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Cluster anticonsensus is another important type consensus of multiagent systems. In this paper, we
investigate the problem of impulsive cluster anticonsensus of discrete multiagent linear dynamic
systems. Firstly, an impulsive protocol is designed to achieve the cluster anticonsensus. Then
sufficient conditions are given to guarantee the cluster anticonsensus of the discrete multiagent
linear dynamic system based on the Q-theory. Numerical simulation shows the effectiveness of
our theoretical results.

1. Introduction

Recently, the consensus problem of multiagent systems has been intensively studied in the
literature [1–4]. In [1, 2], a systematical framework of consensus problem in networks of
agents was investigated. The problem of information consensus among multiple agents in
the presence of limited and unreliable information exchange with dynamically changing
interaction topologies was considered in [3]. In [4], the authors considered the consensus
problem for multiagent systems, in which all agents have an identical linear dynamic
mode that can be of any order. On the other hand, cluster anticonsensus is another
important type consensus of multiagent systems. When the multiagent systems achieve
cluster anticonsensus, the nodes in the same group achieve consensus with each other, but
there is no consensus between nodes in different groups. Very recently the signless Laplacian
has attracted the attention of researchers. Several papers on the signless Laplacian spectrum
have been reported since 2005 and a new spectral theory of graphs which is called the Q-
theory is developing by many researchers [5, 6]. To the best of our knowledge, however,
there are very few results on cluster anticonsensus of multiagent systems, which motivates
this study.
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Impulsive control is widely used in various applications, such as ecosystems, financial
systems, mechanical systems with impacts, and orbital transfer of satellite [7–12]. Very
recently, impulsive control protocol for multiagent systems has received much attention [13–
19]. In [14], the authors introduced impulsive control protocols for multiagent linear con-
tinuous dynamic systems. The convergence analysis of the impulsive control protocol for
the networks with fixed and switching topologies is presented, respectively. The proposed
impulsive control protocol is only applied to the multiagent system at certain discrete
instants, which is different from continuous control protocol [1, 2, 4]. In [15], the authors
investigated the problem of impulsive synchronization of networked multiagent systems,
where each agent can be modeled as an identical nonlinear dynamical system.

In this paper, we investigate the problem of impulsive cluster anticonsensus of discrete
multiagent linear dynamic systems. The main contribution of our paper includes (1) an im-
pulsive control protocol is introduced to seek the cluster anticonsensus of discrete multiagent
linear dynamic systems and (2) a new type consensus, that is, cluster anticonsensus is
studied.

This paper is organized as follows. In Section 2, we provide some results in the Q-
theory. In Section 3, we formulate the cluster anticonsensus problem for discrete multiagent
linear dynamic systems and introduce the impulsive control protocol. The convergence
analysis of the cluster anticonsensus problem is discussed in Section 4. In Section 5, numerical
simulation is included to show the effectiveness of our theoretical results. Some conclusions
are drawn in Section 6.

Notation 1. Throughout this paper, the superscripts “−1” and “T” stand for the inverse and
transpose of a matrix, respectively; R

n denotes the n-dimensional Euclidean space; let R+ =
[0,∞), N = {0, 1, 2, . . .}, N+ = {1, 2, . . .}; R

n×m is the set of all n × m real matrices; for real
symmetric matrices X and Y , the notation X ≥ Y (resp., X > Y ) means that the matrix X-
Y is positive semidefinite (resp., positive definite); In ∈ R

n×n is an identity matrix; λmin(P)
(λmax(P)) denotes the smallest (largest) eigenvalue of P . For a vector x ∈ R

n, let ‖x‖ denote
the Euclidean vector norm, that is, ‖x‖ =

√
xTx, and forA ∈ Rn×n, let ||A|| indicate the norm of

A induced by the Euclidean vector norm, that is, ||A|| =
√
λmax(ATA). The Kronecker product

of twomatricesA = [aij] ∈ R
m×n and B = [bij] ∈ R

p×q is denoted byA⊗B. For more properties
of the Kronecker product the reader is referred to [20].

2. Preliminaries

In this section, we provide some results in the Q-theory [4–6, 21].
An undirected graph G of order N consists of a vertex set V = {1, 2, . . . ,N} and an

edge set E = {(i, j) : i, j ∈ V } ⊂ V × V . The set of neighbors of vertex i is denoted by
Ni = {j ∈ V : (i, j) ∈ E, j /= i}. A path between each distinct vertices i and j is meant a
sequence of distinct edges of G of the form (i, k1), (k1, k2), . . . , (kl, j). A cycle is a path such
that the start vertex and end vertex are the same. If there is a path between any two vertices
of a graph G, then G is connected, otherwise disconnected. A graph G is a bipartite graph
if V (G) can be partitioned into two disjoint subsets U and W , called partite sets, such that
every edge of G joins a vertex of U and a vertex of W . A graph is bipartite if and only if it
does not contain an odd cycle.

A weighted adjacency matrix A = [aij] ∈ R
N×N , where aii = 0 and aij = aji ≥ 0,

i /= j. aij > 0 if and only if there is an edge between vertex i and vertex j. For an unweighted
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graphG,A is a 0-1 matrix. The out-degree of vertex i is defined as follows degout(i) =
∑n

j=1 aij .
Let D be the diagonal matrix with the out-degree of each vertex along the diagonal and call
it the degree matrix of G. The signless Laplacian matrix of the weighted graph is defined as
QG = D +A. For an unweighted graph G, QG = [qij]N×N , where

qij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|Ni|, i = j,

1, j ∈ Ni,

0, otherwise,

(2.1)

here |Ni| denotes the cardinality of the set Ni.
Let G be an undirected graph on N vertices, having m edges. Let R be its vertex edge

incidence matrix which is an N × m matrix such that rij = 1 if the vertex i and edge ej are
incident and 0 otherwise. The following relations are well-known: RRT = D + A = Q. Thus
the signless Laplacian is a positive semi-definite matrix, that is, all its eigenvalues are non-
negative. Let G be a graph with Q-eigenvalues q1, q2, . . . , qN (q1 ≤ q2 ≤ · · · ≤ qN).

Lemma 2.1. Let Q be the singless Laplacian matrix of an undirected graph G with N vertices, and
q1 ≤ q2 ≤ · · · ≤ qN be the eigenvalues of Q. Suppose that the graph G is bipartite. Let U and W be
two subsets of graph G. Define ξ ∈ R

N , ξ(i) = 1, i ∈ U, ξ(j) = −1, j ∈ W and ei ∈ R
n, ei(i) = 1,

ei(j) = 0, j /= i, i, j = 1, . . . , n. Then

(1) if G is connected, then q1 = 0 is the algebraically simple eigenvalue of Q and the
corresponding eigenvector is ξ;

(2) if 0 is the simple eigenvalue of Q, then it is an n multiplicity eigenvalue of Q ⊗ In and the
corresponding eigenvectors are ξ ⊗ ei, i = 1, 2, · · · , n.

3. Problem Formulation

Here we consider a system consisting of N agents indexed by i = 1, 2, . . . ,N. The dynamics
of each agent is

xi(t + 1) = Axi(t), t ≥ t0 ≥ 0, i = 1, 2, . . . ,N, (3.1)

where xi(t) = (xi
1(t), x

i
2(t), . . . , x

i
n(t))

T ∈ R
n is the state of agent i at time t, t ∈ N, A ∈ R

n×n is a
constant matrix. We assume that ‖A‖/= 0.

The following impulsive control protocol is applied to agent i

ui(t) = Δxi(t) = xi(t+) − xi(t−
)
= −Bk

∑

j∈Ni(t−)

(
xj(t−

)
+ xi(t−

))
, t = tk, k ∈ N+, (3.2)

where Bk ∈ R
n×n, k ∈ N+, are impulsive matrices to be determined later, Ni(t−) is the set of

neighbors of agent i at time t−, the discrete instants tk ∈ N+ satisfy 0 ≤ t0 < t1 < t2 < · · · < tk−1 <
tk < · · · , and limk→+∞tk = +∞. When t = tk, k ∈ N+, t+ and t− denote the instant just after t
and just before t, respectively, which is also considered in [8, 10]. Without loss of generality,
we assume that xi(t−) = xi(t), t = tk, k ∈ N+.
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Under the impulsive control protocol (3.2), the dynamics of agent i satisfies the fol-
lowing equations

xi(t + 1) = Axi(t), t /= tk,

Δxi(t) = −Bk

∑

j∈Ni(t)

(
xj(t) + xi(t)

)
, t = tk, k ∈ N+.

(3.3)

Definition 3.1. For the system (3.1), the cluster anticonsensus is said to be achieved under the
impulsive control protocol (3.2) if

lim
i1,i2∈U,t→+∞

∥
∥
∥xi1(t) − xi2(t)

∥
∥
∥ = 0, lim

j1,j2∈W,t→+∞

∥
∥
∥xj1(t) − xj2(t)

∥
∥
∥ = 0,

lim
i∈U,j∈W,t→+∞

∥
∥
∥xi(t) + xj(t)

∥
∥
∥ = 0,

(3.4)

where U and W are two nonempty subsets of V (G) and U ∩W = ∅, U ∪W = V (G).

Consider the following discrete impulsive system

x(t + 1) = Ax(t), t /= tk,

Δx(t) = x(t+) − x
(
t−
)
= Bkx(t), t = tk, k ∈ N+,

(3.5)

where x ∈ R
n, A ∈ R

n×n, Bk ∈ R
n×n. Then the solution x(t; t0, x0) satisfies

x(t; t0, x0) = A(t−tk)
k∏

i=1

(In + Bi)A(ti−ti−1)x0, (3.6)

where tk < t ≤ tk+1, k ∈ N+.
The representation (3.6) implies the following.

Lemma 3.2. All solutions of the system (3.5) are asymptotically stable if the conditions (H1) and
(H2) hold,

(H1) 0 < θ1 ≤ tk − tk−1 ≤ θ2 < ∞, k ∈ N+,

(H2) ||Ξk|| ≤ r < 1, k ∈ N+,

where Ξk = (In + Bk)A(tk−tk−1), k ∈ N+.

4. Main Results

In this section, we provide convergence analysis of the cluster anticonsensus problem of
discrete multiagent linear dynamic systems.

Let x(t) = (x1(t), x2(t), . . . , xN(t))T , then the system (3.3) can be described as

x(t + 1) = (IN ⊗A)x(t), t /= tk,

Δx(t) = (IN ⊗ Bk)(−Q ⊗ In)x(t), t = tk, k ∈ N+.
(4.1)



Discrete Dynamics in Nature and Society 5

Since Q is symmetric, there is an orthogonal matrix Y ∈ R
N×N such that

YQYT = Λ = diag
(
q1, q2, . . . , qN

)
, (4.2)

where {q1, q2, . . . , qN} = χ(Q) is the spectrum of Q.
Let

x̃(t) = (Y ⊗ In)x(t). (4.3)

Using the properties of Kronecker product, we have when t /= tk, k ∈ N+,

x̃(t + 1) = (Y ⊗ In)x(t + 1) = (Y ⊗ In)(IN ⊗A)(Y ⊗ In)−1x̃(t) = (IN ⊗A)x̃(t), (4.4)

and when t = tk, k ∈ N+,

Δx̃(t) = (Y ⊗ In)Δx(t) = (Y ⊗ In)(IN ⊗ Bk)(−Q ⊗ In)(Y ⊗ In)−1x̃(t) = (−Λ ⊗ Bk)x̃(t). (4.5)

Thus (4.1) becomes

x̃(t + 1) = (IN ⊗A)x̃(t), t /= tk,

Δx̃(t) = (−Λ ⊗ Bk)x̃(t), t = tk, k ∈ N+.
(4.6)

Therefore

x̃i(t + 1) = Ax̃i(t), t /= tk,

Δx̃i(t) = −qiBkx̃
i(t), t = tk, k ∈ N+, i = 1, 2, . . . ,N.

(4.7)

Theorem 4.1. Consider the system (3.1). Assume that the graph G of the network is connected
and bipartite. If there exist discrete instants tk and impulsive matrices Bk such that the conditions
(H3) and (H4) hold, then the cluster anticonsensus is achieved under the impulsive control protocol
(3.2),

(H3) 0 < θ1 ≤ tk − tk−1 ≤ θ2 < ∞, k ∈ N+,

(H4) ‖Vik‖ ≤ r < 1, i = 2, . . . ,N, k ∈ N+,

where Vik = (In − qiBk)A(tk−tk−1), i = 2, . . . ,N, k ∈ N+.

Proof. Since the graph G is connected and bipartite, by Lemma 2.1, q1 = 0 is the algebraically
simple eigenvalue of Q. All the other eigenvalues of Q are positive. Then we have 0 = q1 <
q2 ≤ · · · ≤ qN .

By Lemma 3.2, it follows that if there exist discrete instants tk and impulsive matrices
Bk such that the conditions (H3) and (H4) hold, then the system (4.7) is asymptotically stable,
that is, x̃i(t) → 0, t → +∞, i = 2, . . . ,N.
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Figure 1: The time histories of xi
1(t), i = 1, 2, 3, 4.

It can be verified that

(Q ⊗ In)x(t) = (Y ⊗ In)−1(Y ⊗ In)(Q ⊗ In)
(
Y−1 ⊗ In

)
x̃(t)

= (Y ⊗ In)−1(Λ ⊗ In)x̃(t)

= (Y ⊗ In)
−1

⎡

⎢⎢⎢⎢⎢⎢
⎣

0

q2x̃
2(t)

...

qNx̃N(t)

⎤

⎥⎥⎥⎥⎥⎥
⎦

.

(4.8)

Hence (Q ⊗ In)x(t) → 0, t → +∞. Since the graph G is connected and bipartite, by
Lemma 2.1, 0 is the eigenvalue of Q ⊗ In with multiplicity n. The n linearly independent
eigenvectors associated with the eigenvalue 0 of Q ⊗ In are ξ ⊗ ei, i = 1, 2, · · · , n. Therefore
x → ξ ⊗ s, t → +∞, where s =

∑n
i=1 γiei ∈ R

n, γi ∈ R, i = 1, 2, . . . , n. Thus the system (3.1)
achieves the cluster anticonsensus under the impulsive control protocol (3.2). This completes
the proof.

Remark 4.2. For simplicity, we usually choose the equidistant impulsive interval Δtk = tk+1 −
tk = Δ, k ∈ N+. The impulsive matrices Bk, k ∈ N+, are chosen as pIn, p ∈ R. If ||(1− qip)AΔ|| ≤
r < 1, i = 2, . . . ,N, then the conditions (H3) and (H4) are satisfied.

5. Simulations

Consider the following multiagent discrete linear dynamic system

xi(t + 1) = Axi(t), xi(t) ∈ R
3, i = 1, 2, 3, 4, (5.1)
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Figure 2: The time histories of xi
2(t), i = 1, 2, 3, 4.
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Figure 3: The time histories of xi
3(t), i = 1, 2, 3, 4.

where A =
[

1/2
√
3/2 0

−√3/2 1/2 0
0 0 1

]
. Simulation results for the system (5.1) are shown in Figures 1, 2,

and 3. From Figures 1–3, we know that the system cannot achieve the cluster anticonsensus
without the impulsive control protocols.

The control input of agent i is designed as (3.2). The graph is considered as a simple

path on four vertices and the singless Laplacian matrix of graph G1 is Q1 =
[ 1 1 0 0
1 2 1 0
0 1 2 1
0 0 1 1

]
. For

simplicity, the impulsive matrices Bk, k ∈ N+, are chosen as 0.43 ∗ I3. Choose the equidistant
impulsive interval Δtk = tk − tk−1 = 2, k ∈ N+. It is easy to check that ‖V2k‖ = 0.7481 < 1,
‖V3k‖ = 0.1400 < 1, ‖V4k‖ = 0.4681 < 1, where q2 = 0.5858, q3 = 2, q4 = 4. The initial values are
chosen as x1(0) = [4 1 − 1]T , x2(0) = [−4 6 − 3]T , x3(0) = [−5 2 7]T , x4(0) = [5 − 7 2]T .
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Figure 4: The time histories of xi
1(t), i = 1, 2, 3, 4 for G1.
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Figure 5: The time histories of xi
2(t), i = 1, 2, 3, 4 for G1.

Simulation results for G1 are shown in Figures 4, 5, and 6. The simulation results show that
the cluster anticonsensus of the multiagent discrete linear dynamic system is achieved by
the impulsive control protocol. Besides, let x(t) = (x1(t) − x2(t) + x3(t) − x4(t))/4, then
limt→+∞‖xi(t) − x(t)‖ = 0, i = 1, 3 and limt→+∞‖xi(t) + x(t)‖ = 0, i = 2, 4.

If the graph is considered as a simple circle on four vertices, then the singless Laplacian

matrix of graph G2 is Q2 =
[ 2 1 0 1
1 2 1 0
0 1 2 1
1 0 1 2

]
. The other parameters are chosen as above. Then the

conditions (H3) and (H4) in Theorem 4.1 are also satisfied. Simulation results for G2 are
shown in Figures 7, 8, and 9. From Figures 4–9, it can be seen that the speed of convergence
of cluster anticonsensus algorithms is closely related with the network structure.
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Figure 6: The time histories of xi
3(t), i = 1, 2, 3, 4 for G1.
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Figure 7: The time histories of xi
1(t), i = 1, 2, 3, 4 for G2.

6. Conclusions

In this paper, we have introduced impulsive control protocols for discrete multiagent linear
dynamic systems. The convergence analysis of the cluster anticonsensus is presented. When
the multiagent systems achieve cluster anticonsensus, the nodes in the same group achieve
consensus with each other, but there is no consensus between nodes in different groups.
In our future, we will consider the impulsive cluster anticonsensus problem of multiagent
nonlinear dynamic systems.
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Figure 8: The time histories of xi
2(t), i = 1, 2, 3, 4 for G2.
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Figure 9: The time histories of xi
3(t), i = 1, 2, 3, 4 for G2.
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