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Let {Si}li=1 be a weakly conformal iterated function system on R
d with attractor K. Let π be the

canonical projection. In this paper we define a new concept called “projection pressure” Pπ(ϕ)
for ϕ ∈ C(Σ) and show the variational principle about the projection pressure under AWSC.
Furthermore, we check that the zero of “projection pressure” still satisfies Bowen’s equation. Using
the root of Bowen’s equation, we can get the Hausdorff dimension of the attractor K.

1. Introduction

Let {Si : X → X}li=1 be a family of contractive maps on a nonempty closed set X ⊂ R
d.

Following Barnsley [1], we say that {Si}li=1 is an iterated function system (IFS) onX. Hutchinson
[2] showed that there is a unique nonempty compact setK ⊂ X, called the attractor of {Si}li=1,
such that K = ∪li=1Si(K).

There are many references to compute the Hausdorff dimension ofK or the Hausdorff
dimension of multifractal spectrum, such as, [3–5]. Thermodynamic formalism played a
significant role when we try to compute the Hausdorff dimension of K, especially the
Bowen’s equation. Usually, we call PJ(tψ) = 0 the Bowen’s equation, where PJ is the
topological pressure of the map f : J → J , and ψ is the geometric potential ψ(z) = log |f ′(z)|.
The root of Bowen’s equation always approaches the Hausdorff dimension of some sets.
In [6], Bowen first discovered this equation while studying the Hausdorff dimension of
quasicircles. Later Ruelle [7], Gatzouras and Peres [8] showed that Bowen’s equation gives
the Hausdorff dimension of J whenever f is a C1 conformal map on a Riemannian manifold
and J is a repeller. According to the method for calculating Hausdorff dimension of cookie-
cutters presented by Bedford [9], Keller discussed the relation between classical pressure
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and dimension for IFS [10]. He concluded that if {Si}li=1 is a conformal IFS satisfying
the disjointness condition with local energy function ψ, then the pressure function has a
unique zero root t0 = dimHK. In 2000, using the definition of Carathe’ odory dimension
characteristics, Barreira and Schmeling [11] introduced the notion of the u-dimension dimuZ
for positive functions u, showing that dimuZ is the unique number t such that PZ(−tu) = 0.

On the progress of calculating dimHK, [3–5] depend on the open set condition and
separable condition. In fact, there are a lot of examples that do not satisfy this disjointness
condition. Rao and Wen once discussed a kind of self-similar fractal with overlap structure
called λ-Cantor set [12].

In order to study the Hausdorff dimension of an invariant measure μ for conformal
and affine IFS with overlaps, Feng and Hu introduce a notion projection entropy (see [13]),
which plays the similar role as the classical entropy of IFS satisfying the open set condition,
and it becomes the classical entropy if the projection is finite to one.

Bedford pointed out that the Bowen’s equation works if three elements are present:
(i) conformal contractions, (ii) open set conditions, and (iii) subshift of finite-type (Markov)
structure. Chen and Xiong [14] proved that subshift of finite-type (Markov) structure can
be replaced by any subshift structure. In [15, 16], the authors defined projection pressure for
two different types of IFS. In this paper, we consider projection pressure under asymptotically
weak separation condition (AWSC) and check that Bowen’s equation still holds.

2. The Projection Pressure for AWSC: Definition and
Variational Principle

Let {Si}li=1 be an IFS on a closed set X ⊂ R
d. Denote by K its attractor. Let Σ = {1, . . . , l}N

associated with the left shift σ. Let Mσ(Σ) denote the space of σ-invariant measure on Σ,
endowed with the weak-star topology, C(X) the space of real-valued continuous functions of
X, and π : Σ → K be the canonical projection defined by

{π(x)} =
∞⋂

n=1

Sx1 ◦ Sx2 ◦ · · · ◦ Sxn(K), where x = {xi}∞i=1. (2.1)

Ameasure μ onK is called invariant (resp., ergodic) for the IFS if there is and invariant
(resp., ergodic) measure ν on Σ such that μ = ν ◦ π−1.

Let (Ω,F, ν) be a probability space. For a sub-σ-algebra A of F and f ∈ L1(Ω,F, ν),
we denote by Eν(f |A) the conditional expectation of f givenA. For countable F-measurable
partition ξ of Ω. We denote by Iν(ξ|A) the conditional information of ξ given A, which is
given by the formular:

Iν(ξ | A) = −
∑

A∈ξ
XA log Eν(XA | A), (2.2)

where XA denote the characteristic function on A.
The conditional entropy of ξ given A, written Hν(ξ|A) is defined by the formula

Hν(ξ|A) =
∫
Iν(ξ|A)dν.

The above information and entropy are unconditional when A = N, the trivial σ-
algebra consisting of sets of measure zero and one, and in this case we write

Iν(ξ | A) = Iν(ξ), Hν(ξ | N) = Hν(ξ). (2.3)
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Now we consider the space (Σ,B(Σ), m), where B(Σ) is the Borel σ-algebra on Σ and
m ∈Mσ(Σ). Let P denote the Borel partition:

P =
{[
j
]
: 1 ≤ j ≤ l} (2.4)

of Σ, where [j] = {(xi)∞i=1 ∈ Σ, x1 = j}. Let I denotes the σ-algebra:

I =
{
B ∈ B(Σ) : σ−1B = B

}
. (2.5)

For convenience, we use γ to denote the Borel σ-algebra B(Rd) of R
d. For f ∈ C(X),

denote ‖f‖ = supx∈Xf(x) and Snf(x) =
∑n−1

i=0 f(σ
nx), for all x ∈ X. Let Σn = {[b] : [b] =

(x1, x2, . . . , xn), xi ∈ Σ, i = 1, . . . , n}.

Definition 2.1. For anym ∈Mσ(Σ), we call

hπ(σ,m) = Hm

(
P | σ−1π−1γ

)
−Hm

(
P | π−1γ

)
(2.6)

the projection entropy ofm under π w.r.t {Si}, and we call

hπ(σ,m, x) = Em
(
f | I)(x) (2.7)

the local projection entropy of m at x under π w.r.t {Si}li=1, where f denote the function
Im(P|σ−1π−1γ) − Im(P|σ−1γ).

It is clear that hπ(σ,m) =
∫
hπ(σ,m, x)dm(x).

The following Lemma 2.2 gives the relation between the projection entropy and the
classical entropy and the basic properties of the new entropy which are similar to the classical
entropy’s. For more details we can see Theorem 2.2 in [13].

Lemma 2.2. Let {Si}li=1 be an IFS. Then

(i) For anym ∈Mσ(Σ), one has 0 ≤ hπ(σ,m) ≤ h(σ,m), where h(σ,m) denotes the classical
measure-theoretic entropy ofm associated with σ.

(ii) The map m �→ hπ(σ,m) is affine on Mσ(Σ). Furthermore if m =
∫
νdP(ν) is the ergodic

decomposition ofm, one has

hπ(σ,m) =
∫
hπ(σ, ν)dP(ν). (2.8)

(iii) For anym ∈Mσ(Σ), one has

lim
n→∞

1
n
Im
(
Pn−1

0 | π−1γ
)
(x) = h(σ,m, x) − hπ(σ,m, x), (2.9)

for m-a.e. x ∈ Σ, where h(σ,m, x) denotes the local entropy ofm at x, that is, h(σ,m, x) =
Im(P | σ−1B(Σ))(x).
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Definition 2.3. Let k ∈ N and ν ∈Mσk(Σ). Define

hπ
(
σk, ν

)
= Hν

(
Pk−1

0 | σ−kπ−1γ
)
−Hν

(
Pk−1

0 | π−1γ
)
. (2.10)

The term hπ(σk, ν) can be viewed as the projection measure-theoretic entropy of ν
w.r.t. the IFS {Si1 ◦ · · · ◦ Sik : 1 ≤ ij ≤ l for 1 ≤ j ≤ k}. The following lemma exploits the
connection between hπ(σk, ν) and hπ(σ,m), wherem = (1/k)

∑k−1
i=0 ν ◦ σ−i.

Lemma 2.4. Let k ∈ N and ν ∈ MσkΣ. Set m = (1/k)
∑k−1

i=0 ν ◦ σ−i. Then m is σ-invariant, and
hπ(σ, ν) = (1/k)hπ(σk, ν) = (1/k)hπ(σk,m).

Proof. See Proposition 4.3 in [13].

Definition 2.5. An IFS {Si}li=1 on a compact set X ⊂ R
d is said to satisfy the asymptotically weak

separation condition (AWSC), if

lim
n→∞

1
n
log tn = 0, (2.11)

where tn is given by

tn = sup
x∈Rd

#
{
Su : u ∈ {1, . . . , l}n, x ∈ Su(K)

}
, (2.12)

here K is the attractor of {Si}li=1.

Lemma 2.6. Let {Si}li=1 be an IFS with attractorK. Suppose thatΩ is a subset of {1, . . . , l} such that
there is a map g: {1, . . . , l} → Ω so that

Si = Sg(i) (i = 1, . . . , l). (2.13)

Let (ΩN, σ̃) denote the one-side full shift over Ω. Define G: Σ → ΩN by (xj)
∞
j=1 �→ (g(xj))

∞
j=1. Then

(i) K is also the attractor of {Si}i∈Ω. Moreover, if one lets π̃ : ΩN → K denote the canonical
projection w.r.t. {Si}i∈Ω, then one has π = π̃ ◦G.

(ii) Letm ∈Mσ(Σ). Then ν = m ◦G−1 ∈Mσ̃(ΩN). Furthermore, hπ(σ,m) = hπ̃(σ̃, ν).

Proof. See Lemma 4.23 in [13].

Lemma 2.7. Let {Si}li=1 be an IFS with attractorK ⊂ R
d. Assume that

#{1 ≤ i ≤ l : x ∈ Si(K)} ≤ k (2.14)

for some k ∈ N and each x ∈ R
d. Then hπ(σ,m) ≥ h(σ,m) − log k for anym ∈Mσ(Σ).

Proof. See Lemma 4.21 in [13].
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Lemma 2.8. Let a1, a2, . . . , ak be given real numbers. If pi ≥ 0 and
∑k

i=0 pi = 1, then
∑k

i=0 pi(ai −
log pi) ≤ log(

∑k
i=0 e

ai) and equality holds iff pi = eai /
∑k

j=1 e
aj .

Proof. See Lemma 9.9 in [17].

For convenience, for n ∈ N, write Σn = {1, . . . , l}n. According to Lemma 2.6 there is a
set Ωn ⊂ Σn and a map g : Σn → Ωn such that Su = Sg(u) for u ∈ Σn. Let (ΩN

n , T) denote
the one-sided full shift space over the alphabet ΩN

n and ξn denote the natural generator. Let
G : Σ → ΩN

n be defined by

(xi)∞i=1 �−→
(
g
(
xjn+1 · · ·x(j+1)n

))∞
j=0. (2.15)

Theorem 2.9. Suppose an IFS {Si}li=1 satisfies the AWSC with attractor K and f : Σ → R is
continuous. Then

lim
n→∞

1
n

⎛

⎝log
∑

[u]∈ξn
sup

x∈G−1[u]
eSnf(x)

⎞

⎠ = sup
{
hπ(σ,m) +

∫
fdm : m ∈Mσ(Σ)

}
. (2.16)

Proof. We divided the proof into two steps.

Step 1.

lim inf
n→∞

1
n

⎛

⎝log
∑

[u]∈ξn
sup

x∈G−1[u]
eSnf(x)

⎞

⎠ ≥ sup
{
hπ(σ,m) +

∫
fdm : m ∈Mσ(Σ)

}
. (2.17)

For arbitrary n ∈ N, m ∈Mσ(Σ), thenm ∈Mσn(Σ). By Lemma 2.8, we have

log
∑

[u]∈ξn
sup

x∈G−1[u]
eSnf(x) ≥

∑

[u]∈ξn
m ◦G−1([u])

(
sup

x∈G−1[u]
Snf(x) − logm ◦G−1([u])

)

= Hm◦G−1(ξn) +
∑

[u]∈ξn
m ◦G−1([u]) ◦ sup

x∈G−1[u]
Snf(x)

≥ Hm◦G−1(ξn) +
∫
Snf(x)dm

= h
(
T,m ◦G−1

)
+ n

∫
fdm.

(2.18)

By Lemma 2.2(i) and Lemma 2.6(ii), divided by n yields

1
n
log

∑

[u]∈ξn
sup

x∈G−1[u]
eSnf(x) ≥ h

(
T,m ◦G−1)

n
+
∫
fdm

≥ hπ̃
(
T,m ◦G−1)

n
+
∫
fdm
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=
hπ(σn,m)

n
+
∫
fdm

= hπ(σ,m) +
∫
fdm.

(2.19)

By the arbitrariness ofm and n, we have Step 1.

Step 2.

sup
{
hπ(σ,m) +

∫
fdm : m ∈Mσ(Σ)

}
≥ lim sup

n→∞

1
n

⎛

⎝log
∑

[u]∈ξn
sup

x∈G−1([u])
eSnf(α)

⎞

⎠. (2.20)

By the continuity of f , for arbitrary ε > 0, there existsN ∈ N such that for arbitrary aN ∈ ΣN

and any x, y ∈ aN , we have

∣∣f(x) − f(y)∣∣ < ε. (2.21)

Now, for any n ∈ N and an+N ∈ Σn+N

∣∣Sn+Nf(x) − Sn+Nf
(
y
)∣∣ ≤ nε + 2N

∥∥f
∥∥, ∀x, y ∈ an+N. (2.22)

Define a Bernoulli measure ν on ΩN

n+N by

ν([u]) =
supx∈G−1[u]e

(Sn+Nf)(x)

∑
[v]∈ξn supy∈G−1[v]e

(Sn+Nf)(y)
,

ν([w1, . . . , wk]) =
k∏

i=1

ν([wi]), wi ∈ ξn k ∈ N.

(2.23)

Then ν can be viewed as a σn+N-invariant measure on Σ (by viewingΩN
n as a subset of Σ). By

Lemma 2.6, we have hπ(σn+N, ν) = hπ̃(T, ν). Define μ = (1/(n +N))
∑n+N−1

i=0 ν ◦ σ−i ∈Mσ(Σ).
We have

hπ
(
σ, μ

)
+
∫
fdμ

=
hπ
((
σn+N, ν

))

n +N
+

∫
Sn+Nfdν

n +N

=
1

n +N

(
hπ̃(T, ν) +

∫
Sn+Nfdν

)

≥ 1
n +N

(
h(T, ν) − log tn+N +

∫
Sn+Nfdν

)
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=
1

n +N

(
Hν(ξn+N) − log tn+N +

∫
Sn+Nfdν

)

≥ 1
n +N

⎛

⎝
∑

[u]∈ξn+N

(
−ν([u]) log ν([u]) + ν([u]) inf

x∈G−1[u]
Sn+Nf(x)

)⎞

⎠ − log tn+N
n +N

≥ 1
n +N

⎛

⎝
∑

[u]∈ξn+N

(
−ν([u]) log ν([u]) + ν([u])

(
sup

x∈G−1[u]
Sn+Nf(x) − nε − 2N

∥∥f
∥∥
))⎞

⎠

− log tn+N
n +N

=
1

n +N
log

∑

[u]∈ξn+N
sup

x∈G−1[u]
e(Sn+Nf)(x) − nε + 2N

∥∥f
∥∥ + log tn+N

n +N
.

(2.24)

Let k = n +N and let n → ∞, then k → ∞. We have

sup
{
hπ
(
σ, μ

)
+
∫
fdμ,m ∈Mσ(Σ)

}
≥ lim sup

k→∞

1
k
log

∑

[u]∈ξn+N
sup

x∈G−1[u]
eSkf(x) − ε. (2.25)

Since ε is arbitrary, we finish the proof of Step 2.

Definition 2.10. If an IFS {Si}li=1 satisfies AWSC with attractor K and f ∈ C(Σ). We call

Pπ
(
f
)
= lim

n→∞
1
n

⎛

⎝log
∑

[u]∈ξn
sup

x∈G−1[u]
eSnfπ(x)

⎞

⎠ (2.26)

the projection pressure of f under π w.r.t. {Si}li=1.

It is clearly that, if f = 0, we have the same result of Lemma 9.1 in [13].

Corollary 2.11. limn→∞(log #{Su : u ∈ Σn}/n) = sup{hπ(σ,m) : m ∈Mσ(Σ)}.

3. Application for Projection Pressure

Definition 3.1. {Si : X → X}li=1 is called a C1 IFS on a compact set X ⊂ R
d if each Si extends

to a contracting C1-diffeomorphism Si : U → Si(U) ⊂ U on an open setU ⊃ X.

For any d × d real matrixM, we use ‖M‖ to denote the usual norm ofM and �M� the
smallest singular value ofM, that is,

‖M‖ = max
{
|Mv| : v ∈ R

d, |v| = 1
}
,

�M� = min
{
|Mv| : v ∈ R

d, |v| = 1
}
.

(3.1)
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Definition 3.2. The IFS {Si}li=1 is conformal if for every i ∈ {1, 2, . . . , l}, (1) Si : U → Si(U) is
C1, (2) ‖S′

i(x)‖/= 0 for all x ∈ U, and (3) |S′
i(x)y| = ‖S′

i(x)‖|y| for all x ∈ U, y ∈ R
d.

Definition 3.3. Let {Si}li=1 be a C1 IFS. For x = (xj)
∞
j=1 ∈ Σ, the upper and lower Lyapunov

exponents of {Si}li=1 at x are defined, respectively, by

λ(x) = −lim inf
n→∞

1
n
log �S′

x1,...,xn(πσ
nx)�,

λ(x) = −lim sup
n→∞

1
n
log
∥∥S′

x1,...,xn(πσ
nx)
∥∥,

(3.2)

where S′
x1,...,xn(πσ

nx) denote the differential of Sx1,...,xn := Sx1 ◦ Sx2 ◦ · · · ◦ Sxn at πσnx. When
λ(x) = λ(x), the common value, denoted as λ(x), is called the Lyapunov exponents of {Si}li=1
at x.

It is easy to check that both λ and λ are positive-valued σ-invariant functions on Σ (i.e.,
λ = λ ◦ σ and λ = λ ◦ σ).

Definition 3.4. A C1 IFS {Si}li=1 is said to be weakly conformal if

1
n

(
log �S′

x1,...,xn(πσ
nx) � − log

∥∥S′
x1,...,xn(πσ

nx)
∥∥) (3.3)

converges to 0 uniformly on Σ as n tends to ∞.

If IFS {Si}li=1 is weakly conformal, by Birkhoff’s ergodic theorem, we can conclude∫
λ(x)dm = − ∫ log ‖S′

x1(πσx)‖dm = − ∫ log �S′
x1(πσx) � dm.

Lemma 3.5. Let K be the attractor of a weakly conformal IFS {Si}li=1. Then we have

dimHK = dimBK (3.4)

= sup
{
dimHμ : μ = m ◦ π−1, m ∈Mσ(Σ), m is ergodic

}
(3.5)

= max
{
dimHμ : μ = m ◦ π−1, m ∈Mσ(Σ)

}
(3.6)

= sup

{
hπ(σ,m)∫
λdm

: m ∈Mσ(Σ)

}
. (3.7)

Proof. See Theorem 2.13 in [13].

Theorem 3.6. Let {Si(x)}li=1 be a weakly conformal IFS satsifying AWSC. Let ψ(x) =
log ‖S′

x1πσ(x)‖ : Σ → R and π : Σ → K be the canonical projection. Then dimHK is the unique
root of Pπ(tψ) = 0.
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Proof. According to Theorem 2.9, we have

Pπ
(
tψ
)
= sup

{
hπ(σ,m) +

∫
tψ dm,m ∈Mσ(Σ)

}
. (3.8)

Let t0 = sup{hπ(σ,m)/
∫
λdm : m ∈Mσ(Σ)}, according to (3.7) t0 = dimHK.

First we show Pπ(tψ) is decreased with respect to t. If 0 ≤ t1 ≤ t2, then for any m ∈
Mσ(Σ), we have hπ(σ,m) +

∫
t1ψ dm ≥ hπ(σ,m) +

∫
t2ψ dm. Hence according to variational

principle, we have Pπ(t1ψ) ≥ Pπ(t2ψ).
As t0 ≥ hπ(σ,m)/

∫
λdm for allm ∈Mσ(Σ), hπ(σ,m)+ t0

∫
ψ dm ≤ 0 for allm ∈Mσ(Σ),

whence Pπ(t0ψ) ≤ 0.
However, Pπ(0) > 0, the existence of a positive zero t1 for t �→ Pπ(tψ) follows from the

intermediate value theorem, that is, sup{hπ(σ,m) +
∫
t1ψ dm, m ∈Mσ(Σ)} = 0.

For all ε > 0 there is a m ∈ Mσ(Σ) such that hπ(σ,m) +
∫
t1ψ dm ≥ −ε. Thus, t1 ≤

hπ(σ,m)/
∫ −ψ dm + ε/

∫ −ψ dm ≤ sup{hπ(σ,m)/
∫ −ψ dm, m ∈ Mσ(Σ)} + ε/

∫ −ψ dm, let
ε → 0 we have t1 ≤ t0. And t0 ≤ t1 as Pπ(t1ψ) = 0 implies hπ(σ,m) + t1

∫
ψ dμ ≤ 0 for all

μ ∈Mσ(Σ). So any root of Pπ(tψ) = 0 is equal to dimHK.
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