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We investigate the global convergence result, boundedness, and periodicity of solutions of the
recursive sequence xn+1 = axn+((bxn−1+cxn−2+dxn−3)/(αxn−1+βxn−2+γxn−3)), n = 0, 1, . . ., where
the parameters a, b, c, d, α, β, and γ are positive real numbers and the initial conditions x−3, x−2, x−1,
and x0 are positive real numbers.

1. Introduction

Our goal in this paper is to investigate the global stability character, boundedness, and the
periodicity of solutions of the recursive sequence

xn+1 = axn +
bxn−1 + cxn−2 + dxn−3
αxn−1 + βxn−2 + γxn−3

, (1.1)

where the parameters a, b, c, d, α, β, and γ are positive real numbers and the initial
conditions x−3, x−2, x−1, and x0 are positive real numbers.

Recently there has been a lot of interest in studying the global attractivity, the
boundedness character and the periodicity nature of nonlinear difference equations, see for
example [1–15].

The study of the nonlinear rational difference equations of a higher order is quite
challenging and rewarding, and the results about these equations offer prototypes towards
the development of the basic theory of the global behavior of nonlinear difference equations
of a big order, recently many researchers have investigated the behavior of the solution of
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difference equations—for example, in [3] Elabbasy et al. investigated the global stability,
periodicity character and gave the solution of special case of the following recursive
sequence:

xn+1 = axn − bxn

cxn − dxn−1
. (1.2)

In [5] Elabbasy and Elsayed investigated the global stability character and boundedness of
solutions of the recursive sequence

xn+1 =
ax

p
n + b

∏p

r=1xn−r

cx
p
n + d

∏p

r=1xn−r
. (1.3)

Elsayed [11] investigated the global character of solutions of the nonlinear, fourth-order,
rational difference equation

xn+1 = axn−2 +
bxnxn−2

cxn + dxn−3
. (1.4)

Saleh and Aloqeili [16] investigated the difference equation

yn+1 = A +
yn

yn−k
. (1.5)

Yang et al. [17] investigated the invariant intervals, the global attractivity of equilibrium
points, and the asymptotic behavior of the solutions of the recursive sequence

xn+1 =
axn−1 + bxn−2
c + dxn−1xn−2

. (1.6)

For some related work see [16–26].
Here, we recall some basic definitions and some theorems that we need in the sequel.
Let I be some interval of real numbers and let

F : Ik+1 −→ I (1.7)

be a continuously differentiable function. Then for every set of initial conditions
x−k, x−k+1, . . . , x0 ∈ I, the difference equation

xn+1 = F(xn, xn−1, . . . , xn−k), n = 0, 1, . . . , (1.8)

has a unique solution {xn}∞n=−k.
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Definition 1.1 (Equilibrium Point). A point x ∈ I is called an equilibrium point of (1.8) if

x = F(x, x, . . . , x). (1.9)

That is, xn = x for n ≥ 0 is a solution of (1.8), or equivalently, x is a fixed point of f .

Definition 1.2 (Periodicity). A sequence {xn}∞n=−k is said to be periodic with period p if xn+p =
xn for all n ≥ −k.

Definition 1.3 (Stability). (i) The equilibrium point x of (1.8) is locally stable if for every ε >
0, there exists δ > 0 such that for all x−k, x−k+1, . . ., x−1, x0 ∈ I with

|x−k − x| + |x−k+1 − x| + · · · + |x0 − x| < δ, (1.10)

we have

|xn − x| < ε ∀n ≥ −k. (1.11)

(ii) The equilibrium point x of (1.8) is locally asymptotically stable if x is locally
stable solution of (1.8) and there exists γ > 0, such that for all x−k, x−k+1, . . . , x−1, x0 ∈ I with

|x−k − x| + |x−k+1 − x| + · · · + |x0 − x| < γ, (1.12)

we have

lim
n→∞

xn = x. (1.13)

(iii) The equilibrium point x of (1.8) is a global attractor if for all x−k,
x−k+1, . . . , x−1, x0 ∈ I, we have

lim
n→∞

xn = x. (1.14)

(iv) The equilibrium point x of (1.8) is globally asymptotically stable if x is locally
stable, and x is also a global attractor of (1.8).

(v) The equilibrium point x of (1.8) is unstable if x is not locally stable.
The linearized equation of (1.8) about the equilibrium x is the linear difference

equation

yn+1 =
k∑

i=0

∂F(x, x, . . . , x)
∂xn−i

yn−i. (1.15)

Theorem A (see [18]). Assume that pi ∈ R, i = 1, 2, . . . , k and k ∈ {0, 1, 2, . . .}. Then

k∑

i=1

∣
∣pi
∣
∣ < 1 (1.16)
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is a sufficient condition for the asymptotic stability of the difference equation

xn+k + p1xn+k−1 + · · · + pkxn = 0 n = 0, 1, . . . . (1.17)

Theorem B (see [19]). Let g : [a, b]k+1 → [a, b] be a continuous function, where k is a positive
integer, and where [a, b] is an interval of real numbers. Consider the difference equation

xn+1 = g(xn, xn−1, . . . , xn−k), n = 0, 1, . . . . (1.18)

Suppose that g satisfies the following conditions.

(1) For each integer i with 1 ≤ i ≤ k + 1; the function g(z1, z2, . . . , zk+1) is weakly monotonic
in zi for fixed z1, z2, . . . , zi−1, zi+1, . . . , zk+1.

(2) If (m,M) is a solution of thmhje system

m = g(m1, m2, . . . , mk+1), M = g(M1,M2, . . . ,Mk+1), (1.19)

thenm = M, where for each i = 1, 2, . . . , k + 1, we set

mi =

{
m if g is nondecreasing in zi,

M if g is nonincreasing in zi,

Mi =

{
M if g is nondecreasing in zi,

m if g is nonincreasing in zi.

(1.20)

Then there exists exactly one equilibrium x of (1.18), and every solution of (1.18) converges to x.
The paper proceeds as follows. In Section 2, we show that when

(
α + β + γ

)
(b + c + d) > max

{∣∣2α(c + d) − 2b
(
β + γ

)∣
∣,
∣
∣2γ(b + c) − 2d

(
α + β

)∣
∣,∣

∣2β(b + d) − 2c
(
α + γ

)∣
∣

}

(1.21)

then the equilibrium point of (1.1) is locally asymptotically stable. In Section 3 we prove that the
solution is bounded and persists when a < 1 and the solution of (1.1) is unbounded if a > 1. In
Section 4 we prove that there exists a period two solution of (1.1). In Section 5 we prove that the
equilibrium point of (1.1) is global attractor. Finally we give a numerical examples of some special
cases of (1.1) and draw it by using Matlab.

2. Local Stability of the Equilibrium Point of (1.1)

This section deals with study of the local stability character of the equilibrium point of (1.1).
Equation (1.1) has equilibrium point and is given by

x = ax +
b + c + d

α + β + γ
. (2.1)
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If a < 1, then the only positive equilibrium point of (1.1) is given by

x =
b + c + d

(
α + β + γ

)
(1 − a)

. (2.2)

Let f : (0,∞)4 → (0,∞) be a continuously differentiable function defined by

f(u, v,w, t) = au +
bv + cw + dt

αv + βw + γt
. (2.3)

Therefore, it follows that

∂f(u, v,w, t)
∂u

= a,

∂f(u, v,w, t)
∂v

=

(
bβ − cα

)
w +

(
bγ − dα

)
t

(
αv + βw + γt

)2 ,

∂f(u, v,w, t)
∂w

=
−(bβ − cα

)
v +
(
cγ − dβ

)
t

(
αv + βw + γt

)2 ,

∂f(u, v,w, t)
∂t

=
−(bγ − dα

)
v − (cγ − dβ

)
w

(
αv + βw + γt

)2 .

(2.4)

Then we see that

∂f(x, x, x, x)
∂u

= a = −a3,

∂f(x, x, x, x)
∂v

=

(
bβ − cα

)
+
(
bβ − dα

)

(
α + β + γ

)2
x

=

[(
bβ − cα

)
+
(
bγ − dα

)]
(1 − a)

(
α + β + γ

)
(b + c + d)

= −a2,

∂f(x, x, x, x)
∂w

=
−(bβ − cα

)
+
(
cγ − dβ

)

(
α + β + γ

)2
x

=

[−(bβ − cα
)
+
(
cγ − dβ

)]
(1 − a)

(
α + β + γ

)
(b + c + d)

= −a1,

∂f(x, x, x, x)
∂t

=
−(bγ − dα

) − (cγ − dβ
)

(
α + β + γ

)2
x

=

[−(bγ − dα
) − (cγ − dβ

)]
(1 − a)

(
α + β + γ

)
(b + c + d)

= −a0.

(2.5)

Then the linearized equation of (1.1) about x is

yn+1 + a3yn + a2yn−1 + a1yn−2 + a0yn−3 = 0, (2.6)

whose characteristic equation is

λ4 + a3λ
3 + a2λ

2 + a1λ + a0 = 0. (2.7)
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Theorem 2.1. Assume that

(
α + β + γ

)
(b + c + d) > max

⎧
⎨

⎩

∣
∣2α(c + d) − 2b

(
β + γ

)∣
∣,∣

∣2γ(b + c) − 2d
(
α + β

)∣
∣,∣

∣2β(b + d) − 2c
(
α + γ

)∣
∣

⎫
⎬

⎭
. (2.8)

Then the positive equilibrium point of (1.1) is locally asymptotically stable.

Proof. It is follows by Theorem A that (2.6) is asymptotically stable if all roots of (2.7) lie in
the open disc |λ| < 1, that is, if

|a3| + |a2| + |a1| + |a0| < 1.

|a| +
∣
∣
∣
∣
∣

[(
bβ − cα

)
+
(
bγ − dα

)]
(1 − a)

(
α + β + γ

)
(b + c + d)

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

[−(bβ − cα
)
+
(
cγ − dβ

)]
(1 − a)

(
α + β + γ

)
(b + c + d)

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

[−(bγ − dα
) − (cγ − dβ

)]
(1 − a)

(
α + β + γ

)
(b + c + d)

∣
∣
∣
∣
∣
< 1,

(2.9)

and so

∣
∣
[(
bβ − cα

)
+
(
bγ − dα

)]
(1 − a)

∣
∣ +
∣
∣
[−(bβ − cα

)
+
(
cγ − dβ

)]
(1 − a)

∣
∣

+
∣
∣
[−(bγ − dα

) − (cγ − dβ
)]
(1 − a)

∣
∣ <
[(
α + β + γ

)
(b + c + d)

]
(1 − a).

(2.10)

Dividing the denominator and numerator by (1 − a) gives

∣
∣
(
bβ − cα

)
+
(
bγ − dα

)∣
∣ +
∣
∣−(bβ − cα

)
+
(
cγ − dβ

)∣
∣

+
∣
∣−(bγ − dα

) − (cγ − dβ
)∣
∣ <
(
α + β + γ

)
(b + c + d).

(2.11)

Suppose that

B1 =
(
bβ − cα

)
+
(
bγ − dα

)
,

B2 = −(bβ − cα
)
+
(
cγ − dβ

)
,

B3 = −(bγ − dα
) − (cγ − dβ

)
.

(2.12)

We consider the following cases.
(1) B1 > 0, B2 > 0, and B3 > 0. In this case we see from (2.11) that

(
bβ − cα

)
+
(
bγ − dα

) − (bβ − cα
)
+
(
cγ − dβ

) − (bγ − dα
)

− (cγ − dβ
)
<
(
α + β + γ

)
(b + c + d),

(2.13)
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if and only if

(
α + β + γ

)
(b + c + d) > 0, (2.14)

which is always true.
(2) B1 > 0, B2 > 0, and B3 < 0. It follows from (2.11) that

(
bβ − cα

)
+
(
bγ − dα

) − (bβ − cα
)
+
(
cγ − dβ

)
+
(
bγ − dα

)
+
(
cγ − dβ

)

<
(
α + β + γ

)
(b + c + d),

(2.15)

if and only if

2γ(b + c) − 2d
(
α + β

)
<
(
α + β + γ

)
(b + c + d), (2.16)

which is satisfied by (2.8).
(3) B1 > 0, B2 < 0, and B3 > 0. We see from (2.11) that

(
bβ − cα

)
+
(
bγ − dα

)
+
(
bβ − cα

) − (cγ − dβ
) − (bγ − dα

)

− (cγ − dβ
)
<
(
α + β + γ

)
(b + c + d),

(2.17)

if and only if

2β(b + d) − 2c
(
α + γ

)
<
(
α + β + γ

)
(b + c + d), (2.18)

which is satisfied by (2.8).
(4) B1 > 0, B2 < 0, and B3 < 0. It follows from (2.11) that

(
bβ − cα

)
+
(
bγ − dα

)
+
(
bβ − cα

) − (cγ − dβ
)
+
(
bγ − dα

)
+
(
cγ − dβ

)

<
(
α + β + γ

)
(b + c + d),

(2.19)

if and only if

2b
(
β + γ

) − 2α(c + d) <
(
α + β + γ

)
(b + c + d), (2.20)

which is satisfied by (2.8).
(5) B1 < 0, B2 > 0, and B3 > 0. We see from (2.11) that

− (bβ − cα
) − (bγ − dα

) − (bβ − cα
)
+
(
cγ − dβ

) − (bγ − dα
) − (cγ − dβ

)

<
(
α + β + γ

)
(b + c + d),

(2.21)
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if and only if

2α(c + d) − 2b
(
β + γ

)
<
(
α + β + γ

)
(b + c + d), (2.22)

which is satisfied by (2.8).
(6) B1 < 0, B2 > 0, and B3 < 0. It follows from (2.11) that

− (bβ − cα
) − (bγ − dα

) − (bβ − cα
)
+
(
cγ − dβ

)
+
(
bγ − dα

)

+
(
cγ − dβ

)
<
(
α + β + γ

)
(b + c + d),

(2.23)

if and only if

2c
(
α + γ

) − 2β(b + d) <
(
α + β + γ

)
(b + c + d), (2.24)

which is satisfied by (2.8).
(7) B1 < 0, B2 < 0, and B3 > 0. We see from (2.11) that

− (bβ − cα
) − (bγ − dα

)
+
(
bβ − cα

) − (cγ − dβ
) − (bγ − dα

) − (cγ − dβ
)

<
(
α + β + γ

)
(b + c + d),

(2.25)

if and only if

2d
(
α + β

) − 2γ(b + c) <
(
α + β + γ

)
(b + c + d), (2.26)

which is satisfied by (2.8).
(8) B1 < 0, B2 < 0, and B3 < 0. It follows from (2.11) that

− (bβ − cα
) − (bγ − dα

)
+
(
bβ − cα

) − (cγ − dβ
)
+
(
bγ − dα

)
+
(
cγ − dβ

)

<
(
α + β + γ

)
(b + c + d),

(2.27)

if and only if

(
α + β + γ

)
(b + c + d) > 0, (2.28)

which is always true. The proof is complete.

3. Boundedness of Solutions of (1.1)

Here we study the boundedness nature and persistence of solutions of (1.1).
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Theorem 3.1. Every solution of (1.1) is bounded and persists if a < 1.

Proof. Let {xn}∞n=−3 be a solution of (1.1). It follows from (1.1) that

xn+1 = axn +
bxn−1 + cxn−2 + dxn−3
αxn−1 + βxn−2 + γxn−3

= axn +
bxn−1

αxn−1 + βxn−2 + γxn−3

+
cxn−2

αxn−1 + βxn−2 + γxn−3
+

dxn−3
αxn−1 + βxn−2 + γxn−3

.

(3.1)

Then

xn+1 ≤ axn +
bxn−1
αxn−1

+
cxn−2
βxn−2

+
dxn−3
γxn−3

= axn +
b

α
+
c

β
+
d

γ
∀n ≥ 1. (3.2)

By using a comparison, we see that

lim sup
n−→∞

xn ≤ bβγ + cαγ + dαβ

αβγ(1 − a)
= M. (3.3)

Thus the solution is bounded.
Now we wish to show that there exists m > 0 such that

xn ≥ m ∀n ≥ 1. (3.4)

The transformation

xn =
1
yn

(3.5)

will reduce (1.1) to the equivalent form

1
yn+1

=
a
(
αyn−2yn−3 + βyn−1yn−3 + γyn−1yn−2

)
+ yn

(
byn−2yn−3 + cyn−1yn−3 + dyn−1yn−2

)

yn

(
αyn−2yn−3 + βyn−1yn−3 + γyn−1yn−2

) ,

(3.6)

or

yn+1 =
yn

(
αyn−2yn−3 + βyn−1yn−3 + γyn−1yn−2

)

a
(
αyn−2yn−3 + βyn−1yn−3 + γyn−1yn−2

)
+ yn

(
byn−2yn−3 + cyn−1yn−3 + dyn−1yn−2

) .

(3.7)
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It follows that

yn+1 ≤
yn

(
αyn−2yn−3 + βyn−1yn−3 + γyn−1yn−2

)

yn

(
byn−2yn−3 + cyn−1yn−3 + dyn−1yn−2

)

=
αyn−2yn−3

byn−2yn−3 + cyn−1yn−3 + dyn−1yn−2
+

βyn−1yn−3
byn−2yn−3 + cyn−1yn−3 + dyn−1yn−2

+
γyn−1yn−2

byn−2yn−3 + cyn−1yn−3 + dyn−1yn−2

≤ αyn−2yn−3
byn−2yn−3

+
βyn−1yn−3
cyn−1yn−3

+
γyn−1yn−2
dyn−1yn−2

=
α

b
+
β

c
+
γ

d

=
αcd + βbd + γbc

bcd
= H ∀n ≥ 1.

(3.8)

Thus we obtain

xn =
1
yn

≥ 1
H

=
bcd

αcd + βbd + γbc
= m ∀n ≥ 1. (3.9)

From (3.3) and (3.9), we see that

m ≤ xn ≤ M ∀n ≥ 1. (3.10)

Therefore, every solution of (1.1) is bounded and persists.

Theorem 3.2. Every solution of (1.1) is unbounded if a > 1.

Proof. Let {xn}∞n=−3 be a solution of (1.1). Then from (1.1)we see that

xn+1 = axn +
bxn−1 + cxn−2 + dxn−3
αxn−1 + βxn−2 + γxn−3

> axn ∀n ≥ 1. (3.11)

We see that the right-hand side can be written as follows:

yn+1 = ayn =⇒ yn = any0, (3.12)

and this equation is unstable because a > 1, and limn→∞yn = ∞. Then by using ratio test
{xn}∞n=−3 is unbounded from above.

4. Existence of Periodic Solutions

In this section we study the existence of periodic solutions of (1.1). The following theorem
states the necessary and sufficient conditions that this equation has periodic solutions of
prime period two.
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Theorem 4.1. Equation (1.1) has positive prime period two solutions if and only if

(i) (b + d − c)(α + γ − β)(1 + a) + 4(aβ(b + d) + c(α + γ)) > 0, α + γ > β, b + d > c.

Proof. First suppose that there exists a prime period two solution

. . . , p, q, p, q, . . . , (4.1)

of (1.1). We will prove that condition (i) holds.
We see from (1.1) that

p = aq +
bp + cq + dp

αp + βq + γp
= aq +

ep + cq

fp + βq
, where e = b + d, f = α + γ,

q = ap +
bq + cp + dq

αq + βp + γq
= ap +

eq + cp

fq + βp
.

(4.2)

Then

fp2 + βpq = afpq + aβq2 + ep + cq, (4.3)

fq2 + βpq = afpq + aβp2 + eq + cp. (4.4)

Subtracting (4.3) from (4.4) gives

f
(
p2 − q2

)
= −aβ

(
p2 − q2

)
+ (e − c)

(
p − q

)
. (4.5)

Since p /= q, it follows that

p + q =
(e − c)
(
f + aβ

) . (4.6)

Again, adding (4.3) and (4.4) yields

f
(
p2 + q2

)
+ 2βpq = 2afpq + aβ

(
p2 + q2

)
+ (e + c)

(
p + q

)
(4.7)

or

(
f − aβ

)(
p2 + q2

)
+ 2
(
β − af

)
pq = (e + c)

(
p + q

)
. (4.8)
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It follows by (4.6), (4.8) and the relation

p2 + q2 =
(
p + q

)2 − 2pq ∀p, q ∈ R (4.9)

that

2
(
β − f

)
(1 + a)pq =

2
(
eaβ + cf

)
(e − c)

(
f + aβ

)2 . (4.10)

Thus

pq =

(
eaβ + cf

)
(e − c)

(
f + aβ

)2(
β − f

)
(1 + a)

. (4.11)

Now it is clear from (4.6) and (4.11) that p and q are the two distinct roots of the quadratic
equation

t2 −
(

(e − c)
(
f + aβ

)

)

t +

( (
eaβ + cf

)
(e − c)

(
f + aβ

)2(
β − f

)
(1 + a)

)

= 0, (4.12)

(
f + aβ

)
t2 − (e − c)t +

( (
eaβ + cf

)
(e − c)

(
f + aβ

)(
β − f

)
(1 + a)

)

= 0, (4.13)

and so

[e − c]2 − 4
(
eaβ + cf

)
(e − c)

(
β − f

)
(1 + a)

> 0, (4.14)

or

[e − c]2 +
4
(
eaβ + cf

)
(e − c)

(
f − β

)
(1 + a)

> 0,

(e − c)
(
f − β

)
(1 + a) + 4

(
eaβ + cf

)
> 0.

(4.15)

Therefore, inequality (i) holds.
Second, suppose that inequality (i) is true. We will show that (1.1) has a prime period

two solution.
Assume that

p =
e − c + ζ

2
(
f + aβ

) ,

q =
e − c − ζ

2
(
f + aβ

) ,

(4.16)

where ζ =
√
[e − c]2 − 4(eaβ + cf)(e − c)/(β − f)(1 + a).
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We see from inequality (i) that

(e − c)
(
f − β

)
(1 + a) + 4

(
eaβ + cf

)
> 0, e > c, f > β, (4.17)

which is equivalent to

(e − c)2 >
4
(
eaβ + cf

)
(e − c)

(
β − f

)
(1 + a)

. (4.18)

Therefore, p and q are distinct real numbers.
Set

x−3 = p, x−2 = q, x−1 = p, x0 = q. (4.19)

We wish to show that

x1 = x−1 = p, x2 = x0 = q. (4.20)

It follows from (1.1) that

x1 = aq +
bp + cq + dp

αp + βq + γp
= aq +

ep + cq

fp + βq

= a

(
e − c − ζ

2
(
f + aβ

)

)

+
e
(
(e − c + ζ)/2

(
f + aβ

))
+ c
(
(e − c − ζ)/2

(
f + aβ

))

f
(
(e − c + ζ)/2

(
f + aβ

))
+ β
(
(e − c − ζ)/2

(
f + aβ

)) .

(4.21)

Dividing the denominator and numerator by 2(f + aβ) gives

x1 =
ae − ac − aζ

2
(
f + aβ

) +
e(e − c + ζ) + c(e − c − ζ)
f(e − c + ζ) + β(e − c − ζ)

=
ae − ac − aζ

2
(
f + aβ

) +
(e − c)[(e + c) + ζ]

(
f + β

)
(e − c) +

(
f − β

)
ζ
.

(4.22)
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Multiplying the denominator and numerator of the right side by (f +β)(e− c)− (f −β)ζ gives

x1 =
ae − ac − aζ

2
(
f + aβ

) +
(e − c)[(e + c) + ζ]

[(
f + β

)
(e − c) − (f − β

)
ζ
]

[(
f + β

)
(e − c) +

(
f − β

)
ζ
][(

f + β
)
(e − c) − (f − β

)
ζ
]

=
ae − ac − aζ

2
(
f + aβ

)

+
(e − c)

{(
f + β

)(
e2 − c2

)
+ ζ
[(
f + β

)
(e − c) − (f − β

)
(e + c)

] − (f − β
)
ζ2
}

(
f + β

)2(e − c)2 − (f − β
)2
ζ2

=
ae − ac − aζ

2
(
f + aβ

) +
(e − c)

{(
f + β

)(
e2 − c2

)
+ 2ζ
(
βe − cf

) − (f − β
)A}

(
f + β

)2(e − c)2 − (f − β
)2A

=
ae − ac − aζ

2
(
f + aβ

) +
(e − c)

{(
f + β

)(
e2 − c2

)
+ 2ζ
(
βe − cf

) − B}
(
f + β

)2(e − c)2 − (f − β
)2A

=
ae − ac − aζ

2
(
f + aβ

) +
(e − c)

{
2(e − c)

[
fc + βe − 2

(
eaβ + cf

)
/(1 + a)

]
+ 2ζ
(
βe − cf

)}

4(e − c)
[
βf(e − c) +

(
β − f

)(
eaβ + cf

)
/(1 + a)

] ,

(4.23)

whereA denotes to [e − c]2−4(eaβ+cf)(e−c)/(β−f)(1+a) and B denotes to (f−β)(e − c)2+
4(eaβ + cf)(e − c)/(1 + a).

Multiplying the denominator and numerator of the right side by (1 + a), we obtain

x1 =
ae − ac − aζ

2
(
f + aβ

) +
(e − c)

[(
fc + βe

)
(1 + a) − 2

(
eaβ + cf

)]
+ ζ(1 + a)

(
βe − cf

)

2
[
βf(e − c)(1 + a) +

(
β − f

)(
eaβ + cf

)]

=
ae − ac − aζ

2
(
f + aβ

) +
(e − c)

(
βe − fc

)
(1 − a) + ζ(1 + a)

(
βe − cf

)

2
[
βf(e − c)(1 + a) +

(
β − f

)(
eaβ + cf

)]

=
ae − ac − aζ

2
(
f + aβ

) +

(
βe − fc

){(e − c)(1 − a) + ζ(1 + a)}
2
(
βe − cf

)(
f + aβ

)

=
ae − ac − aζ

2
(
f + aβ

) +
(e − c)(1 − a) + ζ(1 + a)

2
(
f + aβ

)

=
ae − ac − aζ + (e − c)(1 − a) + ζ(1 + a)

2
(
f + aβ

) =
e − c + ζ

2
(
f + aβ

) = p.

(4.24)

Similarly as before one can easily show that

x2 = q. (4.25)
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Then it follows by induction that

x2n = q, x2n+1 = p ∀n ≥ −1. (4.26)

Thus (1.1) has the prime period two solution

. . . , p, q, p, q, . . . , (4.27)

where p and q are the distinct roots of the quadratic equation (4.13) and the proof is complete.

5. Global Attractor of the Equilibrium Point of (1.1)

In this section, we investigate the global asymptotic stability of (1.1).

Lemma 5.1. For any values of the quotient b/α, c/β, and d/γ, the function f(u, v,w, t) defined
by (2.3) has the monotonicity behavior in its three arguments.

Proof. The proof follows by some computations and it will be omitted.

Remark 5.2. It follows from (1.1), when b/α = c/β = d/γ , that

xn+1 = axn + λ ∀n ≥ −3 and for some constant λ. (5.1)

Whenever the quotients α/A, β/B, and γ/C are not equal, we get the following
result.

Theorem 5.3. The equilibrium point x is a global attractor of (1.1) if one of the following statements
holds:

(1)
b

α
≥ c

β
≥ d

γ
, d ≥ b + c,

(2)
b

α
≥ d

γ
≥ c

β
, c ≥ b + d,

(3)
c

β
≥ b

α
≥ d

γ
, d ≥ b + c,

(4)
c

β
≥ d

γ
≥ b

α
, b ≥ c + d,

(5)
d

γ
≥ c

β
≥ b

α
, b ≥ c + d,

(6)
d

γ
≥ b

α
≥ c

β
, c ≥ b + d.

(5.2)
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Proof. Let {xn}∞n=−3 be a solution of (1.1) and again let f be a function defined by (2.3).
We will prove the theorem when case (1.1) is true, and the proof of the other cases is

similar and so will be omitted.

Assume that (5.2) is true, then it is easy from the equations after (2.3) to see that the
function f(u, v,w, t) is nondecreasing in u, v and nonincreasing in t and it is not clear what
is going on with w. So we consider the following two cases.

Case 1. Assume that the function f(u, v,w, t) is nondecreasing in w.
Suppose that (m,M) is a solution of the system M = f(M,M,M,m) and m =

g(m,m,m,M). Then from (1.1), we see that

M = aM +
bM + cM + dm

αM + βM + γm
, m = am +

bm + cm + dM

αm + βm + γM
, (5.3)

or

M(1 − a) =
bM + cM + dm

αM + βM + γm
, m(1 − a) =

bm + cm + dM

αm + βm + γM
. (5.4)

Then

(
α + β

)
(1 − a)M2 + γ(1 − a)Mm = (b + c)M + dm,

(
α + β

)
(1 − a)m2 + γ(1 − a)Mm = (b + c)m + dM.

(5.5)

Subtracting this two equations, we obtain

(M −m)
{(

α + β
)
(1 − a)(M +m) + (d − b − c)

}
= 0, (5.6)

under the conditions d ≥ b + c, a < 1, we see that

M = m. (5.7)

It follows by Theorem B that x is a global attractor of (1.1) and then the proof is complete.

Case 2. Assumes that the function f(u, v,w, t) is nonincreasing in w.
Suppose that (m,M) is a solution of the system M = f(M,M,m,m) and m =

g(m,m,M,M). Then from (1.1), we see that

M = aM +
bM + cM + dm

αM + βM + γm
, m = am +

bm + cm + dM

αm + βm + γM
, (5.8)

or

M(1 − a) =
bM + cm + dm

αM + βm + γm
, m(1 − a) =

bm + cM + dM

αm + βM + γM
. (5.9)
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Then

α(1 − a)M2 +
(
β + γ

)
(1 − a)Mm = bM + (c + d)m,

α(1 − a)m2 +
(
β + γ

)
(1 − a)Mm = bm + (c + d)M.

(5.10)

Subtracting these two equations we obtain

(M −m){α(1 − a)(M +m) + (c + d − b)} = 0. (5.11)
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Under the conditions d ≥ b + c, a < 1, we see that

M = m. (5.12)

It follows by Theorem B that x is a global attractor of (1.1) and then the proof is complete.
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6. Numerical Examples

For confirming the results of this paper, we consider numerical examples which represent
different types of solutions to (1.1).

Example 6.1. We assume x−3 = 2, x−2 = 3, x−1 = 8, x0 = 5, a = 0.6, b = 7, c = 3, d = 9, α =
3.8, β = 0.2, and γ = 1.2. See Figure 1.

Example 6.2 (see [Figure 2]). Since x−3 = 5, x−2 = 6, x−1 = 3, x0 = 4, a = 1.3, b = 5, c =
3, d = 8, α = 6, β = 4, and γ = 7.

Example 6.3. We consider x−3 = 5, x−2 = 7, x−1 = 11, x0 = 3, a = 5, b = 2, c = 3, d = 4, α =
3, β = 2, and γ = 7. See Figure 3.

Example 6.4 (see [Figure 4]). Since x−3 = 7, x−2 = 2, x−1 = 3, x0 = 5, a = 0.1, b = 2, c =
5, d = 1.4, α = 1.3, β = 2, and γ = 3.

Example 6.5 (see [Figure 5]). It shows the solutions when x−3 = x−1 = p, x−2 = x0 = q, a =
0.6, b = 7, c = 3, d = 9, α = 3.8, β = 0.2, γ = 1.2

Since p, q =

⎛

⎜
⎝

(e − c) ±
√
[e − c]2 − 4

(
eaβ + cf

)
(e − c)/

(
β − f

)
(1 + a)

2
(
f + aβ

)

⎞

⎟
⎠. (6.1)
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