con-
sidered individual behaviors instead of social behaviors with swarm intelligence. Each
individual in the colony independently searches for food by their own experience without
any information exchange with others. What made the situation worse is the complicated
characteristics of the original bacterial behavior-based algorithms. Taking BFO for example,
long period of time has been spent on random chemotaxis. Additionally, the chemotaxis,
reproduction, elimination and dispersal processes are inner iterations that lead to high
computation complexity. The frequency of chemotaxis, reproduction, elimination, and
dispersal is predefined without considering the environmental dynamics.

To deal with the aforementioned problems, we propose a new bacterial behavior
based optimization algorithm—bacterial colony optimization (BCO)—to formulate bacteria’s
behavior with swarm intelligence. The main contributions of this paper are described as
follows.

(i) A new description of artificial bacteria lifecycle is formulated, which include five
basic behaviors and their corresponding models.

(ii) Newly created bacterial behavior model is proposed to simplify the bacteria
optimization process.

(iii) A novel chemotaxis and communication mechanism is used as well to update the
bacterium positions.

(iv) Two methods of communication: individual interaction and group exchange are
introduced to improve the optimization efficiency.

The rest of the paper is organized as follows. Section 2 describes the basic behavior
of artificial bacteria, and their corresponding models and the proposed algorithm are
proposed in Section 3. Section 4 presents the results of the simulation studies, followed by
the conclusion in Section 5.
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Figure 1: Individual and social behavior of artificial bacteria.

2. Artificial Bacteria Behavior

Bacteria swim by rotating whip-like flagella driven by a reversible motor embedded in the
cell wall (Figure 1(a)). As environment changed, the fittest individuals will survive while the
poorer ones will be eliminate. After a while, the existing bacteria generate new offsprings
(Figure 1(b)). With the depletion of nutrition and increasing of population, the resources
can no longer hold the bacteria population. Some individuals may choose to migrate to
a new area with better nutrition supply (Figure 1(c)). During the searching for a new
habitat, information sharing and self-experience are both essential (Figure 1(c)). This process
brings together the macro- and the microscale that allows bacteria to make chemotaxis
movements as well as interacting with other bacterium. This can be realized by incorporating
the mechanism of chemotaxis and communication into the whole optimization process.
Apart from the mechanism of chemotaxis and communication, three additional mechanisms,
reproduction, elimination, and migration are also viewed as evolutionary operators to cover
the entire optimization search process (Figure 1(d)).

The basic behavior of bacteria in the lifecycle can be simply divided into five
parts: chemotaxis, elimination, reproduction, migration, and communication. The detail
descriptions of those processes are given as follows.

2.1. Chemotaxis

A fascinating property of E. coli is their chemotactic behavior. Flagellated bacteria E. coli
produce motion by the movement of their flagellum. The whole process of chemotaxis can
be depicted into two operations: running and tumbling. In the process of running, all flagella
rotate counterclockwise to form a compact propelling the cell along a helical trajectory. In this
way, bacteria can swim straightly in one direction. In the case of tumbling, the flagella rotate
clockwise, which pull the bacterium in different directions [11].

Bacteria need to migrate up to the concentration gradient of nutrients. Hence, the
alteration between two operations in chemotaxis must be well organized. A basic strategy
used by microbes is to move in one direction for several steps. If the new environment cannot
satisfy the bacteria, then they would tumble to pull themselves into a new direction and start
a second run.
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(a) Dynamic neighbor oriented (b) Random oriented (c) Group oriented

Figure 2: Communication mechanism.

2.2. Elimination, Reproduction and Migration

Based on the theory of nature selection, bacteria with poorer searching ability would have
higher chance of being eliminated. In contrast, those who perform well in the chemotaxis
process would obtain more energy for survival and thus have a high probability of
reproduction. In our proposedmodel—bacteria colony optimization (BCO), artificial bacteria
with high quality in searching for nutrition have the opportunity to be endowed a relevant
level of energy grade. Whether a bacterium has the chance to reproduce or not would base
on the level of its energy grade.

After a long time of chemotaxis, elimination, and reproduction in the same area
or surroundings, the nutrition must be used up or cannot satisfy all the bacteria. At this
time, some bacteria have to migrate into a new nutritious place, and this process is called
“Migration.”

2.3. Communication

Communication is an essential behavior that exists in whole processes of bacterial life. Three
basic communication mechanisms are employed in the bacteria colony optimization (see
Figure 2), including dynamic neighbor oriented (Figure 2(a)), random oriented (Figure 2(b))
and group oriented (Figure 2(c)), which represent three types of topologic structures. The
bacteria share information between individuals in the first two exchange mechanisms,
and the third mechanism (group oriented) means that bacteria communicate searching
information in unit if groups.

3. Bacterial Colony Optimization Principle

3.1. Lifecycle Model

The behavior of artificial bacteria in this paper includes five parts, but those behaviors
are continuous, mingle, and amalgamate. Chemotaxis behavior is always accompanied by
communication along the whole lifecycle. Therefore, chemotaxis and communication are
treated as one model in Bacterial Colony Optimization (BCO). Bacteria have two chooses
after long times of chemotaxis and communication. They may die for the lack of food,
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Figure 3: Lifecycle model.

or they may reproduce if they are capable of searching for food. Within the complicated
environment, some individuals may run into dangerous place (go out of boundary). Specific
situations like this also worth special treatment in lifecycle model (LCM). Migration conducts
as an independent model, which involves energy depletion, group diversity, and chemotaxis
efficiency. The overall model of bacterial lifecycle is shown in Figure 3.

The framework of this model is based on an agent-environment-rule (AER) schema;
that is, there are three fundamental elements: agent, environment, and rule. The detailed
description is listed below

(i) A: artificial bacteria,

(ii) E: artificial environment,

(iii) R: the environment/organism interaction mechanisms.

LCM model is different from the original population-based model in which all
the individuals share the same state properties. LCM is a philosophy that embraces the
uniqueness of the individuals in a system with multiple individuals that have its own set
of state variables and parameters. Looking in state space, the population is akin to clouds
of individuals with similar behaviors, and other clouds, amounting to separate individuals.
Fundamentally, this allows for individuals to exist and speciation to occur and permits
extinction. In general, the lifecycle model of artificial bacteria in BCO can be divided into four
submodels: chemotaxis and communication model, reproduction model, elimination model,
and migration model.

The detailed explanations of each submodel are formulated in the following.

3.2. Chemotaxis and Communication Model

Chemotaxis is accompanied with communication in the whole optimization process. Bacteria
run and tumble in the competitive environment. However, they also have to offer their
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Figure 4: Chemotaxis.

Individual exchange
Begin

For (Each bacterium)
If (Given probability > random)

Share the information with two bacteria next to it
else

Choose two random bacteria
Share the information with two random bacteria

End if
End For

End

Pseudocode 1: Pseudocode for individual exchange.

information to the colony in exchange of overall information which would guide them in
direction and ways of movement. As is shown in Figure 4, bacterial chemotaxis is directed by
three elements: group information, personal previous information, and a random direction.
All three factors conduct bacteria running and tumbling toward optimum.

Bacterium runs or tumbles with communication process can be formulated as:

Poistioni(T) = Poistioni(T − 1) + Ri ∗ (RuInfor) + RΔ(i),

Poistioni(T) = Poistioni(T − 1) + Ri ∗ (TumbInfor) + RΔ(i).
(3.1)

Actually, the above position updating equations only consider the relationship
between the individuals and the group. The bacteria share information between individuals
also merged into the communication model. Pseudocode for E. coli chemotaxis and commu-
nication is listed in Pseudocode 1.

3.3. Elimination and Reproduction Model

Each bacterium is marked with an energy degree based on its search capability. The higher
level of energy indicates a better performance of bacterium. The level of energy decides the
probability of elimination and reproduction. The distribution of bacterial energy degree was
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Migration
Begin

For (Each bacterium)
If (Rules are all both satisfied)

Migration to a new place (using (3.3))
else

Chemotaxis (using (3.1))
End if

End For
End

Pseudocode 2: Pseudocode for migration.

sorted and analyzed and then used as a criterion to judge the qualification of the bacteria.
The details are summarized as

if Li > Lgiven, and i ∈ healthy, then i ∈ Candidaterepr,

if Li < Lgiven, and i ∈ healthy, then i ∈ Candidateeli,

if i ∈ unhealthy, then i ∈ Candidateeli.

(3.2)

All behaviors of bacteria were restricted within a restrained area. As a general
principle, individuals are not allowed to go out of the region, so boundary control is especially
important. If bacteria move away from the feasible domain, at least two strategies will be
performed based on experiences. One is to generate new individuals to replace the outer
ones, and the other is to let the outer ones stay at boundary but change the forward direction
to keep them effectiveness. In this paper, those outer individuals named “unhealthy” are put
into a set which hold the candidate bacteria for elimination.

3.4. Migration Model

Naturally, bacteria could pursue more nutrition by migration. In optimization aspect,
migration can avoid local optimum within some distance. Especially, the migration of
artificial bacteria in BCO is not based on a certain given probability. It depends on a given
condition. When condition is fulfilled, bacterium would migrate to a new random place, as
described by

Poistioni(T) = rand ∗ (ub − lb) + lb, (3.3)

where rand ∈ [0, 1], and ub and lb are the upper and lower boundary, respectively. Bacteria
will search for nutrition continuously as long as they need not to migrate. Migration in
BCO algorithm is influenced by average energy degree, individual similarity, and chemotaxis
efficiency. These factors altogether make up the migration condition. Pseudocode 2 shows the
entire migration procedure.
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3.5. Bacterial Colony Optimization

3.5.1. Implementation of Chemotaxis and Communication

As illustrated above, bacteria chemotaxis all life time can be divided into two models:
tumbling and swimming. In the process of tumbling, a stochastic direction participates into
actually swimming process. Therefore, turbulent director and optimal searching director
altogether influence the search orientation in tumbling, update the positions of each
bacterium as (3.4), whereas no turbulent director acceding in swimming process to affect
the bacteria swimming toward optimal as (3.5) formulated:

Poistioni(T) = Poistioni(T − 1) + C(i)

∗
[
fi ∗ (Gbest − Positioni(T − 1)) +

(
1 − fi

)

∗(Pbesti − Positioni(T − 1)) + turbulenti
]
,

(3.4)

Poistioni(T) = Poistioni(T − 1) + C(i)

∗
[
fi ∗ (Gbest − Positioni(T − 1)) +

(
1 − fi

)

∗(Pbesti − Positioni(T − 1))
]
,

(3.5)

where fi ∈ {0, 1} and turbulenti is the turbulent direction variance of the ith bacterium.
Gbest and Pbest are the globe best or personal best position of the ith bacterium. C(i) is the
chemotaxis step size. The BCO uses the adaptive chemotaxis step referred to Niu et al.
[19, 20]:

C(i) = Cmin +
( itermax − iterj

itermax

)n

(Cmax − Cmin), (3.6)

where itermax is the maximal number of iterations, iterj is the current number of iterations,
and C(i) is the chemotaxis step of the ith bacterium. With Cmax = Cmin, the system becomes a
special case of fixed chemotaxis step length, as the original proposed BFO algorithm. If n = 1,
it is the linearly decreasing strategy of chemotaxis step. And otherwise, chemotaxis size is
changingwith a nonlinear decreasing strategy. As it is proved byNiu et al. in their chemotaxis
step discussed papers [19, 20], simple low-dimension problems prefer to linear decreasing
strategy of chemotaxis step, but, in high dimension multimodal complex problems, nonlinear
decreasing strategies of chemotaxis step are more popular.

3.5.2. Implementation of Interactive Exchange

Interactive exchange in BCO can be divided into individual exchange and group exchange
as described above. Individual exchange also can specify dynamic neighbor oriented
(Figure 2(a)) and random oriented (Figure 2(b)). Group exchange means group oriented
(Figure 2(c)). But in each generation, every bacterium has only one type of the exchange
model to choose. As interactive exchange may affect the diversity of bacterial group, each
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Interactive exchange
For (Each bacterium)
If (Individual exchange)

If (Dynamic neighbor oriented)
Choose one in two neighbor bacteria, compare the fitness,
replace the poorer one

else (Random oriented)
Randomly choose a bacterium from the group, compare the
fitness, replace the poorer one

End if
else if (Group exchange)

Compute the group best, compare the fitness, replace the poor
one

End if
End For

Pseudocode 3: Pseudocode of interactive exchange.

bacterium has only one chance to exchange in each generation. Pseudocode 3 shows the
process of interactive exchange.

3.5.3. Framework of Bacterial Colony Optimization

In BCO algorithm, artificial bacterial behaviors are executed based on given conditions
responding to the dynamic environment. The procedure of chemotaxis, communication,
reproduction, elimination, and migration is not premeditated, but determined only when
certain given conditions are reached.

As shown in Figure 5, the process of reproduction, elimination, and migration is all
independent without specific orders, where iteration times of BCO algorithm are the same
as the frequency of chemotaxis and communication. It is consistent with the theoretical
understanding of biological systems. The environment-based operation rules control the
basic behavior of bacteria. Taking migration for example, Figure 5 also demonstrates that
influence factors such as position, direction, and energy level can impact the migration
process. So the rules of migration can be set by consulting the influence factors. As one of
migration factors, position is related to group diversity, individual fitness, and so forth.

The overall procedure of bacterial colony optimization (BCO) is presented in
Pseudocode 4.

4. Experiments and Results

4.1. Test Functions

To test the effectiveness of the new proposed BCO algorithm, twelve well-known test
functions with 15 dimensions and 40 dimensions are adopted. Test problems include two
unimodal functions (f1 to f2) [21], six multimodal functions (f3 to f8) [21], and four rotated
multimodal functions (f9 to f12) [22]. All the test functions used have a minimum function
value of zero. The detailed description of the benchmark functions is listed in Appendix A.
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Figure 5: The flowchart of BCO.

4.2. Parameters Settings

To evaluate the performance of the proposed BCO, five other algorithms were used for
comparisons: particle swarm optimization (PSO), genetic algorithm (GA), bacterial foraging
optimization (BFO), bacterial foraging optimization with linear decreasing cemotaxis step
(BFO-LDC), and bacterial foraging optimization with nonlinear decreasing chemotaxis
step (BFO-NDC). The parameters used for these five algorithms were recommended from
[4, 11, 19, 20, 23] or hand selected. The parameter setting of the previous algorithms on
benchmark functions is summarized as Table 1. The population size of all algorithms used
in our experiments was set at 100. The maximum number of iterations 2000 was applied to
all the algorithms. For BCO, linearly decreasing chemotaxis step length is adopted. The lower
step length Cmin is set at 0.01, and the upper step length Cmax = 0.2 is used. The test functions
used in this paper are to find the minimum 0. All experiments were repeated for 20 runs.
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Bacterial Colony Optimization (BCO)
Begin
For (Each run)
For (Each iteration)
Chemotaxis & Communication:
Tumbling (Chemotaxis & Communication) using (3.4);

While (the maximum swimming steps are not met)
Swimming (Chemotaxis & Communication) using (3.5);

End while
Interactive Exchange:

Individual exchange and group exchange mechanism as Pseudocode 3;
If (Reproduction and elimination conditions are met)

Compute the Jhealth,
Reproduction and elimination using (3.2);

End If
If (Migration conditions are met)

Migration using (3.3);
End If

End For
End For
End

Pseudocode 4: Pseudocode of bacterial colony optimization.

Table 1: Globe optimum, search ranges, and initialization ranges of test functions.

Function Function name x∗ Minimum value Range of search Initialization range
f1 Sphere [0, 0, . . . , 0] 0 [−100, 100]n [−100, 50]n
f2 Rosenbrock [0, 0, . . . , 0] 0 [−100, 100]n [−50, 50]n
f3 Sum of different powers [0, 0, . . . , 0] 0 [−1, 1]n [−1, 1]n
f4 Sin [0, 0, . . . , 0] 0 [−50, 50]n [−50, 50]n
f5 Rastrigin [0, 0, . . . , 0] 0 [−5.12, 5.12]n [−1, 1]n
f6 Griewank [0, 0, . . . , 0] 0 [−600, 600]n [−100, 300]n
f7 Ackley [0, 0, . . . , 0] 0 [−32, 32]n [−5, 5]n
f8 Weierstrass [0, 0, . . . , 0] 0 [−0.5, 0.5]n [−0.5, 0.25]n
f9 Ro-Rastrigin [0, 0, . . . , 0] 0 [−5.12, 5.12]n [−1, 1]n
f10 Ro-Griewank [0, 0, . . . , 0] 0 [−600, 600]n [−100, 300]n
f11 Ro-Ackley [0, 0, . . . , 0] 0 [−32, 32]n [−5, 5]n
f12 Ro-Weierstrass [0, 0, . . . , 0] 0 [−0.5, 0.5]n [−0.5, 0.25]n

4.3. Experimental Results and Discussions

4.3.1. Results for the 15-D Problems

Tables 2, 3, and 4 show the means and variances of the 20 runs of five algorithms on twelve
test functions with 15 dimensions. And Figure 6 presents the convergence characteristics in
terms of the best fitness values of median run of each algorithm for twelve unconstrained
functions. In comparison with five introduced algorithms, the results in Tables 2∼4 show that
the proposed BCO performs significantly better than four other algorithms (GA, BFO, BFO-
LDC, and BFO-NDC) in all test functions, and BCO generates better results than PSO in most
of functions. Three exceptions in twelve are sphere, sum of power, and rotated Griewank
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Table 3: Experimental results on benchmark functions f5∼f8 (15-D).

Methods
Function

Multimodal Multimodal Multimodal Multimodal
Rastrigin Griewank Ackley Weierstrass

GA 20.4584 ± 4.8156 1.2476 ± 0.1606 3.6037 ± 1.4257 3.5301 ± 1.3020
PSO 5.7708 ± 3.1742 0.0644 ± 0.0552 0.3924 ± 0.1579 12.3476 ± 2.9933
BFO 66.2630 ± 7.8038 193.72725 ± 1.6216 18.8439 ± 0.1724 14.4929 ± 1.1234
BFO-LDC 43.4265 ± 6.9996 215.9304 ± 19.9711 18.3772 ± 0.3097 12.9816 ± 1.0385
BFO-NDC 99.8792 ± 23.3498 117.3332 ± 31.6748 18.3998 ± 0.9229 16.2605 ± 0.3992
BCO 2.6227 ± 2.8715 1.3192e − 007 ± 3.1990e − 008 0.0147 ± 0.0012 2.9919 ± 1.5852

Table 4: Experimental results on benchmark functions f9∼f12 (15-D).

Methods
Function

Unimodal Unimodal Multimodal Multimodal
Rotated Rastrigin Rotated Griewank Rotated Ackley Rotated Weierstrass

GA 124.2596 ± 39.2508 43.3658 ± 7.3803 3.7174 ± 1.4706 3.3542 ± 0.9634
PSO 81.1589 ± 13.2253 14.4438 ± 2.4248 2.1125 ± 5.5782 16.5705 ± 0.4428
BFO 112.7386 ± 8.6020 162.9233 ± 31.8599 19.2858 ± 0.4541 17.1414 ± 0.6582
BFO-LDC 53.2019 ± 4.6664 167.3967 ± 45.8204 19.3403 ± 0.2528 16.1067 ± 1.3123
BFO-NDC 66.3549 ± 8.6616 169.9026 ± 35.5888 19.2155 ± 0.5469 16.7677 ± 0.8566
BCO 0.2155 ± 0.4461 18.7274 ± 4.9831 0.0103 ± 5.0400e − 004 1.3826 ± 0.1316

function, and PSO can get the smaller values after iterations finished. From Table 2, PSO can
get better performance in most of functions in this group. PSO is easy to implement in easy
problems, BCO has to spend more time communicating and migrating, which result that the
BCO could not converge as fast as PSO.

The means and variances of the median run of each algorithm on f5∼f8 multimodal
functions with 15-D are presented in Pseudocode 3. From Pseudocode 3, it is observed that,
for those four multimodal test problems, BCO achieves the best results compared with the
other algorithms and it converges quickly (i.e., as shown in Figures 6(e)∼6(h)). In this group,
BCO obviously performs better than PSO. That is because PSO has the high chance of getting
trapped in a local optimum inmultimodal functions. In contrast, with the ability of migration,
BCO has the best ability to surpass all approaches in keeping the tradeoff between the local
exploitation and the global exploration. BCO could show better search ability in multimodal
functions.

Pseudocode 4 illustrates the comparisons of the other four algorithms on the rotated
benchmark functions (f9∼f12). The proposed algorithm BCO is superior to any other algo-
rithms (PSO, GA, BFO, BFO-LDC, and BFO-NDC) on the optimization of the optimization
problems except the Rotated-Griewank function. From the values in Pseudocodes 3 and 4,
BCO can converge to the best fitness value with the most times in the 15-D, which proves that
BCO owns higher optimization capability for the multimodal complex problems.

Figure 6 shows the comparisons on the twelve unimodal, multimodal, and rotated
functions in 15-D. This figure illustrates that the BCO could converge to the global optimum
keeping a good diversity and high speedwhen it conducts the optimization of 15-D functions.
From Figures 6(a)∼6(c), Figures 6(e)∼6(g) and others, BCO converges quicker than any other
algorithms, which owes to the communication mechanism between bacterial individuals and
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Figure 6: Continued.
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Figure 6: The median convergence characteristics of 15-D test functions.
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Table 6: Experimental results on multimodal benchmark functions f5∼f8 (40-D).

Methods
Function

Multimodal Multimodal Multimodal Multimodal
Rastrigin Griewank Ackley Weierstrass

GA 148.3028 ± 27.3305 9.9175 ± 3.4341 12.5334 ± 0.6759 22.1294 ± 3.0762
PSO 74.2725 ± 10.4031 0.0062 ± 0.0099 1.4950 ± 0.5035 52.1444 ± 3.5761
BFO 340.2382 ± 6.6259 534.8022 ± 74.7301 19.8384 ± 0.1144 52.6685 ± 1.1850
BFO-LDC 220.0034 ± 20.4895 546.2333 ± 62.7786 19.1367 ± 0.1645 51.4482 ± 0.8970
BFO-NDC 480.0729 ± 20.4522 481.7740 ± 35.3368 20.0417 ± 0.1574 54.1919 ± 1.7300
BCO 40.1885 ± 19.8658 8.4801e − 008 ± 0.2841 7.8726e − 004 ± 6.9720e − 005 18.3068 ± 1.0010

Table 7: Experimental results on rotated benchmark functions f9∼f12 (40-D).

Methods
Function

Unimodal Unimodal Multimodal Multimodal
Rotated Rastrigin Rotated Griewank Rotated Ackley Rotated Weierstrass

GA 63.3228 ± 24.6712 120.9070 ± 27.6266 12.7273 ± 0.9784 25.3856 ± 2.6663
PSO 312.4635 ± 12.3544 74.1074 ± 8.2134 9.1604 ± 0.7020 56.9759 ± 1.5205
BFO 238.0408 ± 6.9414 683.1472 ± 74.0891 20.2330 ± 0.1313 56.8159 ± 1.1546
BFO-LDC 228.2085 ± 5.0876 99.8152 ± 0.1944 20.2424 ± 0.1360 57.0249 ± 1.6988
BFO-NDC 259.5684 ± 9.1169 715.0758 ± 83.2355 20.1318 ± 0.1734 56.4484 ± 1.1114
BCO 0.8331 ± 0.8298 82.9893 ± 5.4085 0.0087 ± 7.9935e − 004 6.8936 ± 0.4970

bacterial groups. The fourth function Sin is a trigonometric function drawn from Figure 6(d),
PSO gets the quickest convergence rate, but BCO finds the smallest optimum value after the
maximum generations finished.

4.3.2. Results for the 40-D Problems

The experiments conducted on 15-D problems are repeated on the 40-D problems. Similarly
to the case in 15-D, Tables 5∼7 list the experimental results (i.e., the mean and standard
deviations of the function values found in 20 runs) for each algorithm on twelve test
functions. The average convergence results of benchmark functions on 40-D obtained in 20
runs are presented in Figure 16. From the results in Table 5, it is observed that the ranking
of algorithms achieved is similar to the ranking in the 15-D problems. The new proposed
approach BCO can find relatively optimum within 2000 generations and obtains the best
results in the functions f2, f3 and f4. Table 6 and Figures 7(e)∼7(h) prove that the proposed
algorithm can converge much faster to the best results than all other algorithms to the
functions from f5 to f8. As it concerns to the difficulty in multimodal functions (f9 to f12),
the proposed approach consistently finds the best minimum on the functions f9, f11, and
f12 in Table 7. Figures 7(i), 7(k), and 7(l) once again verify the fastest convergence rate of the
proposed algorithm on those functions. Although it becomes more difficult in 40-D problems,
BCO also achieves the best results compared with the other algorithms in most cases.
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Figure 7: Continued.
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Figure 7: The median convergence characteristics of 40-D test functions.
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4.4. Bacterial Behavior in Bacterial Colony Optimization

According to the comparative experiments, the proposed BCO algorithm shows the superior
searching abilities in most cases. In this section, simulation studies will conduct in a vary
environment with nutrient-noxious distribution. The nutrient distribution of environment at
t = 0 is set by the function as Appendix B, which is also illustrated in Figure 8.

From Figure 9, we are able to conclude that the new proposed optimization algorithm
can find optimum at a high speed. When a relative optimum was found, the strategy was
changed so that more time would be spent on local searching. After a long time of chemotaxis
and communication, reproduction, and elimination process, the final fitness value of each
bacteria has been showed in Figure 10. From Figure 10, we know that all of the bacteria have
found the optimum at the end of 2000 runs.
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Figure 12: The process of finding the optimum.

Figures 11 and 12 suggest that the position of the bacterial group changes with
the chemotaxis process from two dimensions. In BCO, bacterial chemotaxis time equals to
running frequency. Chemotaxis goes along with entire optimization process. For example, if
bacterial chemotaxisNc = 2000, then the whole run frequency Runs = 2000. What the figures
inform us is that bacteria can search for optimum quickly with the help of communication.
Most individuals can even find the optimum in the first 500 runs.

The above figures only point out the group search ability without answering how
microcommunities can adapt their behavior to nutrients. Figures 13 and 14 issue the four
bacteria optimization process. Those four bacteria are initialized from different positions, but
after 100 runs, all of the four have found their optimum.

Figure 15 pictures the single bacterium chemotaxis process when chemotaxis ranges
between 1 and 100. Optimum can be quickly achieved with our proposed method. In the first
25 steps, the bacterium had already entered into optimum region. Thereafter, it changes the
strategy to local search. Figure 16 presents the whole optimum procedure, which reveals the
fact that the bacterium has found the optimum after 100 runs.

5. Conclusions and Future Work

In this paper, a lifecycle model concerned with modeling ecological and evolutionary pro-
cesses of E. coli bacteria is proposed in this paper. The details of some typical evolutionary
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Figure 14: Optimal process of four bacteria when chemotaxis ranges between 1∼100.

behaviors such as chemotaxis, reproduction, extinction, and migration have been described,
and the detailed algorithm used tomodel those behaviors is given. Based on the LCMmodel a
new optimization algorithm—bacterial colony optimization—is proposed. In BCO, bacterial
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Figure 16: Optimal process of one bacterium when chemotaxis ranges between 1∼100.

behaviors (chemotaxis, reproduction, extinction, and migration) during their whole lifecycle
are viewed as evolutionary operators used to find the best solution for a given optimization
problem. Additionally, to improve the search ability of BCO, three types of communication
model are designed for each individual interacted locally with one another.
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Based on the results of the six algorithms on the twelve chosen test problems belonging
to three classes, we can conclude that BCO gives the best performance on almost all the
benchmarks problems irrespective of if they are unrotated or rotated when compared with
five other algorithms.

However, BCO is still in its infant stage. Further work may focus on (i) incorporating a
dynamic population size strategy to BCO, (ii) hybridizing BCO with other swarm intelligent
algorithms, (iii) applying BCO to multiobjective problems.

Appendices

A. Benchmark Functions

A.1. Group A: Unimodal Functions

(1) Sphere function

f1 =
n∑
i=1

x2
i . (A.1)

(2) Rosenbrock function

f2 =
n∑
i=1

100 ×
(
xi+1 − x2

i

)2
+ (1 − xi)2. (A.2)

A.2. Group B: Multimodal Functions

(3) Sum of different powers function

f3 =
n∑
i=1

|xi|i+1. (A.3)

(4) Sin function

f4 =
π

n

{
10 sin2 πx1 +

n−1∑
i=1

(xi − 1)2
(
1 + 10 sin2 πxi+1

)
+ (xn − 1)2

}
. (A.4)

(5) Rastrigin function

f5 =
n∑
i=1

x2
i − 10 cos(2πxi) + 10. (A.5)

(6) Griewank function

f6 =
1

4000

n∑
i=1

(xi − 100)2 −
n∏
i=1

cos
(
xi − 100√

i

)
+ 1. (A.6)
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(7) Ackley function

f7 = −20 exp
⎛
⎝−0.2

√√√√ 1
30

n∑
i=1

x2
i

⎞
⎠ − exp

(
1
30

n∑
i=1

cos 2πxi

)
+ 20 + e. (A.7)

(8) Weierstrass function

f8 =
n∑
i=1

(
kmax∑
k=0

[
ak cos

(
2πbk(xi + 0.5)

)])
− n

kmax∑
k=0

[
ak cos

(
2πbk ∗ 0.5

)]

a = 0.5, b = 3, kmax = 20.

(A.8)

A.3. Group C: Rotated Multimodal Functions

(9) Rotated Rastrigin function

f9 =
n∑
i=1

x2
i − 10 cos

(
2πyi

)
+ 10, y = M ∗ x. (A.9)

(10) Rotated Griewank function

f10 =
1

4000

n∑
i=1

(
yi − 100

)2 −
n∏
i=1

cos
(
yi − 100√

i

)
+ 1, y = M ∗ x. (A.10)

(11) Rotated Ackley function

f11 = −20 exp
⎛
⎝−0.2

√√√√ 1
30

n∑
i=1

y2
i

⎞
⎠ − exp

(
1
30

n∑
i=1

cos 2πyi

)
+ 20 + e, y = M ∗ x. (A.11)

(12) Rotated Weierstrass function

f12 =
n∑
i=1

(
kmax∑
k=0

[
ak cos

(
2πbk

(
yi + 0.5

))]) − n
kmax∑
k=0

[
ak cos

(
2πbk ∗ 0.5

)]
,

a = 0.5, b = 3, kmax = 20, y = M ∗ x.
(A.12)
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B. The Nutrient Distribution Function

F(x) = 5 ∗ exp−0.1((x1−15)2+(x2−20)2) − 2 ∗ exp−0.08((x1−20)2+(x2−15)2)

+ 3 ∗ exp−0.08((x1−25)2+(x2−10)2) + 2 ∗ exp−0.1((x1−10)2+(x2−10)2)

− 2 ∗ exp−0.5((x1−5)2+(x2−10)2) − 4 ∗ exp−0.1((x1−15)2+(x2−5)2)

− 2 ∗ exp−0.5((x1−8)2+(x2−25)2) − 2 ∗ exp−0.1((x1−21)2+(x2−25)2)

+ 2 ∗ exp−0.5((x1−25)2+(x2−16)2) + 2 ∗ exp−0.5((x1−5)2+(x2−14)2).

(B.1)
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