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The complex interactions among internet worms have great impact on the dynamics of worms. To
contain the propagation of worms, it is necessary to characterize these interactions. Therefore,
a two-worm interaction model is presented in this paper. Different from previous researches,
we have considered the influence of adaptive human reaction stirred by one cooperative worm
on the other worm in the model. The model’s equilibria and their stability conditions are
obtained mathematically and verified by simulations. Results indicate that considering adaptive
human behavior significantly changes the prospective propagation course of worms and that this
consideration has implications for designing counterworm methods.

1. Introduction

Nowadays, malware (including worms, viruses, botnets et al.) is prevalent on the internet,
which has led to serious problems to the security of internet. For example, more than one
hundred million web-based infections are detected by Kaspersky Lab in February 2012 [1].
According to Crandall et al. [2], the fight against malware, which is often viewed as an “arms
race,” is quickly becoming unsustainable as so many malware samples are collected each
day. However, malware has also created a complex environment for itself. Understanding the
effects of interactions of malware with other malware and with its environment may suggest
new defense methods that give fundamental advantages to the defender.

Mathematical models have been proposed to characterize the spreading of malware.
Han and Tan [3] analyzed the influence of time delay on computer virus by using a suscepti-
ble-infected-recovered-susceptible model. They obtained the critical value of time delay
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which determined whether the model had periodic solution or not. Song et al. [4] presented
a model focusing on the worms spreading via both Web-based scanning and removable
devices. They found that the existence of infected removable devices was in favor of the
outbreak of worms, and limiting the number of removable devices would prevent the worms’
outbreak. In [5], Mishra and Pandey focused on the vertical transmission of worms in
computer network. Ren et al. [6] presented a novel model and analyzed the effect of anti-
virus ability. Different from other models, the ability of anti-virus software in their model
was dependent on the number of infected computers. Some other models [7–10] have also
been given in recent year. However, all of these studies have focused on one type of malware.

Tanachaiwiwat and Helmy [11] proposed the first model focusing on the interactions
between two types of competitive worms, to our knowledge. In [12], Song et al. presented an
interaction model between two different types of botnets and analyzed the influences of the
strategies selected by interacting botnet owners on the propagation of both botnets.

In this paper, we present a two-worm model to analyze the influence of one coop-
erative worm on the other worm. Different from previous models [11, 12], the influence of
adaptive human behavior stirred by the cooperative worm has been included in the model.
Our work is motivated by the phenomenon that many worms (cooperative worms, e.g.,
Email-Worm.Win32.Bagle.p, Email-Worm.Win32.Roron.12, and so on) can block the anti-
virus software and the firewall, which will be beneficial to the spreading of other worms
[13] but may lead to people’s reaction to the infection state.

The remainder of this paper is organized as follows. In Section 2, we present the model
and interpret the actual meanings of the model’s parameters. Then, we give the analytical
results in Section 3 and validate the analytical results using various simulations in Section 4.
After that, we summarize our results in Section 5.

2. Model Description

The basic model used in this paper is the susceptible-infected-susceptible (SIS) model [14].
To depict the interactions between one cooperative worm and the other worm, here named
as noncooperative worm, we enhance the model by dividing the infected compartment into
three parts.

Thus, the model, presented here, includes four compartments: susceptible computers
(S), computers infected by worm1 (cooperative worm) (I1)—computers that are currently
infected by the cooperative worm and are susceptible to the noncooperative worm; comput-
ers infected by worm2 (noncooperative worm) (I2)—computers that are currently infected
by some noncooperative worm and are susceptible to the cooperative worm, and computers
infected by both worms (I12).

Here, we assume that the anti-virus software and the firewall will be blocked when-
ever computers are infected with the cooperative worm. We also assume that a computer’s
anti-virus software and firewall are always open unless stopped by the cooperative worm.

Let β1 and β2 denote the susceptible computer’s infection rates due to the successful
scanning of a computer infected with the cooperative worm and the successful scanning of
a computer infected with the noncooperative worm, respectively. To model the influence of
anti-virus software and firewall, an increasing factor in infection rate is given by μ (μ > 1)
while trying to infect a computer with its anti-virus software and firewall closed.

As in [12, 15], when the operating system was reinstalled, infected computers would
return to the susceptible state. Here, we denote the random reinstallation rate as δ. We
also assume an increasing in the reinstallation rate whenever a computer is infected with
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the cooperative worm. It is reasonable since the cooperative worm will block the anti-virus
software and firewall, and this may stimulate user’s reaction to the invasion of malware. For
simplicity, let δ1 (δ1 > δ) be the rate which combines the random reinstallation rate and the
reinstallation rate caused by user’s adaptive behavior.

The probability of successfully finding a susceptible computer in one scan is S/N,
where N is the total number of computers considered. Then, β1S/N and β2S/N are the
susceptible computer’s infection numbers per time step caused by a computer infected with
the cooperative worm and the noncooperative worm, respectively.

Thus, the model is given below:

·
S= −β1S

N
(I1 + I12) −

β2S

N
(I2 + I12) + δ1(I1 + I12) + δI2,

·
I1 =

β1S

N
(I1 + I12) −

μβ2I1
N

(I2 + I12) − δ1I1,

·
I2 =

β2S

N
(I2 + I12) −

β1I2
N

(I1 + I12) − δI2,

·
I12 =

μβ2I1
N

(I2 + I12) +
β1I2
N

(I1 + I12) − δ1I12,

(2.1)

where N = S + I1 + I2 + I12.
Note that the model is conservative for total computers (N) since we do not include

both new computers and obsolete computers in (2.1). Then, the model can be rewritten as

·
I1 =

β1(N − I1 − I2 − I12)
N

(I1 + I12) −
μβ2I1
N

(I2 + I12) − δ1I1,

·
I2 =

β2(N − I1 − I2 − I12)
N

(I2 + I12) −
β1I2
N

(I1 + I12) − δI2,

·
I12 =

μβ2I1
N

(I2 + I12) +
β1I2
N

(I1 + I12) − δ1I12.

(2.2)

The initial state of the system (2.2) is set to I1(0) = I01 , I2(0) = I02 , and I12(0) = I012, where
S0 = N − I01 − I02 − I012. The values of S

0, I01 , I
0
2 , and I012 are given in the simulation section.

3. Model Analysis

3.1. Equilibria

The equilibria of system (2.2) are given by

β1(N − I1 − I2 − I12)
N

(I1 + I12) −
μβ2I1
N

(I2 + I12) − δ1I1 = 0, (3.1a)

β2(N − I1 − I2 − I12)
N

(I2 + I12) −
β1I2
N

(I1 + I12) − δI2 = 0, (3.1b)

μβ2I1
N

(I2 + I12) +
β1I2
N

(I1 + I12) − δ1I12 = 0. (3.1c)
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Let R1
0 be the basic reproduction number, the number of secondary infections deriving

from a single primary infection, of the cooperative worm, and R2
0, R

12
0 be the basic reproduc-

tion numbers of the noncooperative worm when the cooperative worm dies out or exists,
respectively. Then, we have

R1
0 =

β1
δ1

, (3.2)

R2
0 =

β2
δ
, (3.3a)

R12
0 =

β2
[
δ1N + μI∗1

(
β1 − δ1 + δ

)]

(
β1 − δ1 + δ

)
δ1N

, (3.3b)

where

I∗1 =
−
√
b2 − 4ac − b

2a
, (3.4)

and a = μβ2(β1 − μβ1 + μδ1 − μδ)/β1N, b = −μ(β1 − δ1 + δ)(1 − 2δ1/β1) − μβ2 − δ1, and
c = δ1N(β1 − δ1 + δ)(β1 − δ1)/β1β2.

As the derivations of R1
0 and R2

0 are very simple, we only give the derivation of R12
0

here.
Adding (3.1a) to (3.1c) leads to

I1 + I12 = N − δ1
β1

(3.5)

or

I1 + I12 = 0. (3.6)

R12
0 means that the cooperative worm exists. Thus, we only consider the condition when

I1 + I12 = N − δ1/β1. Using this condition in (3.1b) and (3.1c), we get

(
β2δ1
β1

− β2I2
N

)
(I2 + I12) −

(
β1 − δ1 + δ

)
I2 = 0,

(
μβ2I1
N

− δ1

)
(I2 + I12) + β1I2 = 0.

(3.7)

This yields

β1β2I2 = β2δ1N + μβ2I1
(
β1 − δ1 + δ

) − (β1 − δ1 + δ
)
δ1N. (3.8)

According to the right hand side of (3.8), we can get the term ofR12
0 . Furthermore, (3.4)

can be obtained by substituting I2 in (3.8) into (3.1a).
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For the simplified system (2.2), there always exists a disease-free equilibrium (0, 0, 0)
for (I1, I2, I12). If R1

0 > 1 and R12
0 < 1, there exists an equilibrium (N − (δ1/β1)N, 0, 0),

corresponding to the cooperative worm endemic equilibrium. If R1
0 < 1 and R2

0 > 1, the
noncooperative worm endemic equilibrium (0,N − (δ/β2)N, 0) will exist. The coexistence
endemic equilibrium (I∗1 , I

∗
2 , I

∗
12) occurs if R

1
0 > 1 and R12

0 > 1, where I∗1 is the same as in (3.4),

I∗2 =
β2
[
δ1N + μI∗1

(
β1 − δ1 + δ

)] − δ1N
(
β1 − δ1 + δ

)

β1β2
,

I∗12 = N − δ1
β1

N − I∗1 .

(3.9)

Thus, (3.3a) and (3.3b) give the noncooperative worm’s existence thresholds when
the cooperative worm dies out or exists, respectively, that is, to ensure the existence of
noncooperative worm, β2 must be greater than the threshold value (δ) predicted by R2

0 = 1
(cooperative worm dies out) or the threshold value ((β1−δ1+δ)δ1N/(δ1N+μI∗1(β1−δ1+δ)))
predicted by R12

0 = 1 (cooperative worm exists).

3.2. Stability

Theorem 3.1. If R1
0 < 1 and R2

0 < 1, then the disease-free equilibrium (0, 0, 0) is asymptotically
stable.

Theorem 3.2. If R1
0 > 1 and R12

0 < 1, then the cooperative worm endemic equilibrium (N −
(δ1/β1)N, 0, 0) is asymptotically stable.

Theorem 3.3. If R1
0 < 1 and R2

0 > 1, then the noncooperative worm endemic equilibrium (0,N −
(δ/β2)N, 0) is asymptotically stable.

Theorems 3.1, 3.2, and 3.3 are easy to be proven. Here, we only give the detailed proof
of the stability of coexistence endemic equilibrium (I∗1 , I

∗
2 , I

∗
12).

Let

βst1 =
−b − 3

√
Y1 − 3

√
Y2

3a
, (3.10)

where a = 4μ2, b = −12μ2δ1+8μ2δ−δ1, c = 4μ2(δ1−δ)(3δ1−δ), d = −4μ2δ1(δ1−δ)2,A = b2−3ac,
B = bc − 9ad, C = c2 − 3bd, and Y1,2 = Ab + 3a(−B ±

√
B2 − 4AC)/2.

Theorem 3.4. If R1
0 > 1, R12

0 > 1, and β1 > βst1 , then the coexistence endemic equilibrium (I∗1 , I
∗
2 , I

∗
12)

is asymptotically stable.
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Proof. The Jacobian matrix of system (2.2) at the coexistence endemic equilibrium is given by

Jac
(
I∗1 , I

∗
2 , I

∗
12

)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

β1
(
N − 2I∗1 − I∗2 − 2I∗12

)

N
−β1
(
I∗1 + I∗12

)
+ μβ2I

∗
1

N

β1
(
N − 2I∗1 − I∗2 − 2I∗12

)

N

−μβ2
(
I∗2 + I∗12

)

N
− δ1 −μβ2I

∗
1

N

−β2
(
I∗2 + I∗12

) − β1I
∗
2

N

β2
(
N − I∗1 − 2I∗2 − 2I∗12

)

N

β2
(
N − I∗1 − 2I∗2 − 2I∗12

)

N

−β1
(
I∗1 + I∗12

)

N
− δ −β1I

∗
2

N

β1I
∗
2 + μβ2

(
I∗2 + I∗12

)

N

β1
(
I∗1 + I∗12

)
+ μβ2I

∗
1

N

β1I
∗
2 + μβ2I

∗
1

N
− δ1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(3.11)

By means of similarity transformation upon the matrix (3.11), we have

Jac
(
I∗1 , I

∗
2 , I

∗
12

)
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−β1 + δ1 0 0

−β2
(
I∗2 + I∗12

) − β1I
∗
2

N

β2
(
N − I∗1 − 2I∗2 − 2I∗12

)

N

β2
(
N − I∗1 − I∗2 − I∗12

)

N
−β1 + δ1 − δ

β1I
∗
2 + μβ2

(
I∗2 + I∗12

)

N
β1 − δ1 +

μβ2I
∗
1

N

μβ2
(
I∗1 − I∗2 − I∗12

)

N
− δ1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(3.12)

The characteristic equation of (3.12) is given by

(
λ + β1 − δ1

)[
λ2 − (a22 + a33)λ + a22a33 − a23a32

]
= 0, (3.13)

where a22 = β2(N − I∗1 − 2I∗2 − 2I∗12)/N − β1 + δ1 − δ, a23 = β2(N − I∗1 − I∗2 − I∗12)/N, a32 =
β1 − δ1 + μβ2I

∗
1/N, and a33 = μβ2(I∗1 − I∗2 − I∗12)/N − δ1.

In (3.13), λ1 = −β1 + δ1, which is less than zero as R1
0 > 1. Then, we only need to prove

that the eigenvalues in the square brackets of (3.13) have negative real parts.
According to the Hurwitz criteria [16],

H1 = −(a22 + a33),

H2 = −(a22 + a33)(a22a33 − a23a32).
(3.14)
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It is easy to see that a33 < 0 and

a22a33 − a23a32 =

[(
β2
(
N − I∗1 − 2I∗2 − 2I∗12

)

N
− β1 + δ1 − δ

)(
μβ2
(
I∗1 − I∗2 − I∗12

)

N
− δ1

)

− β2
(
N − I∗1 − I∗2 − I∗12

)

N

(
β1 − δ1 +

μβ2I
∗
1

N

)]

=
μβ2
(
I∗2 + I∗12

)

N

[
β2
(
2I∗2 + 2I∗12

)

N
− β2 + β1 − δ1 + δ +

δ1
μ

]

+
(
β1 − δ1 + δ

)(
δ1 −

μβ2I
∗
1

N

)
−
(
δ1 −

β1I
∗
2

N

)
β2

=
μβ2
(
I∗2 + I∗12

)

N

[
β2
(
2I∗2 + 2I∗12

)

N
− β2 + β1 − δ1 + δ +

δ1
μ

]

>
μβ2
(
I∗2 + I∗12

)

N

[
β2
(
2I∗2 + 2I∗12 + I∗1 −N

)

N
+ β1 − δ1 + δ

]

=
μβ2
(
I∗2 + I∗12

)

N
(−a22).

(3.15)

Thus, H1 > 0 and H2 > 0 provided that a22 < 0. Consider

a22 =
β2
(
N − I∗1 − 2I∗2 − 2I∗12

)

N
− β1 + δ1 − δ

= β2 −
2β2
(
I∗2 + I∗12

)

N
− β2I

∗
1

N
− β1 + δ1 − δ

= β2 − 2
μ

[(
δ1 − β1I

∗
2/N

)(
N −Nδ1/β1

)

I∗1
− δ1

]

− β2I
∗
1

N
− β1 + δ1 − δ

= β2 − 2
μ

[

−
(
β1 − δ1 + δ

)(
μI∗1/N − δ1/β2

)(
N −Nδ1/β1

)

I∗1
− δ1

]

− β2I
∗
1

N
− β1 + δ1 − δ

= β2 −
β2I

∗
1

N
− 2δ1N
μβ2I

∗
1

(
1 − δ1

β1

)(
β1 − δ1 + δ

)
+
(
1 − 2δ1

β1

)(
β1 − δ1 + δ

)
+
2δ1
μ

=
−(μβ2/N

)
I∗1

2 +AI∗1 −
(
2δ1N/β2

)(
β1 − δ1 + δ

)(
1 − δ1/β1

)

μI∗1

= −
(
μβ2/N

)(
1 − μ

(
β1 − δ1 + δ

)
/β1
)
I∗1

2 + BI∗1 +
(
δ1N/β2

)(
β1 − δ1 + δ

)(
1 − δ1/β1

)

μI∗1

−
(
μβ2
(
μβ1 − μδ1 + μδ

)
/Nβ1

)
I∗1

2 − δ1I
∗
1 +
(
δ1N/β2

)(
β1 − δ1 + δ

)(
1 − δ1/β1

)

μI∗1
,

(3.16)
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where A denotes [μ(β1 − δ1 + δ)(1 − 2δ1/β1) + μβ2 + 2δ1] and B denotes [μ(β1 − δ1 + δ)(1 −
(2δ1/β1)) +μβ2 +δ1]. As (μβ2/N)(1−μ(β1 −δ1 +δ)/β1)I∗1

2 + [μ(β1 −δ1 +δ)(1− 2δ1/β1) +μβ2 +
δ1]I∗1 + (δ1N/β2)(β1 − δ1 + δ)(1 − δ1/β1)/μI∗1 = 0, we have

a22 = −
(
μβ2
(
μβ1 − μδ1 + μδ

)
/Nβ1

)
I∗1

2 − δ1I
∗
1 +
(
δ1N/β2

)(
β1 − δ1 + δ

)(
1 − δ1/β1

)

μI∗1

= −
(
μβ2
(
μβ1 − μδ1 + μδ

)
/Nβ1

)C +
(
δ1N/β2

)(
β1 − δ1 + δ

)(
1 − (δ1/β1

)) − D
μI∗1

< −
(
δ1N/β2

)(
β1 − δ1 + δ

)(
1 − δ1/β1

) − D
μI∗1

= −δ1N
(
β1 − δ1 + δ

)(
1 − δ1/β1

) − δ2
1β1N/4μ

(
μβ1 − μδ1 + μδ

)

μβ2I
∗
1

= − δ1N

4μ2β1
(
β1 − δ1 + δ

)
μβ2I

∗
1

[
aβ31 + bβ21 + cβ11 + d

]
,

(3.17)

where C denotes [I∗1 − δ1β1N/2μβ2(μβ1 − μδ1 + μδ)]2 and D denotes δ2
1β1N/4μβ2(μβ1 −μδ1 +

μδ) and where a, b, c, and d are the same as in (3.10).
According to the root extracting formula, the equation, aβ31 + bβ21 + cβ11 + d = 0, has one

positive real root βst1 . Furthermore, for any β1, if β1 > βst1 , then aβ31 + bβ21 + cβ11 + d > 0.
As R1

0 > 1 and β1 > βst1 can guarantee a22 < 0, according to the text mentioned above,
a22 < 0 can guarantee that both H1 and H2 are greater than zero, which means that both
eigenvalues in the square brackets of (3.13) have negative real parts. Thus, if R1

0 > 1, R12
0 > 1

and β1 > βst1 , there exists a coexistence endemic equilibrium, and it is asymptotically stable.
The proof is completed.

4. Simulation

In this paper, we use the improved Euler method to simulate the system (2.2). In the
simulation, the total number of computers (N) is set to 1000000. The initially infected
computers with cooperative worm (I01), the initially infected computers with noncooperative
worm (I02), and the initially infected computers with both worms (I012) are set to 100, 100, and
0, respectively, for all simulations. Thus, the initially susceptible computers (S0) are 999800.

Here, we first give the convergence proof of the numerical method used in the
simulation. Let I = (I1, I2, I12), a three-dimensional vector. Then, the system (2.2) can be

rewritten as
·
I= f(t, I), where f is a three-dimensional vector function in R4. It is obvious that

f is a continuous and differential function in R4. Thus, f satisfies the Lipschitz condition, and
we have ‖f(t, I1) − f(t, I2)‖ ≤ L‖I1 − I2‖, where L is a constant.

The Euler iteration equation is I(k+1)n+1 = In + h/2[f(tn, In) + f(tn+1, I
(k)
n+1)], where k =

0, 1, 2, . . ., I(0)n+1 = In + hf(tn, In), and n = 0, 1, 2, . . .. h = tn+1 − tn, representing the step value
in the Euler iteration algorithm. Then,

∥∥∥I(k+1)n+1 − I(k)n+1

∥∥∥ =
h

2

∥∥∥f
(
tn+1, I

(k)
n+1

)
− f
(
tn+1, I

(k−1)
n+1

)∥∥∥

≤ hL

2

∥∥∥I(k)n+1 − I(k−1)n+1

∥∥∥
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≤
(
hL

2

)2∥∥∥I(k−1)n+1 − I(k−2)n+1

∥∥∥

≤ · · ·

≤
(
hL

2

)k∥∥∥I(1)n+1 − I(0)n+1

∥∥∥.
(4.1)

Thus, the Euler iteration algorithm used in this paper is convergent as we can ensure that
hL/2 < 1 by selecting the step value (h).

To validate the accuracy of the thresholds predicted by (3.3a) and (3.3b), we simulated
the model (2.2) using four sets of variables: (i) the cooperative worm exists: β1 = 0.48, δ1 =
0.0416, β2 = 0.0264, and δ = 0.025, (ii) no cooperative worm: β1 = 0.01, δ1 = 0.0416, β2 =
0.0264, and δ = 0.025, (iii) the cooperative worm exists: β1 = 0.48, δ1 = 0.0416, β2 = 0.0288,
and δ = 0.03, and (iv) no cooperative worm: β1 = 0.01, δ1 = 0.0416, β2 = 0.0288, and δ = 0.03.
μ is set to 1.5 for these simulations.

Note that in (i) β2(= 0.0264) is less than the existence threshold (0.0285) predicted by
(3.3b). Thus, the noncooperative worm will die out although β2 is greater than the existence
threshold (0.025) predicted by (3.3a). Similar results can also be reached with the other three
sets of variables.

Figure 1 shows the simulation results of the noncooperative worm using the first two
sets of variables. Figure 2 shows the simulation results using another two sets of variables.

As shown in Figure 1, when the cooperative worm exists and R12
0 < 1, the noncooper-

ative worm dies out; when the cooperative worm terminates and R2
0 > 1, the noncooperative

worm survives. In Figure 2, when the cooperative worm exists and R12
0 > 1, the

noncooperative worm survives; when the cooperative worm terminates and R2
0 < 1, the

noncooperative worm dies out. Thus, both Figures 1 and 2 demonstrate that the simulation
results are consistent with the theoretical prediction.

Figures 1 and 2 also show that the cooperative worm has dual influences on the non-
cooperative worm, which is different from our intuition. In Figure 1, the existence of cooper-
ative worm (i) contains the propagation of noncooperative worm. However, the existence of
cooperative worm (iii) favors the propagation of noncooperative worm in Figure 2.

To get the effective noncooperative worm containment strategy, we further explore the
influence of adaptive human behavior (δ1) on the noncooperative worm. We simulated with
various δ1 and calculated the thresholds of β2 predicted by R2

0 = 1 and R12
0 = 1. Figures 3(a),

3(b), and 3(c) plot the results with μ = 1.2, 1.5 and 2, respectively.
According to Figures 3(a), 3(b), and 3(c), adaptive human behavior (reflected by δ1)

has great influence on the propagation of noncooperative worm. The threshold (dash line)
increases rapidlywith the increase of δ1 nomatter what value μ is. Moreover, when δ1 ≥ 0.014,
the thresholds (dash line) in all figures are much higher than the corresponding values (solid
line) when no human behavior is considered (the cooperative worm dies out), which also
means a promising worm-counter-worm method.

We also verified the accuracy of coexistence endemic equilibrium’s stability thresholds
given by Theorem (3.4). Here, the simulation parameters are set to (i) β1 = 0.36, δ1 = 0.0416,
β2 = 0.03, δ = 0.025, and μ = 2 where β1 is greater than βst1 (= 0.346), and (ii) β1 = 0.08,
δ1 = 0.0416, β2 = 0.03, δ = 0.025, and μ = 2 where β1 is less than βst1 . Figures 4(a) and 4(b)
show the simulation results.
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Figure 1: Fraction of computers infectedwith noncooperative worm: (i) green: the cooperative worm exists
and R12

0 < 1 and (ii) blue: the cooperative worm dies out and R2
0 > 1.
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Figure 2: Fraction of computers infected with noncooperative worm: (iii) green: the cooperative worm
exists and R12

0 > 1 and (iv) blue: the cooperative worm dies out and R2
0 < 1.
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Figure 3: Thresholds of β2 predicted by (3.3a) and (3.3b) with β1 = 0.24 and δ = 0.00595, and (a) μ = 1.2;
(b) μ = 1.5; (c) μ = 2 are given. δ1 is varied in the simulations.

Note that the cooperative worm (I1 + I12 = N − (δ1/β1)N) is a constant with any given
β1 and δ1. Thus, we only plot the noncooperative worm’s propagation process in Figures 4(a)
and 4(b).

As shown in Figure 4(a), when β1 > βst1 , the noncooperative worm approaches a stable
state. However, in Figure 4(b), when β1 < βst1 , we can see a clearly oscillatory epidemic
phenomenon, which validates the conclusion of Theorem (3.4).



12 Discrete Dynamics in Nature and Society

500 1000 1500 2000 2500
0.5764

0.5766

0.5768

0.577

Time (hour)

(I
+
I 1

2)
/
N

(a)

1000 1500 2000 2500
0.3532

0.3534

0.3536

0.3538

Time (hour)

(I
+
I 1

2)
/
N

(b)

Figure 4: Fraction of computers infected with noncooperative worm: (a) β1 > βst1 and (b) β1 < βst1 are given.

5. Conclusion

Recently, the researches concerning network security and malware have focused on the
fight between antimalware system and malware [3–10]. In this paper, we have explored the
interactions between one cooperative worm and the other noncooperative worm; especially
we focus on the influence of adaptive human behavior, to find an inherent advantage in the
fight against attackers.

Different from our intuition, the results presented in this paper have shown that the
cooperative worm has dual effects on the propagation of the noncooperative worm due to
the existence of adaptive human behavior, which is a valuable information for defenders in
designing counter-worm methods [17, 18]. In the future, we plan to use real trace data to test
our model and get the most effective policy to motivate people.
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